ARTICLE
Strenghth analysis of hip joint replacement revision implant
 
More details
Hide details
1
Clinic of Orthopaedics and Traumatology, Regional Hospital and Jan Kochanowski University Kielce, Poland
 
2
Warsaw University of Technology, Institute of Machine Design Fundamentals, Warszawa, Poland
 
3
Silesian University of Technology, Department of Mining Mechanisation and Robotisation, Gliwice, Poland
 
 
Submission date: 2018-06-15
 
 
Acceptance date: 2018-09-24
 
 
Publication date: 2019-01-20
 
 
Journal of Theoretical and Applied Mechanics 2019;57(1):235-248
 
KEYWORDS
ABSTRACT
The subject of the article is the evaluation of the strength of revision implants made of titanium or tantalum alloy, used during bone reconstruction of a hip joint while potentially using additional stabilizing screws, necessary due to significant bone loss. The article provides a preliminary strength analysis of implants, indispensable for further evaluation of strength limitations due to the risk of implant damage depending on the structure and number of additional screw holes. In the human locomotor system, the hip joint is the joint with the most load, hence the main problem is to establish an adequate load model which ought to be assumed for the needs of implant strength analysis. It is found necessary to perform a short, analytical review of the existing hip joint load models from the point of view of choosing the proper one, considering evaluation of implant strength by means of numerical studies using FEM. Differences in the implant load distribution depending on the used material are shown.
 
REFERENCES (29)
1.
Benouis A., Boulenouar A., Serirer B., 2016, Finite element analysis of the behavior of a crack in the orthopedic cement, Journal of Theoretical and Applied Mechanics, 54, 1, 277-284.
 
2.
Bergman G., Graichen F., Rohlmann A., 1993, Hip joint loading durnig walking and running, measured in two patients, Journal Biomechanics, 26, 969-990.
 
3.
Bergman G., Graichen F., Rohlmann A., 1995, Is stair case walking a risk for the fixation of hip implants? Journal Biomechanics, 28, 532-533.
 
4.
Bergman G., Deuretzbaher G., Heller M., Graichen F., Rohlmann A., Strauss J., Duda G.N., 2001, Hip contact forces and gait patterns from routine activities, Journal of Biomechanics, 34, 859-871.
 
5.
Bernakiewicz M., 1999, Elaboration the strain-stresses criteria for the selection of hip joint implants (in Polish), Ph.D. Thesis, Wroclaw University of Science and Technology, Wrocław.
 
6.
Bernakiewicz M., Będziński R., 1999, An analysis of the stress state of femur under extreme load conditions (in Polish), Zeszyty Naukowe Konferencji Mechaniki Stosowanej, 9, 15-21.
 
7.
Bernakiewicz M., 1994, The concept of constructional solution of the prosthetic nail of hip joint cementless endoprosthesis (in Polish), Biomechanika, 94 (Prace Naukowe Instytutu Konstrukcji i Eksploatacji Politechniki Wrocławskiej, nr 75, Seria: Konferencje nr 21, Wrocław), 19-22.
 
8.
Będziński R., 1997, Engineering Biomechanics. Selected Issues (in Polish), Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław.
 
9.
Będziński R., Ścigała K., 2004, Biomechanics of the hip joint and knee joint (in Polish), [In:] Biocybernetyka i Inżynieria Rehabilitacyjna, 5, Będziński R. (Edit.), Akademicka Oficyna Wydawnicza Exit, Warszawa.
 
10.
Bobyn J.D., Stackpool G.J., Hacking S.A., Tanzer M., Krygier J.J., 1999, Characteristics of bone ingrowth and interface mechanics of a new porous tantalum biomaterial, Journal of Bone and Joint Surgery. British Volume, 81, 5, 907-914.
 
11.
Bombeli R., 1983, Structure and Function in Normal and Abnormal Hips, Springer-Verlag, Berlin.
 
12.
Dąbrowska-Tkaczyk A., 1999, Modeling stress and strain distribution in the pelvic bone during quesi-static backward rotation, Proceedings Biomechanics 99, Acta of Bioengineering and Biomechanics V, 1, 93-96.
 
13.
Dorman T., Kmieć K., Pogonowicz E., Sibiński M., Synder M., Kozłowski P., 2011, Revision treatments in large acetabulum cavities using cup augment (in Polish), Chirurgia Narządu Ruchu i Ortopedia Polska, 76, 1, 21-24.
 
14.
Dragan S., 1992, Studies on the influence of construction of the prosthetic nail of cementless endoprosthesis and the distribution of forces in femur under the influence of loads on disturbances of primary stability (in Polish), Ph.D. Thesis, Medical Academy, Wrocław.
 
15.
Dragan S., 2004, Clinical and biomechanical aspects of osteointegration course of hip joint endoprostheses (in Polish), [In:] Biocybernetyka i Inżynieria Rehabilitacyjna, 5, Będziński R. (Edit.), Akademicka Oficyna Wydawnicza Exit, Warszawa.
 
16.
Hacking S.A., Bobyn J.D., Toh K., T¨anzer M., Krygier J.J., 2000, Fibrous tissue ingrovrth and attachment to porous tantalum, Journal of Biomedical Materials Research, 52, 4, 631-638.
 
17.
Harris W.H., 1992, The problem is osteolysis, Clinical Orthopaedics, 247, 6-11.
 
18.
Levine B.R., Sporer S., Poggie R.A., Delia Valle C.J., Jacobs J.J., 2006, Experimental and clinical performance of porous tantalum in orthopedic surgery, Biomaterials, 27, 4671-4681.
 
19.
Li Y., Yang C., Zhao H., Qu S., Li X., Li Y., 2014, New developments of Ti-based alloys for biomedical applications, Materials, 7, 1709-1800.
 
20.
Madej T., Ryniewicz A.M., 2007, Simulation of contact mechanics with a complex load conditio in the hip joint endoprosthesis (in Polish), Materiały konferencyjne, IV Krakowskie Warsztaty Inżynierii Medycznej, Kraków.
 
21.
Madej T., 2008, Modeling the movement zone of the hip joint endoprosthesis in the aspect of biomaterials (in Polish), Ph.D. Thesis, AGH University of Science and Technology, Kraków.
 
22.
Maquet P.G.J., 1985, Biomechanics of the Hip, Berlin.
 
23.
Medlin D.J., Charlebois S., Swarts D., Shetty R., Poggie R.A., 2004, Metallurgical characterization of a porous Tantalum biomaterial (Trabecular metal) for orthopaedic implant applications, Medical Device Materials: Proceedings of the Materials and Processes for Medical Conference, S. Shrivastava (Edit.), 394-398.
 
24.
Meneghini R.M., Ford K.S., McCollough C.H., Hahssen A.D., Lewallen D.G., 2010, Bone remodeling around porous metal cementless acetabular components, Journal Arthroplasty, 25, 5, 741-747.
 
25.
Meneghini R.M., Meyer C., Buckley C.A., Hanssen A.D., Lewallen D.G., 2010, Mechanical stability of novel highly porous metal acetabular components in revision total hip arthroplasty, Journal of Arthroplasty, 25, 3, 337-341.
 
26.
Pauwels F., 1976, Biomechanics of the Locomotor Apparatus, Berlin Popovic M., Hofmann A., Herr H., 2004, Angular momentum regulation during human walking: biomechanics and control, Proceedings – IEEE International Conference on Robotics and Automation, ICRA 2004, New Orleans, LA, USA, 3, 3, 2405-2411.
 
27.
Ryniewicz A.M., Madej T., 2001, The influence technology parameters on tribology properties films have been obtained by chemical vapour deposition, Proceedings of the 12th International DAAAM Symposium Technical University of Vienna, 417-418.
 
28.
Ryniewicz A.M., Madej T., 2002, Analysis of stresses and displacements in the working zone of the hip joint endoprosthesis (in Polish), Mechanika w Medycynie, 6, 127-134.
 
29.
Włodarski J., 2005, Stability of hip joint cement endoprostheses in the light of histological, numerical and experimental studies (in Polish), Bio-Algorithms and Med-Systems, 1, 2, 197-204.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top