ARTICLE
Accuracy of determined S-N curve by selected models
 
More details
Hide details
1
University of Technology and Life Sciences, Faculty of Mechanical Engineering, Bydgoszcz
Online publish date: 2019-10-15
Publish date: 2019-10-15
Submission date: 2018-01-26
Acceptance date: 2019-04-27
 
Journal of Theoretical and Applied Mechanics 2019;57(4):859–868
KEYWORDS
ABSTRACT
The study shows models defining the relationship between the fatigue life and the stress amplitude. The first models have been developed at the beginning of the 20th century; however, new models are still being developed. The author decided to compare the most commonly used model, i.e. a linear regression model and the two models discussed in ISO-12107. The comparison also included some recently developed models, i.e. Stromeyer, Basenaire, Castillo et al., Kohout and Vechet, Leonetti et al., and Pasual and Meeker model, including its modified version. The fatigue data for S355J2+C and AISI 1045 steel were used for the comparison. The best estimate of the fatigue life was obtained by using the modified Pasual and Meeker model.
 
REFERENCES (24)
1.
ASTM E-739-91, 2006, Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life ("-N) Fatigue Data.
 
2.
Aviles R., Albizuri J., Rodriguez A., Lopez De Lacalle L.N., 2013, Influence of low-plasticity ball burnishing on the high-cycle fatigue strength of medium carbon AISI 1045 steel, International Journal of Fatigue, 55, 230-244, DOI: 10.1016/j.ijfatigue.2013.06.024.
 
3.
Bochat A., Wesolowski L., Zastempowski M., 2015, A comparative study of new and traditional designs of a hammer mill, Transactions of the ASABE, 58, 3, 585-596, DOI: 10.13031/trans.58.10691.
 
4.
Castillo E., Canteli A.F., Esslinger V., Thurlimann B., 1985, Statistical model for fatigue analysis of wires, strands and cables, IABSE Proceedings, 1-40.
 
5.
Castillo, E., Fernández-Canteli, A., 2009, A Unified Statistical Methodology for Modeling Fatigue Damage, Springer, DOI: 10.1007/978-1-4020-9182-7.
 
6.
Fouchereau R., Celeux G., Pamphile P., 2014, Probabilistic modeling of S-N curves, International Journal of Fatigue, 68, 217-223, DOI: 10.1016/j.ijfatigue.2014.04.015.
 
7.
ISO-12107, 2012, Metallic materials – fatigue testing – statistical planning and analysis of data, Geneva.
 
8.
Kohout J., Vechet S., 2001, A new function for fatigue curves characterization and its multiple merits, International Journal of Fatigue, 23, 2, 175-183, DOI: 10.1016/S0142-1123(00)00082-7.
 
9.
Kurek M., Lagoda T., Katzy D., 2014. Comparison of fatigue characteristics of some selected materials, Materials Testing, 56, 2, 92-95, DOI: 10.3139/120.110529.
 
10.
Leonetti D., Maljaars J., Snijder H.H., 2017, Fitting fatigue test data with a novel S-N curve using frequentist and Bayesian inference, International Journal of Fatigue, 105, 128-143, DOI: 10.1016/j.ijfatigue.2017.08.024.
 
11.
Ling J., Pan J., 1997, A maximum likelihood method for estimating P-S-N curves, International Journal of Fatigue, 19, 5, 415-419, DOI: 10.1016/S0142-1123(97)00037-6.
 
12.
Pascual F.G., Meeker W.Q., 1999, Estimating fatigue curves with the random fatigue-limit model, Technometrics, 41, 4, 277-290, DOI: 10.2307/1271342.
 
13.
Pollak R.D., Palazotto A.N., 2009, A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit, Probabilistic Engineering Mechanics, 24, 2, 236-241, DOI: 10.1016/j.probengmech.2008.06.006.
 
14.
Sarkani S., Mazzuchi T.A., Lewandowski D., Kihl D.P., 2007, Runout analysis in fatigue investigation, Engineering Fracture Mechanics, 74, 2971-2980. DOI: 10.1016/j.engfracmech.2006.08.026.
 
15.
Schütz W., 1996, A history of fatigue, Engineering Fracture Mechanics, 54, 2, 263-300, DOI: 10.1016/0013-7944(95)00178-6.
 
16.
Skibicki D., 2007, Experimental verification of fatigue loading nonproportionality model, Journal of Theoretical And Applied Mechanics, 45, 2, 337-348.
 
17.
Strzelecki P., Sempruch J., 2012, Experimental verification of the analytical method for estimated S-N curve in limited fatigue life, Materials Science Forum, 726, 11-16, DOI: 10.4028/www.scientific.net/MSF.726.11.
 
18.
Strzelecki P., Sempruch J., 2016, Verification of analytical models of the S-N curve within limited fatigue life, Journal of Theoretical and Applied Mechanics, 54, 1, 63, DOI: 10.15632/jtampl.54.1.63.
 
19.
Strzelecki P., Tomaszewski T., 2016. Application ofWeibull distribution to describe S-N curve with using small number specimens, AIP Conference Proceedings, 1780, 20007, AIP Publishing, DOI: 10.1063/1.4965939.
 
20.
Strzelecki P., Tomaszewski T., Sempruch J., 2016, A method for determining a complete S-N curve using maximum likelihood, [In:] 22nd International Conference on Engineering Mechanics, I. Zolotarev and V. Radolf (Edit.), 530-533, Institute of Thermomechanics, Academy of Sciences of the Czech Republic, v.v.i., Prague.
 
21.
Szala G., Ligaj B., 2011, Two-Parameter Fatigue Characteristics of Construction Steels and Their Experimental Verification (in Polish), J. Szala (Edit.), Uniwersytet Technologiczno-Przyrodniczy im. J.J. Śniadeckich, Bydgoszcz.
 
22.
Szala G., Ligaj B., 2012, Description of cyclic properties of steel in variability conditions of mean values and amplitudes of loading cycles, Materials Science Forum, 726, 69-76, DOI: 10.4028/www.scientific.net/MSF.726.69.
 
23.
Tomaszewski T., Sempruch J., 2017, Fatigue life prediction of aluminium profiles for mechanical engineering, Journal of Theoretical and Applied Mechanics, 55, 2, 497-507, DOI: 10.15632/jtampl.55.2.497.
 
24.
Weibull W., 1961, Fatigue Testing and Analysis of Results, Oxford, Pergamon Press LTD.
 
eISSN:2543-6309
ISSN:1429-2955