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This paper presents a proprietary steering algorithm for path following, whose advantage lies in
its ability to be applied with vehicle dynamic models of varying complexity. The proposed algorithm
was implemented using models with 3 and 10 degrees of freedom, which had been previously verified.
The results were compared with those obtained using the geometric pure pursuit (PP) algorithm.
Both algorithms require path approximation. In this study, path approximation was conducted
using B3 functions. The presented computer simulation results indicate that the proposed steering
angle selection algorithm demonstrates greater accuracy than the PP algorithm.
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1. Introduction

One of the more challenging problems in the deployment of highly automated vehicles is the
provision of an appropriate control system that enables the execution of a predefined driving
path. This task involves determining the steering angle trajectory of the front wheels based
on a known velocity profile in such a way that the vehicle follows the desired path. Numerous
vehicle control methods exist, and their comparisons and benchmarking can be found in works
such as Liu et al. (2021) and Diachuk and Easa (2022). Path-following methods generally fall into
three main categories: geometric methods, model-based methods, and learning-based (artificial
intelligence) methods.
Among the popular geometric methods, which rely on the curvature of the path, the pure

pursuit (PP) algorithm stands out. Originally formulated in the 1990s (Coulter, 1992), it is still
widely used in autonomous driving applications (Gámez-Serna et al., 2017). Huang et al. (2018)
present an application of the PP algorithm, focusing on the determination of the constant ld,
which is essential for the proper functioning of the algorithm and is related to vehicle speed.
Setting the constant too high reduces trajectory-tracking accuracy, which becomes critical during
maneuvers such as U-turns. Conversely, a too-low value leads to oscillations in the steering angle.
This algorithm continues to be used in vehicle control tasks, for example in (An et al., 2025).
Another well-known geometric control algorithm is Stanley control (SC), whose application

was described by Yang et al. (2017), with particular attention to issues related to path curvature
computation, which significantly influences the behavior of geometric algorithms. An alternative
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use of the SC algorithm was proposed by Amer et al. (2018), where it was combined with
optimization methods. Cibooglu et al. (2017) present a hybrid approach combining the PP and
SC algorithms to enhance precision. Other, less common geometric algorithms include the one
described in the monograph by Rajamani (2012). A comprehensive comparison of four geometric
algorithms is provided by Brzozowski (2025).
The advantages of geometric algorithms include their ease of implementation, low compu-

tational requirements, and high effectiveness in simple scenarios (e.g., low-curvature routes).
Their disadvantages include poor performance at higher speeds, moderate trajectory-tracking
accuracy, and sensitivity to the tuning of auxiliary/scaling parameters. Additionally, these meth-
ods do not account for the vehicle dynamics model.
Model-based methods (using either kinematic or dynamic vehicle models) describe the vehi-

cle’s motion. Typical examples include optimization-based approaches such as model predictive
control (MPC) and the linear quadratic regulator (LQR). These methods are also referred to as
optimal control strategies.
The LQR method uses a feedback gain matrix to minimize a cost function (Li et al., 2019;

Lee et al., 2019). While LQR provides greater accuracy than geometric algorithms, it is less
computationally efficient. A significant drawback is the necessity of linearization and the inability
to handle constraints.
Another class of optimization-based methods is represented by MPC, which predicts the

future behavior of the vehicle over a sequence of subintervals within the total planning horizon
based on a mathematical model. MPC performs real-time optimization to follow a reference
path while satisfying constraints. Variants of this model are discussed in (Zhang et al., 2019)
and (Fu et al., 2022), where the algorithm is adapted to specific needs. MPC’s advantages
include its ability to incorporate constraints, predict and avoid problems in advance, and work
with nonlinear vehicle models. It is considered a highly accurate control method, although its
disadvantages include high complexity and low computational efficiency.
A large class of control approaches consists of learning-based methods. These do not re-

quire the development of an explicit vehicle model and are suitable when detailed information
about the vehicle or its environment is unavailable, but large amounts of driving data exist.
MPC is often used as a preliminary tool for training such models. An example of reinforcement
learning–based control can be found in (Cao et al., 2023). Among learning-based methods, fuzzy
logic–based approaches are also noteworthy, such as in (Elsayed et al., 2018).
In this study, a proprietary algorithm was applied to solve the path-following task. Although

it does not directly fall into any of the previously mentioned categories, it requires a dynamic
vehicle model for its operation. Therefore, it can be classified alongside methods such as LQR
and MPC. It is assumed that the equations of motion take the following form:

M(q)q̈ = f (q, q̇, F (t), u) , (1.1)

where M – inertia matrix, q – vector of generalized coordinates, u – control parameter.
The linearization of the system would consist in transforming these equations into the fol-

lowing form:

M(q)q̈ = h(q, q̇, F (t)) +Gu, (1.2)

where G – input (or control) distribution matrix, h – vector of generalized forces.
In the case where the control parameter is u = δ (the steering angle of the front wheels),

it can be determined in one of the following ways:
– as the result of an optimization process (as in LQR, NLQR, MPC, or NMPC methods),
– as a solution to the problem of selecting the steering angle δ by repeated integration of the
equations of motion, as proposed in this study. This method does not require linearization.
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The algorithm proposed in this study (referred to as MPC/B) is an approach that enables
the determination of the steering angle δ, using a vehicle model of arbitrary complexity, with-
out the need for linearization or the application of optimization methods. Control inputs are
determined in stages – within sequentially occurring subintervals of the total simulation time.
To evaluate the proposed control algorithm, simulation studies were conducted, comparing the
results obtained using the MPC/B algorithm to those achieved with the PP algorithm. Two
vehicle dynamic models were formulated, and the path was approximated using third-degree
spline functions.
Although the geometric PP algorithm does not require a dynamic model to compute the

steering angle, it does require information about the vehicle’s position in space. In the case of
simulation studies, this positional information is provided by the vehicle dynamics model.

2. Nonlinear vehicle models

This study presents two vehicle models with 3 and 10 degrees of freedom (DoF). The 10-DoF
model is a three-dimensional model. It is formulated under the assumption that the vehicle is
treated as a rigid body with 6 degrees of freedom (the chassis), to which four rotating wheels
are attached (Fig. 1).

Fig. 1. Diagram of the 10 degrees of freedom model.

To derive the equations of motion for the chassis along with the attached concentrated
masses (including wheels and suspensions), a formalism based on the Newton-Euler equations
was applied (Blajer, 1998). The Newton-Euler equations for the chassis take the following form:

mV̇c =
∑
i

Fi,
dkc
dt

=
∑
i

Mic , (2.1)

where Vc – the velocity vector of the body center of mass, kc – angular velocity of the body
relative to the center of mass C, Fi – external forces acting on the body, Mic – moments of
external forces relative to the center of mass C, m – total mass of the vehicle including the
wheels.
The equations of motion for the wheels can be written in the form:

I(i)γ̈(i) =
∑
j

M
′(i)
j , i = 1, 2, 3, 4, (2.2)

where I(i) – moment of inertia of the wheel about its axis of rotation, γ(i) – wheel rotation angle,∑
j
M

′(i)
j – sum of moments of forces acting on the wheel about its axis of rotation.
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The vector of generalized coordinates comprising the body and the four wheels of the vehicle
thus takes the form:

q =

[
qn

Γ

]
=


rc

ϕ

Γ

, (2.3)

where

rc =

 xc
yc
zc

 =

 q1
q2
q3

, ϕ =

 φ
θ
ψ

 =

 q4
q5
q6

, Γ =


γ(1)

γ(2)

γ(3)

γ(4)

 =


q7
q8
q9
q10

.

To determine the road reaction forces on the wheels, the brush model (Pacejka & Sharp,
1991), modified and described in detail in (Rajamani, 2012), was applied. A detailed description
of the 10 degrees of freedom dynamic model and the tire model used can be found in (Brzozowski,
2025). In vehicle dynamics modeling for autonomous driving, the most commonly used dynamic
model is the planar model with 3 degrees of freedom, also known as the bicycle or moped model
(Gillespie, 1992; Ajanović et al., 2023). Figure 2 shows the vehicle representation in the 3 degrees
of freedom model. This model accounts for the vehicle’s displacement in the xy plane and the
yaw angle ψ around z′-axis of the local coordinate system {C}′ which is parallel to the z-axis
of the road coordinate system {O}. The vehicle dynamics are described by the components of
the vector shown in Fig. 2:

q =


V ′
x

V ′
y

ψ

, (2.4)

where V ′
x, V

′
y – the components of the vehicle velocity vector in the local coordinate system {C}′,

ψ – yaw angle.

Fig. 2. Diagram of the bicycle model (Gillespie, 1992).
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The equations of motion with generalized coordinates as in (2.4) take the form:

m
(
V̇ ′
x − ψ̇V ′

y

)
= F ′

xfcδ − F ′
yfsδ + F ′

xr − F ′
w +Gxcψ +Gysψ,

m
(
V̇ ′
y + ψ̇V ′

x

)
= F ′

xfsδ + F ′
yfcδ + F ′

yr −Gx sψ +Gycψ,

Iz′ψ̈ =
(
F ′
xf sδ + F ′

yfcδ
)
lf − F ′

yrlr +M ′
sf +M ′

sr,

(2.5)

where Iz′ – mass moment of inertia of the vehicle about the axis z′, M ′
sf , M

′
sr – self-aligning

moments, F ′
xf , F

′
yf , F

′
xr, F

′
yr – components of the tire-road interaction forces acting on the vehi-

cle’s wheels, F ′
w – drag force, lf , lr – distance of the front and rear wheel axles from the vehicle’s

center of mass, Gx, Gy – components of the gravitational force (equal to zero when the road
is not inclined).
To determine the tire-road interaction forces, formulas are used that relate the forces in the

road plane to the friction coefficients and normal reactions.
Below are the verification results of both models through comparison of own calculations

with results obtained using the CarSim software. The maneuver of a double lane change at
a vehicle speed of 80 km/h was simulated (total simulation time tK = 12 s, maximum lateral
displacement of the vehicle at time t = 4.9 s was 3.69m/s2). Vehicle parameters were based on
the CarSim A-Class Hatchback. The assumed front wheel steering angle is shown in Fig. 3a.
Figure 3b presents the calculated vehicle trajectory.

Fig. 3. Model validation: (a) assumed front wheel steering angle; (b) vehicle trajectory,
own models and CarSim.

To assess the accuracy of the formulated models, the following error metrics were used:
– mean absolute error

ε =
1

n

n∑
i=1

|εi| , (2.6)

– relative error

ε% =

∣∣∣∣wmax
o − wmax

m

wmax
o

∣∣∣∣ · 100 [%], (2.7)

where εi = ε(ti) = wo,i−wm,i, wo,i – reference value obtained using the CarSim software, wm,i –
value obtained according to the own model, wmax

o = max
1≤i≤n

|wo,i|, wmax
m = max

1≤i≤n
|wm,i|, n – number

of compared values.
The results presented in Table 1 indicate that both own models yield errors ε in displacements

on the order of several centimeters over a route nearly 270 meters long. The displacements and
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Table 1. Calculated mean ε and percentage ε% differences between the own models and CarSim.

Model (DoF)
ε ε%

x [m] y [m] ψ [◦] ψ̇ [◦/s] x y ψ ψ̇

3 0.150 0.057 0.219 0.392 0.06 0.97 2.65 2.05

10 0.150 0.052 0.217 0.381 0.06 0.04 2.11 0.90

angular velocities ψ and ψ̇ show larger errors between the own models and the CarSim software.
However, these do not exceed 3%. Therefore, both presented models can be considered valid.
The 3 degrees of freedom model was previously verified in (Brzozowski & Drąg, 2023), and the
10 degrees of freedom model in (Brzozowski, 2025).

3. Path approximation

Proper path planning has a decisive impact on the path-following task (Zhong et al., 2025;
Guo et al., 2025). There are many path planning methods. A review of these can be found in
(Katrakazas et al., 2015; Paden et al., 2016). In this work, approximation using cubic B-spline
functions (B3) was applied. It is assumed that the function approximating the path f(x) has
the form:

f(x) =

n+1∑
i=−1

aiφi(x), (3.1)

where ai – coefficients, φi – cubic B-spline basis functions (B3), n – number of subintervals into
which the interval ⟨A,B⟩ is divided. In the case where the interval ⟨A,B⟩ is divided into equal
segments of length h, it takes the values:

xi = ih for i = −3,−2,−1, 0, 1, ..., n, n+ 1, n+ 2, n+ 3, (3.2)

functions φi(x) are defined as follows:

φi(x) =



0 when x < xi−2,

(x− xi−2)
3 when x ∈ ⟨xi−2, xi−1⟩,

−3(x− xi−1)
3 + 3h(x− xi−1)

2 + 3h2(x− xi−1) + h3 when x ∈ ⟨xi−1, xi⟩,

3(x− xi+1)
3 + 3h(x− xi+1)

2 − 3h2(x− xi+1) + h3 when x ∈ ⟨xi, xi+1⟩,

−(x− xi+2)
3 when x ∈ ⟨xi+1, xi+2⟩,

0 when x > xi+2.

(3.3)

The function φi(x) along with its characteristic values is shown in Fig. 4.
The coefficients ai present in Eq. (3.1) for i = −1, 0, 1..., n, n+1 are determined by minimizing

the functional:

Ω(a−1, ..., an+1) =

m∑
k=0

[f(xk)− yek]
2 → min, (3.4)

where yek – measured value y(xk), m+ 1 – number of measurement points.
After transformations, to determine the n + 3 coefficients a−1, ..., an+1, a system of n + 3r

linear algebraic equations of the form is obtained:

n+1∑
i=−1

ai

[
m∑
k=0

φi (x
e
k)φj(x

e
k)

]
=

m∑
k=0

yekφj (x
e
k) (3.5)
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Fig. 4. Basis functions φi(x).

for j = −1, 0, 1, ..., n, n+ 1.
This is a system of n+3r linear algebraic equations. Solving this system enables the determi-

nation of the coefficients of the function f in formula (3.1). In problems related to approximating
the vehicle’s trajectory, the values of the function f(x) and its derivatives at the beginning and
end of the approximation interval are generally known, which enables the determination of up
to 6 coefficients among a−1, ..., an+1. To account for cases where the approximated path is not
a function in the mathematical sense, the following procedure was applied.
If the points (xe0, y

e
0), ..., (x

e
m, y

e
m) are sufficiently dense, the distance traveled by the vehicle

can be approximately calculated as follows:

sei =

i∑
j=1

√(
xej − xej−1

)2
+
(
yej − yej−1

)2
. (3.6)

Assuming the vehicle speed is greater than zero, the values sei form an increasing sequence.
Therefore, the coordinates x and y can be treated as functions of the variable sss (in the
mathematical sense). To determine the approximating functions x(s) and y(s), two problems
analogous to the one presented above need to be solved, assuming:

xei = sei and yei = xei when calculating the coefficients of the function x(s),

xei = sei and yei = yei when calculating the coefficients of the function y(s).
(3.7)

It is necessary to take into account the initial and boundary conditions for each of the
functions x(s), y(s).

4. Own MPC/B algorithm for selecting the front wheel steering angle δ(t)

We assume that the nonlinear equation describing the dynamics of the autonomous vehicle
takes the form:

M(q)q̈ = f(q, q̇, δ(t)), (4.1)

whereM(q) – inertia matrix, q, q̇ – vectors of vehicle coordinates and velocities, δ(t) – function
describing the steering angle trajectory of the vehicle’s front wheels (to be determined). It is
assumed that the vehicle’s path and velocity profile are known. The integration interval ⟨0, T ⟩
for the equations of motion (4.1) is divided into subintervals of length

∆t = mhc, (4.2)
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where hc – the integration step of the equations of motion, mc – the multiple of the integration
step.
Assuming that at t = t0 the steering angle is known:

δ0 = δ(t0) (4.3)

and the initial conditions:

q0 = q(t0), q̇0 = q̇(t0). (4.4)

The sought value of the steering angle is denoted as

δm = δ(t0 +∆t) = δ(tm) (4.5)

which changes linearly over the interval ⟨t0, t0 +∆t⟩ = ⟨t0, tm⟩ according to the relation:

δ(t) = δ0 +
δm − δ0

∆t
(t− t0). (4.6)

It is assumed that the quantity δm should minimize the expression:

∆2 (δm) = Cx,y0

[
(xc,m − xT,m)

2 + (yc,m − yT,m)
2
]
+ Cψ0 [ψm − ψT,m]

2

+ Cx,y1

[
(ẋc,m − ẋT,m)

2 + (ẏc,m − ẏT,m)
2
]
+ Cψ1 [ψ̇m − ψ̇T,m]

2
, (4.7)

where xc,m = xc (tm), yc,m = yc (tm), ψm = ψ(tm). They are the coordinates of the vehicle’s
center of mass and its yaw angle, calculated using the vehicle dynamics model at time tm,
whereas xT,m = xT (tm), yT,m = yT (tm), ψT,m = ψT (tm). They are the desired path coordinates
and the tangent angle to the vehicle trajectory, calculated according to the path approximation
algorithm at time tm.
To calculate ∆2

m (δm), the equation of motion (4.1) must be integrated with δ(t) defined
by (4.6). The quadratic form (4.7) reaches its minimum when:

∂∆2 (δm)

∂δ
= 2

{
Cx,y0

[
(xc,m − xT,m)

∂xc,m
∂δ

+ (yc,m − yT,m)
∂yc,m
∂δ

]
+ Cψ0 (ψm − ψT,m)

∂ψm
∂δ

+ Cx,y1

[
(ẋc,m − ẋT,m)

∂ẋc,m
∂δ

+ (ẏc,m − ẏT,m)
∂ẏc,m
∂δ

]
+ Cψ1

(
ψ̇m − ψ̇T,m

) ∂ψ̇m
∂δ

}
= 0, (4.8)

where ∂p∂δ p ∈ Ω =
{
xc,m, yc,m, ψm, ẋc,m, ẏc,m, ψ̇m

}
is the derivative of the function p with respect

to δ for t = tm.
To calculate these quantities in this paper, the five-point finite difference method was applied,

assuming:

∂p

∂δ δ=δm
=
p (δ0 − 2δm)− 8p (δ0 − δm) + 8p (δ0 + δm)− p(δ0 + 2δm)

12δm
. (4.9)

To calculate ∂p
∂δ for p ∈ Ωt, it is therefore necessary to quadratically integrate the equation

of motion (3.7)1 in the interval ⟨t0, tm⟩.
The δm is determined using Newton’s successive approximation method, assuming:

δ0m = δ0, δ(i)m = δ(i−1)
m − γi(δm)

γ′i(δm)
, (4.10)
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where

γi (δm) =
1

2

∂∆2 (δm)

∂δ
, γ′i (δm) =

∂γi (δm)

∂δ
.

The iterative process was conducted until one of the conditions was met:

i = iMAX,

∣∣∣∣γi(δm)γ′i(δm)

∣∣∣∣ < EPS, (4.11)

where iMAX and EPS are quantities defining the maximum number of iterations and the absolute
error in determining the δm, respectively.
The derivative of γ′i (δm) was also calculated using the five-point finite difference method.
In summary, to determine δm, it is necessary, according to the proposed algorithm, to inte-

grate the equations of motion (4.1) over the interval ⟨t0, tm⟩ at most:

N = iMAX5times. (4.12)

5. Simulation research

Simulation studies were performed for a loop in which the trajectory (Fig. 5) is described by
the formulae:{

x = a sin(s),
y = a sin(s) cos(s),

where a = 50.

Fig. 5. Trajectory for the implementation of the “loop” maneuver: (a) total; (b) enlargement.

The execution time for the entire maneuver is tk = 39 s, and the total distance is 304 metres.
A constant speed of v = 28 km/h was assumed.
In the present task, the constants Cx,y0 and C

x,y
1 are taken as 10

3 and 102, while the constant
Ld needed for the PP algorithm to work properly as 0.05.
The trajectory shown in Fig. 5 indicates that there is little difference between control us-

ing the PP algorithm and the proprietary algorithm. The proposed algorithm is slightly more
accurate. Due to the small differences, the figure does not show the results of the calculation
using the dynamics model with 10 DoF. The maximum values of the mapping error are shown
in Table 2.
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Table 2. Mapping error.

Dynamics model
Steering algorithm

PP MPC/B

3 DoF 0.298 0.098

10 DoF 0.409 0.384

The results indicate a higher accuracy of the proposed algorithm, especially when combined
with a low complexity vehicle dynamics model. Figure 6 shows the course of the steering angle.
The MPC/B algorithm determined a slightly larger steering angle than the PP algorithm. The
maximum difference was 1.64◦.

Fig. 6. Diagram of the course of the steering angle: (a) total; (b) magnification.

6. Results and discussion

Among the most popular vehicle control methods are: geometric, model-based (optimization)
and machine learning. Developing control methods that ensure path realization is an important
research problem. This paper compares the classical geometric algorithm PP with the proprietary
MPC/B algorithm, which belongs to the group of MPC algorithms based on a model of vehicle
dynamics. The proposed algorithm is more accurate than the PP algorithm. It has additional
advantages, such as the ability to be used with any dynamics model or to be tuned for specific
requirements. A weakness is the moderate computational efficiency. For the presented “loop”
maneuver, the computation time with the PP algorithm was 2.14 s for MPC/B 4.94 s. Table 3
shows a synthesis of the conclusions and a comparison of the PP algorithm with the proposed
own algorithm.

Table 3. Comparison of the PP algorithm and own algorithm MPC/B.

Dynamics model
PP MPC/B

Does not use Any of the following may be used

Choice of constants Limited tuning ability Trajectory or yaw angle tuning possible

Precision Moderate High

Numerical effectiveness High Moderate

In future work, it seems expedient to compare the proposed algorithm with a standard MPC-
type algorithm.
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