ARTICLE
Application of linear six-parameter shell theory to the analysis of orthotropic tensegrity plate-like structures
 
 
More details
Hide details
1
Kielce University of Technology, Faculty of Civil Engineering and Architecture, Kielce, Poland
 
 
Submission date: 2017-12-20
 
 
Acceptance date: 2018-09-02
 
 
Publication date: 2019-01-20
 
 
Journal of Theoretical and Applied Mechanics 2019;57(1):167-178
 
KEYWORDS
ABSTRACT
Application of the linear six-parameter shell theory to the analysis of orthotropic tensegrity plate-like structures is proposed in the paper. A continuum model of a tensegrity plate with the self-stress state included is used. The tensegrity module, which is based on 4-strut expanded octahedron modules with additional connecting cables is proposed as an example. Different planes of support of the structures are taken into account and thus different reference surfaces of the plate model are considered. The self-stress state and some geometrical parameters are introduced for parametric analysis.
REFERENCES (28)
1.
Al Sabouni-Zawadzka A., Gilewski W., 2016, On orthotropic properties of tensegrity structures, Procedia Engineering, 153, 887-894.
 
2.
Al Sabouni-Zawadzka A., Gilewski W., Kłosowska J., Obara P., 2016, Continuum model of orthotropic tensegrity plate-like structures with self-stress included, Engineering Transactions, 64, 4, 501-508.
 
3.
Burzyński S., Chróścielewski J., Daszkiewicz K., Witkowski W., 2016, Geometrically nonlinear FEM analysis of FGM shells based on neutral physical surface approach in 6-parameter shell theory, Composities Part B, 107, 203-213.
 
4.
Chadwick P., Vianello M., Cowin S.C., 2001, A new proof that the number of linear elastic symmetries is eight, Journal of the Mechanics and Physics of Solids, 49, 2471-2492.
 
5.
Chróścielewski J., Kreja I., Sabik A., Witkowski W., 2011, Modeling of composite shells in 6-parameter nonlinear theory with driling degree of freedom, Mechanics of Advanced Materials and Structures, 18, 403-419.
 
6.
Chróścielewski J., Makowski J., Pietraszkiewicz W., 2004, Statics and Dynamics of Multifold Shell: Nonlinear Theory and Finite Element Method (in Polish), IPPT PAN, Warszawa.
 
7.
Chróścielewski J., Makowski J., Stumpf H., 1997, Finite element analysis of smooth, folded and multi-shell structures, Computer Methods in Applied Mechanics and Engineering, 41, 1-46.
 
8.
Chróścielewski J., Pietraszkiewicz W., Witkowski W., 2000, On shear correction factors in the non-linear theory of elastic shells, International Journal of Solids and Structures, 47, 3537-3545.
 
9.
Chróścielewski J., Pietraszkiewicz W., Witkowski W., 2016, Geometrical nonlinear FEM analysis of 6-parameter resultant shell theory based on 2-D Cosserat constitutive model, ZAMM, 96, 2, 191-204.
 
10.
Crawfordt, 2016, Transgender Architectonics: The Shape of Change in Modernist Space, Routledge, New York.
 
11.
Gilewski W., Kasprzak A., 2011, Tensegrities in bridge structures (in Polish), Acta Scientiarum Polonorum: Architectura, 10, 3, 35-43.
 
12.
Gilewski W., Kłosowska J., Obara P., 2015, Applications of tensegrity structures in civil engineering, Procedia Engineering, 111, 242-248.
 
13.
Gilewski W., Kłosowska J., Obara P., 2016, Verification of tensegrity properties of Kono structure and Blur Building, Procedia Engineering, 153, 173-179.
 
14.
Gómez-Jáuregui V., 2010, Tensegrity Structures and their Application to Architecture, Servicio de Publicaciones de la Universidad de Cantabria.
 
15.
Gómez-Jáuregui V., Arias R., Otero C., Manchado C., 2012, Novel technique for obtaining double-layer tensegrity grids, International Journal of Space Structures, 27, 2-3,155-166.
 
16.
Kebiche K., Kazi M., Aoual N., Motro R., 2008, Continuum model for systems in a self-stress state, International Journal of Space Structures, 23, 103-115.
 
17.
Khorshidi M.A., Shariati M., 2017, A multi-spring model for buckling analysis of cracked Timoshenko nanobeams based on modified couple stress theory, Journal of Theoretical and Applied Mechanics, 55, 4, 1127-1139.
 
18.
Kono Y., Choong K.K., Shimada T., Kunieda H., 1999, Experimental investigation of a type of double-layer tensegrity grids, Journal of the IASS, 40, 130, 103-111.
 
19.
Motro R., 2003, Tensegrity: Structural Systems for the Future, Kogan Page Science, London.
 
20.
Nowacki W., 1971, Theory of Asymmetrical Elasticity (in Polish), IPPT PAN, Warszawa.
 
21.
Obara P., Gilewski W., 2016, Dynamic stability of moderately thick beams and frames with the use of harmonic balance and perturbation methods, Bulletin of the Polish Academy of Sciences: Technical Sciences, 64, 4, 739-750.
 
22.
Pietraszkiewicz W., 1979, Finite Rotations and Lagrangean Description in The Non-linear Theory of Shells, Polish Scientific Publishers, Warszawa-Poznań.
 
23.
Pietraszkiewicz W., 2016, The resultant linear six-field theory of elastic shells: What it brings to the classical linear shell models?, ZAMM, 96, 8, 899-915.
 
24.
Schlaich M., 2004, The messeturm in Rostock – a tensegrity tower (in German), Journal of the IASS, 45, 145, 93-98.
 
25.
Skelton R.E., de Oliveira M.C., 2009, Tensegrity Systems, Springer, London.
 
26.
Timoshenko S.P., Gere J.M., 1961, Theory of Elastic Stability, McGraw-Hill, New York.
 
27.
Witkowski W., 2011, Synthesis of Formulation of Nonlinear Mechanics of Shells Undergoing Finite Rotations in the Context of FEM (in Polish), Wydawnictwo Politechniki Gdańskiej, Gdańsk.
 
28.
Woźniak C., 2001, Mechanics of Elastic Shells and Plates (in Polish), Polish Scientific Publishing House, Warszawa.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top