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This paper investigates the effects of incorporating stochastic features into the simulation of
a dynamic suspension system. The study is motivated by a real-world anomaly phenomenon ob-
served in railway vehicles, where changes in the stiffness of rubber springs during operation can lead
to irregular motion. A series of tests were conducted to characterize these stiffness variations and
their dynamic behavior under stochastic excitation. Using a simplified, symmetrically structured
model, the study demonstrates that such changes can initiate system anomalies, accelerating the
deterioration of the system’s technical state and potentially leading to a significant reduction in
component lifetime.
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1. Introduction

Railway vehicle dynamics are profoundly influenced by the mechanical properties and per-
formance of suspension components. In this study, we investigate a specific anomaly in the
secondary suspension system of an electric locomotive type. In practice, intensive asymmetric
wheel profile wear appeared during the long-time operation of these types of vehicles (Ferencz,
2010), meaning that the wheels on one side were subjected to larger degradation than on the
other side of one wheelset. The problem originated from deviations in the stiffness properties of
the suspension’s rubber-to-metal spring (secondary spring) components, which were identified
as the primary cause of the anomaly (Ferencz, 2010).
First, we explain the secondary spring measurements and their outcomes, then the six-degree-

of-freedom mechanical model of the railway vehicle is introduced. We add independent track
excitations on the left and the right side of the vehicle to include track irregularities, and thus
the mathematical model of the system is a stochastic differential equation (SDE), as similarly
used by Bruni et al. (2011) and Knothe and Stichel (2017).
Numerical techniques are used to simulate the motion of the vehicle, and from the simulation

results we calculate the deformation distribution of the secondary springs during the steady-state
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operation. Based on this distribution we can calculate the probability of critical operation (PCO)
if we define a certain critical limit of operation (CLO). This critical limit in our case is a large
secondary spring deformation we consider to be harmful and that might cause degradation and
failure in the stiffness characteristics.
If the secondary spring stiffness changes due to critical operation, the model is not symmetric

anymore. We show that in terms of PCO values the emerging asymmetric secondary spring
structure is much more dangerous than a symmetric structure.

2. The subject

2.1. Suspension component tests

Anomalies in the suspension system parameters of railway vehicle structures (such as unex-
pected deviations between the secondary springs) can lead to unexpected reductions in compo-
nent lifespan and accelerated deterioration of the system’s technical condition.
In 2006, a detailed analysis was conducted on a set of layered rubber-to-metal spring units

to evaluate their vertical stiffness characteristics after a significant number of system anomalies,
e.g., asymmetric wheel wear was observed in practice. To further investigate the long-term
behavior of these springs, new measurements were carried out in 2024 (as illustrated in Fig. 1).
The analysis included units still in operation and others dismantled after approximately 5–6
years of use.

Fig. 1. Test bench set to measure spring characteristics.

The results revealed significant deviations in the stiffness parameters of the tested secondary
spring components.
The measured stiffness characteristics were evaluated using the classical least squares regres-

sion method, providing statistical representations of the data. On the basis of the optimization
parameters an average function can be calculated as drawn with red line. These characteristics
could be compared to the nominal design characteristics (as illustrated in Fig. 2) drawn black,
with the approach assumption that the spring units were accepted with prescribed tolerances at
operation start time according to the assembly by manufacturer technical requirements.
The tested spring units that had been in operation for 5–6 years show substantial deviations

in stiffness, particularly at the nominal design load point at displacement of 4mm.
In the figure two units showed unexpectedly softness, considered as outliers due to a possible

material defect. Leaving out these from the further calculations a corrected average function was
obtained. The range of the considered calculated spring stiffness values is as follows:

r = max{si} −max{si} = 16.137
kN

mm
− 10.175

kN

mm
= 5.9622

kN

mm
. (2.1)
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Fig. 2. Calculated vertical spring stiffness characteristics based on the measurements.

Statistical data from these measurements were incorporated into the mechanical model pre-
sented in Section 3, along with the specific mass and moment of inertia values of the locomotive
under study.

2.2. System anomaly

An anomaly is when a certain system parameter exceeds its permitted in-operation maximum
or minimum limit. From the measurements we conclude that during operation the secondary
spring characteristics change due to such anomalies in the system. In the next section, we
introduce a mechanical model of railway vehicles with random track (“road” contact surface)
excitation that aims to explain an anomaly regarding the deformation of the secondary springs.
The actual phenomena can be described by the stochastic deterioration process D(t, w) curve

shown in Fig. 3. The curve shows with increasing operation time an increasing standard deviation
banding around the expectation function indicated by ED(t, w). It describes the natural physical
process of normal material and structural damage, as the stochastic process of deterioration, as
shown in Fig. 3 (Ferencz, 2023) over the time axis.

Fig. 3. Band characteristics of the deterioration process vs. time.
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The natural degradation of spring stiffness change can be considered accordingly. Possible
individual realization curves running within the bandwidth consist of two main sections divided
by an inflexion point. The estimated speed of technical condition deterioration is exactly de-
fined by the time-derivative process of D(t, w), that depends on time t and on the elementary
event w.

3. The mechanical model

In this study, a simplified six-degree-of-freedom mechanical model is utilized. The model as
shown in Fig. 4, represents the cross section of the railway vehicle with three mass elements:
half of a bogie and a quarter of a carbody structure over one wheelset.

Fig. 4. Mechanical model.

The s parameters are spring stiffnesses, the d parameters represent damping, m, Θ and w
are the mass, mass moment of inertia and half width of the different bodies, respectively. We
presented the forces acting between the bodies on the right side of Fig. 4. The model focuses only
on the behavior of the three components (half of a bogie and a quarter of a carbody structure
over one wheelset) subjected to stochastic track excitation denoted by rl(t) and rr(t) (directly
impacting the wheels) to highlight the statistical features and possible threats during operation.
The track excitation represents the irregularities of track rail lines on each side. The state

vector is taken as follows: y = [x3 ẋ3 φ3 φ̇3 x2 ẋ2 φ2 φ̇2 x1 ẋ1 φ1 φ̇1]
T. The vector elements are

the considered movements and their derivatives as velocity parameters.
The probabilistic nature of the excitation is captured by two separate white noise processes:

Wl(t) on the left side and Wr(t) on the right.
The following forces are acting on the bodies:

F1l = s1l(x1−w1 sin(φ1)−x2+w2 sin(φ2))+d1l(ẋ1−φ̇1w1 cos(φ1)−ẋ2+φ̇2w2 cos(φ2)),

F1r = s1r(x1+w1 sin(φ1)−x2−w2 sin(φ2))+d1r(ẋ1+φ̇1w1 cos(φ1)−ẋ2−φ̇2w2 cos(φ2)),

F2l = s2l(x2−w2 sin(φ2)−x3+w3 sin(φ3))+d2l(ẋ2−φ̇2w2 cos(φ2)−ẋ3+φ̇3w3 cos(φ3)),

F2r = s2r(x2+w2 sin(φ2)−x3−w3 sin(φ3))+d2r(ẋ2+φ̇2w2 cos(φ2)−ẋ3−φ̇3w3 cos(φ3)),

F3l = s3l(x3−w3 sin(φ3)),

F3r = s3r(x3+w3 sin(φ3)).

(3.1)
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The stochastic track excitations are taken as

rl(t) = σlΓl(t), rr(t) = σrΓr(t), (3.2)

where Γl(t) and Γr(t) represent independent white noise processes modeling the random irregu-
larities of the track with noise intensities σl and σr on the left and right side, respectively. The
equation of motion of the system is a stochastic differential equation (SDE) (Sun, 2006) written
in an incremental form:

dy = f(y) dt+ gl(y) dWl + gr(y) dWr, (3.3)

where the elements of the deterministic part f(y) are as follows:

f1(y) = ẋ1, f2(y) = −g +
1

m1
(−F1l − F1r),

f3(y) = φ̇1, f4(y) =
1

Θ1
(F1l − F1r)w1 cos(φ1),

f5(y) = ẋ2, f6(y) = −g +
1

m2
(−F2l − F2r + F1l + F1r),

f7(y) = φ̇2, f8(y) =
1

Θ2
(F2l − F2r − F1l + F1r)w2 cos(φ2),

f9(y) = ẋ3, f10(y) = −g +
1

m3
(−F3l − F3r + F2l + F2r),

f11(y) = φ̇3, f12(y) =
1

Θ3
(F3l − F3r − F2l + F2r)w3 cos(φ3).

(3.4)

The stochastic effects of the track excitation are given on the left side by the vector gl(y)
and the corresponding Wiener-process increment dWl, and on the right side gr(y) and dWr.
The elements of the vectors are

gl10(y) = − s3l
m3

σl, gl12(y) =
s3l
Θ3

w3σl cosφ3,

gr10(y) = −s3r
m3

σr, gr12(y) = −s3r
Θ3

w3σr cosφ3.

(3.5)

The not listed elements of gl(y) and gr(y) are zeros. The dWl and dWr increments are
random variables of independent normal distributions with zero expected values and dt variance.
The system’s behavior is investigated based on numerical simulations.

4. Results

Our main interest lies in understanding what happens with the secondary springs (character-
ized by s1l and s1r on the left and right sides below the carbody) during long-time operation. For
that, relatively long simulations are performed to have enough data to estimate the steady-state
distribution of the deformation (length change) ∆l in the springs. The deformation is calculated
at each time step from the state variables:

∆l = sin(φ2)w2 − sin(φ1)w1. (4.1)

In expectation, the springs are compressed by about 4mm nominally. The ∆l is the de-
formation of the left secondary spring about this expected compression value. Note that the
deformation of the right secondary spring would be −∆l. From the simulations we can calcu-
late the distribution of this deformation during the steady-state operation. If we set a critical
limit of operation (CLO), which means that at certain deformation the springs are subjected to
weakening or potential failure, we can calculate the probability of critical operation (PCO) in
the steady state.
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4.1. Simulations

In practice, SDEs are investigated mainly utilizing numerical solvers, since exact analytical
solutions only exists for a handful of simple examples.
The simulations presented in this paper are acquired by using an implicit Euler–Maruyama

scheme built into the DifferentialEquations.jl package of The programming language Julia. Ex-
plicit schemes struggle to converge properly for stiff problems, and since the spring stiffnesses
are large in our system, the performance of implicit schemes is much better (Rackauckas & Nie,
2020).
First, we consider the system to be symmetric, i.e., s1l = s1r = s1, d1l = d1r = d1, s2l =

s2r = s2, d2l = d2r = d2, s3l = s3r = s3, and σl = σr = σ. Only the noise processes differ on
the two sides. In this case, the simulations are carried out using the parameters in Table 1. This
study focused on the variability of the stiffness parameters. It is to be mentioned that the energy
dissipation characteristics of these spring units after a certain deteriorated technical state are
an object of further investigations. Table 1 shows special damping parameter figures cited from
calculations of the certain locomotive type structural nominal design parameters (Ferencz, 2010).
The indicated stiffness values were by purpose chosen to avoid possible numerical distortion in
the solver process. With this possibility, the influence of the noise and the real asymmetricity
of the focused secondary suspension system elements could be qualitatively examined.

Table 1. Simulation system parameters.

Parameter Value Unit Parameter Value Unit Parameter Value Unit

m1 10450 kg m2 4305 kg m3 3640 kg

Θ1 104 250 kg ·m2 Θ2 8 610 kg ·m2 Θ3 7280 kg ·m2

w1 1 m w2 1 m w3 1 m

s1 12 746 000 N/m s2 1 035 000 N/m s3 2 070 000 N/m

d1 1409 Ns/m d2 2000 Ns/m σ 0.001 1

Figure 5 shows the simulation results of state variables over time in relation to their respective
expected solutions. The expected solution is when the noise is removed from the system in this

Fig. 5. Simulations results of state variables, plotted about their steady-state solution.
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case. For example, the expected solution of the rotational movement angles of the bodies φ1,
φ2, φ3 are zero, because the system is symmetric. However, the stochastic excitation forces the
bodies to move randomly, and the rotational angles constantly deviate from the expected zero
value.

4.2. Probability of critical operation (PCO)

Hypothetically an anomaly process can appear on the basis of an operation with critical
considered parameters within the system. This acts as the necessary first criteria to exist and to
step toward, to “detour the system” toward an anomaly process. To model this, we can use the
empirical density function values of the spring characteristic features to calculate the secondary
spring deformation ∆l changes from the state variables in each time step. The distribution is
shown in Fig. 6.

Fig. 6. Secondary spring deformation distribution during steady-state operation.

If we set a critical limit of operation (CLO), i.e., a ±∆l value for which the process is
considered unsafe, we can calculate the PCO based on this distribution.
Figure 7 displays the connection between the CLO and the PCO values in the case of a sym-

metric secondary spring structure. For example, if we set the critical limit to zero, the prob-
ability that we have larger deformations is equal to 100%. The larger CLO, the lesser gets
PCO. According to the measurements explained in Section 2, there is a significant deviation
in the secondary spring stiffness values s1. We calculated the PCO for a symmetric case, when
the secondary springs on the left and right sides are identical.

Fig. 7. Probability of critical operation (PCO) as a function of the critical limit of operation (CLO).
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We considered two asymmetric cases: 1% asymmetry means the s1r is 99% and s1l is 101%
of the nominal value. Second, 5% asymmetry is when s1r is 95% and s1l is 105%. Figure 8
shows the steady-state distribution of the secondary spring deformation ∆l in the symmetric
and asymmetric cases. In asymmetric cases the expected rotation movement angle of the carbody
φ1 is no longer zero, i.e., there is a steady-state tilt. If the expected value of φ1 is not zero, then
the expected value of ∆l also differs from zero. Figure 8 displays how the ∆l distributions shift
depending on the measure of secondary spring asymmetry. For larger asymmetry values, the
distribution is centered further aligned from zero value.

Fig. 8. Symmetric and asymmetric steady-state distribution of ∆l.

Figure 9 presents the PCO values for the symmetric and asymmetric cases. For a certain CLO
value, e.g., 0.4mm, the symmetric probability is around 0.7%, the 1% asymmetric probability is
slightly larger than 0.1%, close to the symmetric case, but the 5% asymmetric probability is more
than 4%. This essentially means that larger asymmetry causes high probability for the vehicle
system itself to be in critical operation.

Fig. 9. PCO as a function of CLO for symmetric and asymmetric cases.

If we specify the operation time (OT) to be, e.g., 10000 hours, we can transform the PCO
into critical operation time (COT):

COT = PCO×OT. (4.2)

Table 2 presents the COT values for different cases. Note that as the CLO increases for
a certain case, i.e., we allow larger deformation of these secondary springs, the COT values
decrease. However, if we fix the CLO value at 0.5mm and focus on the effect of asymmetry,
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Table 2. COT in different cases.

CLO [mm] PCO [%] COT [hours]

Sym 0.4 0.07 7.03

1% Asym 0.4 0.107 10.7

5% Asym 0.4 4.09 409.9

Sym 0.5 0.0022 0.22

1% Asym 0.5 0.00426 0.426

5% Asym 0.5 0.407 40.7

we see that out of 10000 hours the symmetric springs spend 0.22 hours in critical operation,
which seems low, but the 5% asymmetric springs spend 40.7 hours.

5. Conclusions

This paper provides an opportunity to assess the impacts of stochastic excitation on sym-
metrically and asymmetrically structured models of a railway vehicle. The results indicate that,
even under nominal structural conditions, the system can exhibit anomalies when subjected to
random forcing. The noise may drive the system into unexpected motions, especially during
asymmetric operation conditions.
One can consider a symmetric case: the left and right secondary spring stiffness is the same.

Even in a symmetric case the probability of critical operation is not zero in the presence of
stochastic track excitation. After some time, one of the springs gets damaged due to operating
above its intended limit. Its stiffness changes, and now the system is asymmetric because the
stiffnesses of the secondary springs are different on the two sides. The PCO is larger in the asym-
metric case, therefore the system spends even more time in critical operation than before, which
means that an anomaly process develops with high probability.
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