ARTICLE
Characteristics of pure Love mode SAW sensor with graphene interdigital transducer for biosensing applications
,
 
,
 
 
 
More details
Hide details
1
Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming, China
 
2
Changchun University of Science and Technology, Changchun, Jilin, China
 
 
Submission date: 2022-03-29
 
 
Final revision date: 2022-05-28
 
 
Acceptance date: 2022-06-30
 
 
Online publication date: 2022-08-24
 
 
Publication date: 2022-11-25
 
 
Corresponding author
Chen Chen   

School of Physics and Electronic Information, Yunnan Normal University, 650500, Kunming, China
 
 
Journal of Theoretical and Applied Mechanics 2022;60(4):551-559
 
KEYWORDS
TOPICS
ABSTRACT
The characteristics of Love wave biosensors are systematically investigated. The results show that sensors with combination of a ZnO guiding layer and 90ST or 90AT Quartz substrates exhibit purer Love modes than those with the SiO2 guiding layer. The corresponding maxi- mum sensitivities are −10.9069 and −11.641m2/kg, respectively, which are nearly two times higher than those of SiO2 layer. The ZnO/90ST Quartz Love wave sensor exhibits the largest K2 of 0.3022 and achieves 0 ppm/oC of TCF at hZnO/λ = 0.0216. The sensor employing the Graphene IDT further improves the sensitivity by nearly one order of magnitude.
REFERENCES (19)
1.
Anderson D.L., 1961, Elastic wave propagation in layered anisotropic media, Journal of Geophysical Research, 66, 9, 2953-2963.
 
2.
Fan Y., Ji X., 2018, A novel rotation speed measurement method based on surface acoustic wave, Acoustical Physics, 64, 1, 122-128.
 
3.
Franssila S., 2004, Introduction to Microfabrication, 4th ed., Wiley, Hoboken.
 
4.
Fu Y.Q., Luo J.K., Du X.Y., Flewitt A.J., Li Y., Markx G.H., Walton A.J., Milne W.I., 2010, Recent developments on ZnO films for acoustic wave based bio-sensing and microfluidic applications: a review, Sensors and Actuators B: Chemical, 143, 2, 606-619.
 
5.
Jakoby B., Bastemeijer J., Vellekoop M.J., 2000, Temperature-compensated Love-wave sensors on quartz substrates, Sensors and Actuators A: Physical, 82, 1-3, 83-88.
 
6.
Jandas P.J., Luo J., Quan A., Qiu C., Cao W., Fu C., Fu Y., 2020, Highly selective and label-free Love-mode surface acoustic wave biosensor for carcinoembryonic antigen detection using a self-assembled monolayer bioreceptor, Applied Surface Science, 518, 15, 146061.
 
7.
Krishnamoorthy S., Iliadis A.A., 2008, Properties of high sensitivity ZnO surface acoustic wave sensors on SiO2/(100)Si substrates, Solid-State Electronics, 52, 11, 1710-1716.
 
8.
Luo J., Luo P., Xie M., Du K., Zhao B., Pan F., Fan P., Zeng F., Zhang D., Zheng Z., Liang G., 2013, A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure, Biosensors and Bioelectronics, 49, 512-518.
 
9.
Luo J., Quan A., Fu C., Li H., 2017a, Shear-horizontal surface acoustic wave characteristics of a (110) ZnO/SiO2/Si multilayer structure, Journal of Alloys and Compounds, 693, 558-564.
 
10.
Luo J.T., Quan A.J., Liang G.X., Zheng Z.H., Ramadan S., Fu C., Fu Y.Q., 2017b, Love-mode surface acoustic wave devices based on multilayers of TeO2/ZnO/Si(100) with high sensitivity and temperature stability, Ultrason, 75, 63-70.
 
11.
Matatagui D., Fontecha J., Fernández M.J., Aleixandre M., Gràcia I., Cané C., Horrillo M.C., 2011, Array of Love-wave sensors based on quartz/Novolac to detect CWA simulants, Talanta, 85, 3, 1442-1447.
 
12.
Moreira F., El Hakiki M., Sarry F., Le Brizoual L., Elmazria O., Alnot P., 2007, Numerical development of ZnO/quartz Love wave structure for gas contamination detection, IEEE Sensors Journal, 7, 3, 336-341.
 
13.
Powell D.A., Kalantar-Zadeh K., Wlodarski W., 2004, Numerical calculation of SAW sensitivity: application to ZnO/LiTaO3 transducers, Sensors and Actuators A: Physical, 115, 2-3, 456-461.
 
14.
Sato S., 2015, Graphene for nanoelectronics, Japanese Journal of Applied Physics, 54, 4, 040102-1-040102-12.
 
15.
Tang Q.B., Guo Y.J., Tang Y.L., Long G.D., Wang J.L., Li D.J., Zu X. T., Ma J. Y., Wang L., Torun H., Fu Y. Q., 2019, Highly sensitive and selective Love mode surface acoustic wave ammonia sensor based on graphene oxides operated at room temperature, Journal of Materials Science, 54, 11925-11935.
 
16.
Tang Y.L., Li Z.J., Ma J.Y., Guo Y.J., Fu Y.Q., Zu X.T., 2014, Ammonia gas sensors based on ZnO/SiO2 bi-layer nanofilms on ST-cut quartz surface acoustic wave devices, Sensors and Actuators B: Chemical, 201, 114-121.
 
17.
Turner A.P.F., 2013, Biosensors: sense and sensibility, Chemical Society Reviews, 42, 8, 3184-3196.
 
18.
Wang Z., Cheeke J.D.N., Jen C.K., 1994, Sensitivity analysis for Love mode acoustic gravimetric sensors, Applied Physics Letters, 64, 22, 2940-2942.
 
19.
Zadeh K.K., Trinchi A., Wlodarski W., Holland A., 2002, A novel Love-mode device based on a ZnO/ST-cut quartz crystal structure for sensing applications, Sensors and Actuators A: Physical, 100, 2-3, 135-143.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top