ARTICLE
On the deformation of porous spherical bodies under radial surface traction
 
 
More details
Hide details
1
University of Naples Federico II, Department of Structures for Engineering and Architecture, Naples, Italy
 
 
Submission date: 2022-09-27
 
 
Final revision date: 2022-12-01
 
 
Acceptance date: 2022-12-21
 
 
Online publication date: 2023-04-03
 
 
Publication date: 2023-04-28
 
 
Corresponding author
Simona De Cicco   

Department of Structures in Engineering and Architecture, Università degli Studi di Napoli Federico II, via Forno Vecchio 36,, 80134, Naples,, Italy
 
 
Journal of Theoretical and Applied Mechanics 2023;61(2):305-316
 
KEYWORDS
TOPICS
ABSTRACT
The paper deals with the linear theory of elastic materials with voids based on the concept of volume fraction. In this model, the interstitial pores are vacuous and can contract or stretch. The change in the volume fraction is measured by a scalar function, so that independent kinematical variables are four: the components of displacements and the volume fraction function. The equilibrium problem of elastic spherical bodies under radial surface traction is solved. The solution is given in closed form and applied to study three special cases. Explicit formulas of the displacement, stress distribution and volume fraction function are given.
 
REFERENCES (23)
1.
Biot M.A., 1941, General theory of three-dimensional consolidation, Journal of Applied Physics, 12, 155-164.
 
2.
Ciarletta M., Ieşan D., 1993, Non-Classical Elastic Solids, John Wiley & Sons Inc., New York.
 
3.
Clebsch R.F.A., 1862, Theorie der Elasticitat Fester Koerper, B.G. Teubner, Leipzig.
 
4.
Cowin S.C., Goodman M.A., 1976, A variational principle for granular materials, Zeitschrift für Angewandte Mathematik und Mechanik (ZAMM), 56, 281-286.
 
5.
Cowin S.C., Nunziato J.W., 1983, Linear elastic materials with voids, Journal of Elasticity, 13, 2, 125-147.
 
6.
Cowin S.C., Puri P., 1983, The classical pressure vessel problems for linear elastic materials with voids, Journal of Elasticity, 13, 157-163.
 
7.
De Cicco S., De Angelis F., 2019, A plane strain problem in the theory of elastic materials with voids, Mathematics and Mechanics of Solids, 25, 1, 46-59.
 
8.
De Cicco S., Ieşan D., 2013, Thermal effects in anisotropic porous elastic rods, Journal of Thermal Stresses, 36, 4, 364-377.
 
9.
Dell’Isola F., Batra R.C., 1971, Saint-Venant’s problem for porous linear elastic materials, Journal of Elasticity, 47, 73-81.
 
10.
Eringen A.C., 1999, Microcontinuum Field Theories I: Foundations and Solids, Springer.
 
11.
Goodman M.A., Cowin S.C., 1972, A continuum theory for granular materials, Archive for Rational Mechanics and Analysis, 44, 249-266.
 
12.
Ieşan D., 1985, Some theorems in the theory of elastic materials with voids, Journal of Elasticity, 15, 215-224.
 
13.
Jenkins J.T., 1975, Static equilibrium of granular materials, Journal of Applied Mechanics, 42, 3, 603-606.
 
14.
Kupradze V.D. [Ed.], 1979, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, North Holland.
 
15.
Lamé G., 1854, Mémoire sur l’équilibre d’elasticité des enveloppes spheriques, Journal de Mathématiques Pures et Appliquées, XIX.
 
16.
Love A.E.H., 1911, Some Problems of Geodynamics, Cambridge University Press.
 
17.
Love A.E.H., 1926, Treatise on the Mathematical Theory of Elasticity, Dover Publications Inc., New York.
 
18.
Mackenzie J.K., 1950, The elastic constants of a solid containing spherical holes, Proceedings of the Physical Society, Section B, 63, 1, 2-11.
 
19.
Magnucki K., Malinowski M., 2004, Elastic buckling of porous beam, Journal of Theoretical and Applied Mechanics, 42, 4, 859-868.
 
20.
Nunziato J.W., Cowin S.C., 1979, A nonlinear theory of elastic materials with voids, Archive for Rational Mechanics and Analysis, 72, 175-201.
 
21.
Poisson S.D., 1829, Mémoire sur l’équilibre et le mouvement des corps élastiques, Mémoires de l’Académie Royal des Sciences de l’Institut de France, Paris, 8, 357-570.
 
22.
Puri P., Cowin S.C., 1985, Plane waves in linear elastic materials with voids, Journal of Elasticity, 15, 167-183.
 
23.
Thompson W., 1863, Dynamical problems regarding elastic spheroidal shells and spheroids of incompressible liquid, Philosophical Transactions of the Royal Society of London, 153, 583-616.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top