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For the thermal fatigue problem of the hypersonic aircraft’s plate, a loose coupling analysis
method is proposed to conduct vibration fatigue behaviour analysis of the cracked plate under
a uniform temperature field. The temperature field is converted into additional loads, and the
interaction mechanism between thermal coupling and crack propagation is explored. The modal,
dynamic response and fatigue life analyses are conducted synchronously. The numerical simulation
method is applied to verify this theoretical method. The results indicate that the analytical method
proposed has sufficient computational accuracy, and the influence of the temperature field on vi-
bration fatigue behaviour cannot be ignored.
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1. Introduction

Hypersonic aircraft refers to the aircraft that travel at speeds exceeding 5 Mach. These types
of aircraft have revolutionary potential in military, aerospace, and civilian fields due to extremely
high speed, but also face technological problems. During prolonged hypersonic flights, aircraft
fuselage plates generate extremely high temperatures due to air friction, posing significant chal-
lenges to the dynamic design and thermal protection. In a high-temperature and high-frequency
vibration environment, there is an interaction between thermal coupling and crack propagation.
Therefore, conducting the vibration fatigue behaviour analysis of the plate under a uniform
temperature field has high engineering value.
Vibration fatigue behaviour analysis includes three parts: modal analysis, dynamic response

analysis, and fatigue life analysis. In modal analysis, scholars have conducted extensive research
work. Based on Kirchhoff’s thin plate theory, Huang et al. (2018) derived the displacement tol-
erance function of a thin plate with elastic boundary conditions, and conducted modal analysis
of the cracked rectangular plate using the Rayleigh-Ritz method. Xue and Wang (2019) used
the Kirchhoff plate theory to describe the singularity of the stress field at the crack tip through
a special allowable function, and the Ritz method was applied to investigate the influence of
cracks on modal behaviour. Moradi et al. (2019) derived the vibration differential equation
of a cracked plate based on the Mindlin plate theory, and analysed the influence of load and
crack on a model of the plate by the differential quadrature element method. Heo et al. (2020)
validated the boundary dynamics Mindlin plate equation through numerical methods, and con-
ducted the free vibration analysis of the cracked plate. Song et al. (2022) derived the allowable
function within the Kirchhoff plate theory framework based on Jacobi orthogonal polynomials,
and applied the Ritz method to analyse the free vibration of a cracked polygonal thin plate.
Dynamic response analysis mainly investigates the vibration response of the plate under external
excitation. Useche (2020) established a numerical model of cracks by the double boundary ele-
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ment equation, and proposed a method to investigate the bending vibration response of cracked
plates based on the double reciprocity boundary element method. Based on the Kirchhoff plate
theory, Jalili and Daneshmehr (2018) established a non-linear model of cracked plates and in-
vestigated the time-domain response of cracked plates characterized. Motaharifar et al. (2020)
applied an improved line spring model to simulate through cracks, and conducted non-linear
vibration response analysis of cracked von Kármán plates. Based on the Mindlin plate theory,
Xue et al. (2020) simulated the stress field at the crack tip by angle displacement tolerance
functions, and studied the non-linear vibration response of the cracked plate using Hamilton’s
principle. In fatigue life analysis, scholars have proposed various analytical methods. Jameel and
Harmain (2019) applied the meshless Galerkin method to discretize the crack area, and pro-
posed a fatigue crack propagation and life prediction method for a cracked plate. Ilie and Ince
(2022) established the numerical model of a cracked plate using the ANSYS reduced order model
and embedded the Paris equation into the fatigue crack growth module to conduct vibration
fatigue life analysis. Tazoe et al. (2020) simplified cracks into a set of particle voids and proposed
a crack propagation algorithm based on smooth particle fluid mechanics to analyse the crack
propagation behaviour. Yadzhak et al. (2022) established a deformation parameter model for

Fig. 1. Research process on vibration fatigue behaviour of the cracked plate.
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crack tip opening displacement based on the energy method, and studied the crack propagation
law under type II and III mixed loads to determine the fatigue life. The aforementioned research
proposes multiple methods for vibration fatigue behaviour analysis of the cracked plate at room
temperature, but does not consider the influence of temperature field distribution. The vibration
fatigue behaviour analysis method in a normal temperature environment is not applicable to
a variable temperature field environment.
In this paper, a loose coupling analysis method is proposed to investigate the vibration fatigue

behaviour of the cracked plate. Based on the plate constitutive equation, the temperature field
and stress field distribution can be investigated. Considering the interaction between thermal
coupling and crack propagation, the additional thermal stress matrix and thermal deformation
stiffness matrix can be derived. According to the Paris equation, the influence of the tempera-
ture field on the plate’s fatigue life can be analysed. Based on the thermal stress and thermal
modal analysis, the influence of temperature on vibration fatigue life is investigated, and the
possibility of health monitoring of plates in service is provided. The research process of the loose
coupling analysis method is shown in Fig. 1.

2. Vibration fatigue behaviour analysis

2.1. Vibration differential equation

Assumptions of the thin plate are as follows: the material is fully elastic, homogeneous, and
isotropic; the thickness of the thin plate is uniform and much smaller than the other sizes;
all strain components are small enough and satisfy Hooke’s law; all transverse normal stress
components and shear deformations, and the cross-sections satisfy the plane assumption; the
moment of inertia and shearing forces of the plate are neglected. Based on the Kirchhoff plate
theory (Israr, 2008), the vibration differential equation of the cracked plate can be expressed as
follows:
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where DT = ETh
3
/
12
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)
is the flexural rigidity, w is the displacement in the z-direction

of the mid-surface, ρ is the density, h is the thickness, ET is the elastic modulus at different
temperatures, v is Poisson’s ratio and t is time, nx and ny are unit length additional surface
forces in x- and y-axis directions caused by cracks, nx and ny are unit length additional sur-
face forces in x- and y-axis directions caused by temperature changes, Mx and My are the unit
length additional bending moments in the x- and y-axis directions caused by cracks, Pz is the
external load on the plate.
Let us assume that Pz = 0, and Eq. (2.1) becomes the free vibration differential equation.

The crack is parallel to the x-axis and only the additional surface load nx acts, affected by
temperature. Therefore, Eq. (2.1) can be simplified:
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According to the singularity of the stress field at the crack tip, relationships between the
nominal tensile stress and bending stress at the crack location and the nominal tensile stress
and bending stress away from the crack location are as follows (Rice & Levy, 1972):

σ = [(1 + γαbb)σ∞ − ηαtbσb∞]/Q, (2.3)

σbb = [−γαtbσ∞ + (1 + ηαtt)σb∞]/Q, (2.4)
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αtt = 290.18ξ10 − 460.87ξ9 + 437.12ξ8 − 211.98ξ7

+ 99.19ξ6 − 33.64ξ5 + 18.6ξ4 − 0.54ξ3 + 1.97ξ2,

αbb = 61.58ξ10 − 127.86ξ9 + 147.8ξ8 − 103.66ξ7

+ 63.77ξ6 − 31.34ξ5 + 14.46ξ4 − 3.29ξ3 + 1.98ξ2,

αtb = 133.68ξ10 − 244.67ξ9 + 257.08ξ8 − 153.95ξ7

+ 84.07ξ6 − 34.87ξ5 + 16.0ξ4 − 1.91ξ3 + 1.97ξ2,

(2.5)

where σ, σbb are the nominal tensile stress and bending stress at the crack location, σ∞, σb∞
are the nominal tensile stress and bending stress away from crack location, η =

(
1− ν2

)
h/(2a),

γ = 3 (3 + ν) (1− ν)h/(2a), Q = (1 + ηαtt) (1 + γαbb)− ηγ(αtb)
2, αbb, αtt, and αtb are the local

flexibility caused by cracks, a is the half width of the crack, ξ is the relative depth of the crack.
In fact, σ∞, σb∞, and the nominal stress magnitude are consistent with the absence of cracks

at the crack location, and are expressed as follows:

σ∞ = N∞/h =

h/2�

−h/2

(τij(x, 0, z)/h)dz, (2.6)

σb∞ = 6M∞/h
2 =

h/2�

−h/2

(6zτij(x, 0, z)/h
2)dz, (2.7)

where N∞ and M∞ are the tension and bending moment per unit length in the y-axis direction,
respectively, when y = 0, τij(x, 0, z) is the stress on the cross-section when y = 0.
By replacing nominal tensile stress and nominal bending stress with tension and the bending

moment, the additional tension and bending moment caused by cracks can be obtained as follows:

ny = [−(1 + γαbb)N∞ + 6ηαtbM∞/h]/Q, (2.8)

My = [γαtbhN∞/6− (1 + ηαtt)M∞]/Q. (2.9)

Let us substitute Eqs. (2.8) and (2.9) into Eq. (2.2), and Eq. (2.2) can be simplified as follows:
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where N∞ is determined by the middle surface strain, M∞ is determined by internal force
conditions of the Kirchhoff plate, other parameters are as follows: M∞ = −DT (∂

2w
/
∂y2 +

ν∂2w
/
∂x2), ϕ = (1 + γαbb)/Q, φ = (1 + ηαtt)/Q, λ = 6ηαtb/(hQ).

2.2. Modal and dynamic response analysis

In order to simplify the analysis process, the influence of high-order modes is ignored, and
the cracked plate is simplified into a single degree of freedom system by the Galerkin method.
The general solution of the vibration differential equation for the cracked plate is as follows:

w(x, y, t) =

∞∑
q=1

∞∑
p=1

ApqXpYqψpq(t), (2.11)

where Xp and Yq are vibration mode functions of the cracked plate, Apq is the first-order am-
plitude, ψpq(t) is the modal coordinate function of the cracked plate.
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Convert the horizontally concentrated load into a uniformly distributed load by a δ function:

Pz = P0(t)δ(x− x0)δ(y − y0). (2.12)

Let us substitute Eqs. (2.11) and (2.12) into Eq. (2.10), and Eq. (2.10) can be simplified as
follows:
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Based on the strain energy caused by the second invariant of the applied surface strain,
Berger (1955) determined the deformation of the same magnitude, and the surface load nx and
N∞ can be obtained in the following way: nx = DTF1pqA
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Let us substitute Eq. (2.14) into Eq. (2.13), and integrate Eq. (2.13) within the plate area:
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where Mpq is the generalized mass, Kpq is the generalized stiffness, Hpq is the quadratic non-
linear term, Gpq is the cubic non-linear term, Ppq is the generalized external load.
The vibration differential equation of the cracked plate under sinusoidal excitation P0(t) =

p cos(Ωpqt) is transformed into:

ψ̈pq + ω2
pqψpq + αpqψ

2
pq + βpqψ

3
pq = χpqp cos(Ωpqt)/DT , (2.18)

where ωpq =
√
Kpq/Mpq is the generalized natural frequency, αpq = Hpq/Mpq, βpq = Gpq/Mpq,

χpq = Qpq/Mpq.

2.3. Fatigue life analysis

Based on the coupling degree between thermal coupling and fatigue crack propagation, this
paper makes the following assumptions: assuming that the time domain is discretized according
to the external excitation period, the geometric sizes of the fatigue crack remain unchanged at
each time step, and the fatigue crack pattern expands at the moment when each time step ends.
Based on this assumption, the temperature field and stress field are in real-time data transmission
form, while the analysis of fatigue crack propagation is in segmented data transmission form
(data transmission occurs once at the end of each time step). Therefore, a loose coupling analysis
method is proposed to carry out modal, dynamic response, and vibration fatigue life analysis of
the cracked plate at each time step simultaneously, while achieving decoupling of stress and
temperature fields in thin plate structures.
Under normal circumstances, the relationship between the dynamic stress intensity factor at

the crack tip and the crack depth can be expressed as

∆K = F (ξ)∆σd
√
πa, (2.19)

where a is the half width of the crack, F (ξ) is the crack correction factor, ∆σd is the amplitude
of the dynamic stress.
In states of low to medium stress, the Paris equation can simulate crack propagation well:

da
dN

= C(∆K)m, (2.20)

where N is the number of the vibration cycles, C and m are the material constants.
Under cyclic loading, the half width length of the crack after i cycles is as follows:

ai = a0 +
i∑

j=1

∆aj , (2.21)

where a0 is the initial half width of the crack.
When estimating vibration fatigue life of thin plate structures with cracks, three failure

criteria are used: frequency, half width, and strength (Ostiguy & Evan-Iwanowski, 1982; Shih &
Wu, 2002):
1) when the first natural frequency of a cracked thin plate decreases by 5%, the plate fails,
2) when the relative half width of the crack reaches 5%, fatigue failure occurs in the plate,
3) when the stress intensity factor reaches material fracture toughness, fatigue failure occurs
in the plate.

3. Numerical simulation analysis

The numerical simulation analysis is applied to verify the correctness and feasibility of the
theoretical method proposed in this paper. The geometric model and mesh model of the plate
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with a transverse crack are established by ANSYS. The crack is simulated by the discontinuity of
meshes, and the crack will be always in an open state. In order to objectively describe breathing
behaviour of the alternating open-closed crack in a vibration environment, the contact elements
are established on both surfaces of the crack. The presence of contact elements prevents the
intersection of the crack grids when crack surfaces come into contact, which effectively simulates
breathing behaviour of the crack alternating open-closed.
The cracked plate is simply supported on all edges, and the dimensional drawing and finite

element model are as shown in Figs. 2 and 3. Geometric sizes of the cracked plate are as follows:
l1 = 1m, l2 = 0.5m, h = 0.01m, a0 = 0.01m, ρ = 2770 kg/m3, Young’s modulus (20◦) is
E20 ◦C = 69GPa. Young’s modulus at different temperatures can be obtained:

ET = αE20 ◦C, (3.1)

where α is a scale factor, α = −17.2×10−12T 4+11.8×10−9T 3−34.5×10−7T 2+15.9×10−5T+1.

Fig. 2. Geometric dimensions of cracked plate .

Fig. 3. Finite element model of cracked plate.

4. Results and discussion

4.1. Validation

Assuming that the cracked plate is actuated by two period excitations, one excitation is
the in-plane force Nf (t) = N0 + Nt cosω1t, and the other is a uniformly distributed load
q(t) = qt cosω2t in the z-direction. The natural frequency of the first mode lateral vibration
(Ostiguy & Evan-Iwanowski, 1982) is as follows:
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ωL = ωT

(
1− N0

Ncr

)1/2

, (4.1)

where ωT is the natural frequency of the plate, Ncr =
π2D

l21(2l2/l1+l1/2l2)2
is the static critical load.

The dimensionless natural frequencies can be derived as follows:

Ω = ωLa
2
√
ρh/D, (4.2)

where ωL is the linear natural frequency of the cracked plate.
As shown in Table 1, for the non-destructive plate, the maximum error of the first order

natural frequencies is less than 0.51%, compared with the results in (Ostiguy & Evan-Iwanowski,
1982), and the first natural frequency error obtained by the numerical simulation method is lower.
Therefore, for modal analysis of the plate, the theoretical method proposed in this paper has
really high computational accuracy.

Table 1. Dimensionless natural frequencies of the plate without cracks.

Aspect ratios a/l1 N0/Ncr Ostiguy and Evan-Iwanowski (1982) Theoretical Numerical Error rate [%]

0.2 17.66 17.572 17.60 0.49

l1/l2 = 1 0 0.4 15.29 15.218 15.24 0.47

0.6 12.48 12.425 12.45 0.44

0.2 44.14 43.914 43.97 0.51

l1/l2 = 2 0 0.4 38.22 38.031 38.12 0.49

0.6 31.21 31.052 31.15 0.51

As shown in Table 2, for the plate with different depth of cracks, the maximum error of the
first order natural frequencies is less than 1.88%, compared with the results in (Shih & Wu,
2002), and the first natural frequency error obtained by the numerical simulation method is
lower. Therefore, for modal analysis of the cracked plate, the theoretical method proposed in
this paper has sufficiently high computational accuracy.

Table 2. Dimensionless natural frequencies of the cracked plate.

Aspect ratios a/l1 N0/Ncr Shih and Wu (2002) Theoretical Numerical Error rate [%]

0.2 17.62 17.579 17.59 0.23

l1/l2 = 1 0.01 0.4 15.15 15.223 15.21 0.48

0.6 12.20 12.430 12.30 1.88

0.2 44.25 43.959 44.12 0.66

l1/l2 = 2 0.01 0.4 38.13 38.070 38.82 0.16

0.6 30.95 31.084 31.02 0.43

4.2. Temperature field

Let us assume that the cracked plate is actuated by the temperature field, and the temper-
atures are as follows: −20◦, 20◦, 50◦, 100◦. First order natural frequencies and dimensionless
natural frequencies obtained by the theoretical method proposed in this paper are as shown in
Table 3.
As shown in Table 3, the influence of the temperature field on the first order natural frequen-

cies and dimensionless natural frequencies is significant and cannot be ignored. The natural fre-
quency of the plate varies considerably when the temperature is within the two ranges [−20◦, 20◦]
and [50◦, 100◦]. Under the same temperature field, as the in-plane load ratio increases, the first
order natural frequency of the cracked plate gradually decreases.
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Table 3. Dimensionless natural frequencies of the cracked plate at different temperatures.

Aspect ratios a/l1 Temperature [◦C] ωT [rad/s] N0/Ncr Ω = ωLa
2
√
ρh/D

l1/l2 = 1 0.05

0.2 17.8085

−20 300.0158 0.4 15.4226

0.6 12.5925

0.2 17.5974

20 297.1507 0.4 15.2398

0.6 12.4432

0.2 17.5972

50 297.2512 0.4 15.2396

0.6 12.4431

0.2 17.6205

100 296.2710 0.4 15.2598

0.6 12.4596

4.3. Dynamic response analysis

Let us assume that the cracked plate is under a uniformly distributed load q(t) = qt cosω2t,
where qt = 0.8 kN/m2, and excitation frequencies are ω−20 ◦C = 300.0158 rad/s, ω20 ◦C =
297.1507 rad/s, ω50 ◦C = 297.2512 rad/s, ω100 ◦C = 296.2710 rad/s. When the temperature field is
−20◦, 20◦, 50◦, 100◦, the vibration responses of the cracked plate are shown in Fig. 4 to Fig. 6.

Fig. 4. Vibration response of the cracked plate when ω2 = 300 rad/s, 297 rad/s, 297 rad/s, 296 rad/s.
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Fig. 5. Vibration response of the cracked plate when ω2 is 0.98 times the natural frequency.

Fig. 6. Vibration response of the cracked plate when ω2 is 1/3 times the resonant frequency.
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As shown in Fig. 4 to Fig. 6, the influence of the external excitation frequency and tem-
perature field on the vibration response of the cracked plate is significant. In Fig. 4, external
excitation frequencies ω2 are replaced by first order natural frequencies 300 rad/s, 297 rad/s,
297 rad/s, 296 rad/s, and the cracked plate will experience resonance phenomena, which causes
the vibration amplitude to increase exponentially. In Fig. 5, the external excitation frequency
ω2 is 0.98 times the first order natural frequency, and the vibration response of the cracked plate
exhibits a beat phenomenon. As the temperature increases, the beat period gradually shortens.
In Fig. 6, the external excitation frequency ω2 is 1/3 of the first order natural frequency, and
the vibration response of the cracked plate exhibits a general response phenomenon.

4.4. Fatigue life analysis

Let us assume that the cracks’ initial half widths are 0.03m, 0.05m, and 0.07m, and tempera-
ture fields are −20◦, 20◦, 50◦, 100◦. The external excitation is q(t) = qt cosω2t, and qt = 10N/m2.
The material constants are as follows: C = 1.17 × 10−12, m = 3.447 (Shih & Wu, 2002). Vi-
bration fatigue life curves of the cracked plate derived by the theoretical method proposed are
shown in Fig. 7. The crack propagation process of the plate obtained by the numerical method
is shown in Fig. 8, and fatigue life comparison obtained by theoretical and numerical methods is
shown in Table 4.

Fig. 7. Fatigue crack growth diagram of a cracked plate with different initial crack length.

As shown in Figs. 7 and 8, the temperature field has a certain influence on the vibration
fatigue life of the cracked plate, but the initial mid width of the crack has a significant impact.
As the initial half width of the crack increases, the vibration fatigue life rapidly decreases.
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Fig. 8. Cracking process of the fatigue crack.

Table 4. Number of load cycles with a crack length of 0.2m (×10 000).

a/l1
−20◦ 20◦ 50◦ 100◦ Max error

[%]Numerical Theoret. Numerical Theoret. Numerical Theoret. Numerical Theoret.

0.03 45.07 37.90 44.01 36.98 43.59 36.69 43.65 36.55 19.1

0.05 15.39 12.99 14.83 12.53 14.81 12.48 14.84 12.50 18.7

0.07 6.81 5.76 6.75 5.71 6.81 5.75 6.81 5.74 18.6

According to the data comparison in Table 4, there is a certain error between the fatigue life
of the plate obtained by the theoretical method proposed and the numerical results, with the
maximum error being 19.1%. There are probably three reasons for the large error:
1) the crack theory model proposed in this paper differs from the numerical model, resulting
in significant errors in the lifespan of thin plates,

2) the loose coupling analysis method assumes that the stress at the crack tip remains constant
during each cycle, but in numerical analysis, the stress at the crack tip varies periodically,
resulting in errors in the incremental expansion of the crack during each vibration cycle,

3) in numerical analysis, cracks exhibit alternating breathing behaviour of opening and clos-
ing, and meshes on both crack surfaces interfere, which affects the accuracy of fatigue life
calculation.

5. Conclusions

In this paper, the loose coupling analysis method is proposed to conduct the vibration fatigue
behaviour analysis of the cracked plate, and investigate the influence of the temperature field
on the modal, dynamic response, and vibration fatigue life behaviour. The change in the tem-
perature field alters the elastic modulus of the plate and causes additional temperature stress in
the plate. Therefore, the influence of the temperature field on the vibration fatigue behaviour
of thin plate structures cannot be ignored. Considering the interaction between thermal cou-
pling and crack propagation, the loose coupling analysis method can effectively investigate the
vibration fatigue behaviour of the cracked plate. The theoretical method proposed in this article
provides a solution for the life estimation of thin plate structures in service, and also provides
theoretical possibilities for the health monitoring of thin plate structures in service.
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