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The subject of the paper is a homogeneous I-beam with an individual shape web. The beam,
simply supported at one end and at the other simply supported with elastic limitation of rotation,
is subjected to axial compression by a force F . The analytical model of the beam is developed
with consideration of the shear effect. The deformation of the beam’s plane cross-section after
buckling is determined analytically, taking into account the classical expression for shear stresses in
a beam (known as Zhuravsky or Jourawski shear stress). Longitudinal displacements, strains, and
stresses are then formulated. Based on the principle of stationary total potential energy, a system of
two equilibrium differential equations is derived. These equations are solved analytically, taking into
account the beam support conditions, and the critical force FCR is determined. Detailed calculations
are realized for sample beams.
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1. Introduction

Initiated by Leonhard Euler in the 18th century, the study of buckling of a compressed beam
has been intensively developed over the following centuries and is still being improved today to
address problems related to the stability of beams, plates, and shells, which are closely related
to the design of structures. Rykaluk (2012) described in detail the criteria of elastic stability,
buckling issues of axially and eccentrically compressed classical and thin-walled beams with open
cross-sections, buckling of rings and arches, stability of flat frames, as well as stability problems
of rectangular plates and shells. Magnucki and Milecki (2015) examined the elastic buckling
problem of the symmetrical triangular frame under tensile in-plane load. They studied in detail
both analytically and numerically (using FEM) the in-plane buckling state and the lateral buck-
ling state of this sample frame. Simão (2017) presented a stability analysis of shear-sensitive
columns with a linear formulation according to the Timoshenko beam theory along with a non-
linear shear formula. Eslami (2018) first characterized the stability concept and then presented
in detail buckling and post-buckling problems of beams and plates, as well as buckling problems
of cylindrical, spherical and conical shells. Yang et al. (2019) presented the results of multi-
ple numerical and experimental studies of the global buckling problem of bi-symmetrical steel
beams under three-point bending. Szymczak and Kujawa (2019) investigated analytically and
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numerically (FEM) the flexural buckling of axially compressed, simply supported, and clamped
I-columns made of aluminum alloy and indicated the influence of material non-linearity on the
critical loads. Genovese and Elishakoff (2019) pointed out the importance of the principle of
virtual work in the formulation of planar static rod theories with consideration of large deforma-
tions and the transverse shear effect. Filho et al. (2022) investigated, both experimentally and
numerically, the buckling problem of welded I-section columns undergoing flexural or torsional
buckling failure. Yang et al. (2023) focused on the buckling instability problem of I-beams,
developed a numerical model of the beam using Lagrange polynomials to describe the three-
dimensional displacement field, and numerically investigated the global buckling, local buckling,
and global–local coupled buckling of these beams. Jing et al. (2024) studied the effect of limit-
ing the beam center deflection with an elastic support on the critical axial force and dynamic
characteristics. They determined two stable states of beam buckling depending on the stiffness
of the elastic center support.
Magnucki and Sowiński (2024) applied an individual nonlinear shear deformation theory to

the analytical modeling of a clamped sandwich beam with a functionally graded core, and then
analytically and numerically (using FEM) studied the bending of this beam under a uniformly
distributed load. Magnucki (2024a) developed two analytical models of a five-layered composite
beam. The first is formulated on the basis of the classical zig-zag theory, while the second is devel-
oped using the nonlinear shear deformation theory. He then analytically studied the bending of
these sample beams for both models. Magnucki (2024b) analytically described the cross-section
of a standard wide-flange H-beam as a three-layer structure and analytically studied the funda-
mental natural frequency of these sample beams with consideration of the shear effect. Couto
et al. (2025) provided a thorough review of the research that led to the proposal of European fire
design rules for steel thin-walled I-beams. They focused on the problem of interaction between
local and global buckling in these members.
This work continues studies of the beam buckling problems presented in the above sample

papers. The main goal of the work is to analytically study the beam buckling with consideration
of the shear effect.

2. Analytical study of the individual I-beam with consideration
of the shear effect

The subject of the study is a homogeneous individual I-beam of length L, width b, and
total depth h under axial compression by a force F . One end of the beam is simply supported,
while the other end is elastically limited in rotation by means of a rigid part connected to
two springs with stiffness ks (Fig. 1). The beam is protected against out of the x- and y-plane
buckling.

Fig. 1. Schematic diagram of the beam with two different supports at its ends.

The cross-section of this beam, with a functionally graded middle part-web thickness, is
shown in Fig. 2. This individual beam’s planar cross-section provides input for analytically
determining the nonlinear function of its deformation.
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Fig. 2. Schematic cross-section of the individual beam.

The widths of the successive parts of this cross-section are as follows:
– the upper flange (−1/2 ≤ η ≤ −χmp/2):

wuf (η) =
wuf (η)

b
= 1, (2.1)

– the middle part – web (−χmp/2 ≤ η ≤ χmp/2):

wmp(η) =
wmp(η)

b
= β0 + (1− β0) sin

n

(
3π

η

χmp

)
, (2.2)

– the lower flange (χmp/2 ≤ η ≤ 1/2):

wlf (η) =
wlf (η)

b
= 1, (2.3)

where η = y/h – dimensionless coordinate, χmp = hmp/h, β0 = b0/b – dimensionless sizes, and
n – even number.
Taking into account the papers by Magnucki (2024a) and Magnucki (2024b), the dimension-

less deformation functions for the successive parts of this cross-section are analytically deter-
mined as follows:
– the upper flange (−1/2 ≤ η ≤ −χmp/2):
The dimensionless first moment (Fig. 3) is given by

S
(uf)
z (η) =

S
(uf)
z (η)

bh2
= −

−η�

−1/2

η dη =
1

8
(1− 4η2). (2.4)

Therefore, the derivative of the dimensionless deformation function is

df (uf)d

dη
=
S
(uf)
z (η)

wuf (η)
=

1

8
(1− 4η2). (2.5)

Consequently, the dimensionless deformation function is

f
(uf)
d (η) = −Cf +

1

8

(
1− 4

3
η2
)
η, (2.6)

where the integration constant:

Cf = − 1

16

(
1− 1

3
χ2
mp

)
χmp +

χmp/2�

0

S
(mp)
z (η)

wmp(η)
dη; (2.7)
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Fig. 3. Hatched area of the upper flange selected part.

– the middle part–web (−χmp/2 ≤ η ≤ χmp/2):
The dimensionless first moment (Fig. 4) is given by

S
(mp)
z (η) =

1

8

(
1− χ2

mp

)
−

η�

−χmp/2

ηwmp(η) dη. (2.8)

Fig. 4. Hatched area of the selected part of the functionally graded middle part-web.

The derivative of the dimensionless deformation function is

df (mp)d

dη
=
S
(mp)
z (η)

wmp(η)
(2.9)

and the dimensionless deformation function is

f
(mp)
d (η) =

�
S
(mp)
z (η)

wmp(η)
dη; (2.10)

– the lower flange (χmp/2 ≤ η ≤ 1/2):

S
(lf)
z (η) =

1

8
(1− 4η2), (2.11)

df (lf)d

dη
=

1

8
(1− 4η2), (2.12)

f
(lf)
d (η) = Cf +

1

8

(
1− 4

3
η2
)
η. (2.13)
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The schematic cross-section of the beam, and graphs of dimensionless deformation functions
of the planar cross-section (2.6), (2.10), (2.13), and its derivatives (2.5), (2.9), (2.12) for the
example beam (χmp = 4/5, β0 = 1/10, n = 10) are shown in Fig. 5.

Fig. 5. Schematic cross-section of the beam and graphs of functions fd(η), dfd/ dη.

The deformation of a planar cross-section of this beam, in accordance with the nonlinear
shear deformation theory, is shown in Fig. 6.

Fig. 6. Schematic diagram of planar cross-section deformation of the beam.

Based on this diagram (Fig. 6), the longitudinal displacements, and consequently strains and
stresses, in the successive parts of this cross-section are as follows:
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– upper flange (−1/2 ≤ η ≤ −χmp/2):

u(uf)(x, η) = −h
[
η
dv
dx

− f
(uf)
d (η)ψf (x)

]
, (2.14)

ε (uf)x (x, η) = −h
[
η
d2v
dx2

− f
(uf)
d (η)

dψf
dx

]
, (2.15)

γ (uf)
xy (x, η) =

df (uf)d

dη
ψf (x), (2.16)

σ (uf)
x (x, η) = E ε(uf)x (x, η), (2.17)

τ (uf)xy (x, η) =
E

2(1 + ν)
γ (uf)
xy (x, η), (2.18)

– the middle part – web (−χmp/2 ≤ η ≤ χmp/2):

u(mp)(x, η) = −h
[
η
dv
dx

− f
(mp)
d (η)ψf (x)

]
, (2.19)

ε(mp)x (x, η) = −h
[
η
d2v
dx2

− f
(mp)
d (η)

dψf
dx

]
, (2.20)

γ(mp)xy (x, η) =
df (mp)d

dη
ψf (x), (2.21)

σ(mp)x (x, η) = E ε(mp)x (x, η), (2.22)

τ (mp)xy (x, η) =
E

2(1 + ν)
γ(mp)xy (x, η), (2.23)

– the lower flange (χmp/2 ≤ η ≤ 1/2):

u(lf)(x, η) = −h
[
η
dv
dx

− f
(lf)
d (η)ψf (x)

]
, (2.24)

ε(lf)x (x, η) = −h
[
η
d2v
dx2

− f
(lf)
d (η)

dψf
dx

]
, (2.25)

γ(lf)xy (x, η) =
df (lf)d

dη
ψf (x), (2.26)

σ(lf)x (x, η) = E ε(lf)x (x, η), (2.27)

τ (lf)xy (x, η) =
E

2(1 + ν)
γ(lf)xy (x, η), (2.28)

where E – Young’s modulus, ν – Poisson’s ratio.
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Based on the principle of stationary total potential energy, after simple transformation,
the system of two differential equilibrium equations for this beam is obtained in the following
form:

Jz
d2v
dx2

− Cvψ
dψf
dx

= −Mb(x)

Ebh3
, (2.29)

Cvψ
d3v
dx3

− Cψψ
d2ψf
dx2

+ Cψ
ψf (x)

h2
= 0, (2.30)

where dimensionless coefficients:

Jz =
1

12

[
1− (1− β0)χ

3
mp

]
+ (1− β0)

χmp/2�

−χmp/2

η2 sinn
(
3π

η

χmp

)
dη,

Cvψ = 2


1/2�

χmp/2

η f
(lf)
d (η) dη +

χmp/2�

0

η f
(mp)
d (η) wmp(η)dη

,

Cψψ = 2


1/2�

χmp/2

[
f
(lf)
d (η)

]2
dη +

χmp/2�

0

[
f
(mp)
d (η)

]2
wmp(η)dη

,

Cψ =
1

1 + ν


1/2�

χmp/2

(
df (lf)d

dη

)2

dη +

χmp/2�

0

(
df (mp)d

dη

)2

wmp(η)dη

.
The buckled shape of this beam is shown in Fig. 7.

Fig. 7. Schematic diagram of the buckled shape of this beam.

The bending moment according to this diagram takes the following form:

Mb(x) =
[
−Rx+ Fv(x)

]
Ebh, (2.31)

where R = R/Ebh, F = F/Ebh – dimensionless reaction and axial force.
Thus, the two differential equations of equilibrium (2.29) and (2.30) in the dimensionless

coordinate, with consideration of expression (2.31), are as follows:

Jz
d2v
dξ2

− CvψL
dψf
dξ

+ λ2Fv(ξ) = ξλ2LR, (2.32)

Cvψ
d3v
dξ3

− CψψL
d2ψf
dξ2

+ Cψλ
2Lψf (ξ) = 0. (2.33)
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These two equations, after simple transformations, are reduced to one in the following form:

d4v
dξ4

− k2
d2v
dξ2

− k0v(ξ) = −ξ α2 λ
4

Jz
RL, (2.34)

where k0 = α2 λ4

Jz
F , k2 = α2λ2

(
1− Cψψ

JzCψ
F
)
, α =

√
JzCψ

JzCψψ−C2
vψ

– dimensionless coefficients.

The solution of Eq. (2.34), with consideration of the boundary conditions, v(0) = v(1) = 0,
is in the following form:

v(ξ) =

[
ξ − sin(qξ)

sin(q)

]
R

F
L, (2.35)

where q = 1√
2

√
−k2 +

√
k22 + 4k0 – the dimensionless coefficient.

This function (2.35) describes the buckling line of the beam. Thus, the derivative of this
function is given by

dv
dξ

=

[
1− q

cos(qξ)

sin(q)

]
R

F
L. (2.36)

Consequently, the angle of rotation of the simply supported end of this beam (ξ = 1) with
rotation limitation takes the following form:

θ1 =
dv
Ldξ

∣∣∣∣
1

=

[
1− q

tan(q)

]
R

F
. (2.37)

Based on Fig. 1 and Fig. 7, two expressions are formulated: Fsas = RL and Fs = 1
2θ1ksas,

from which the angle rotation

θ1 = kθ1R, (2.38)

where kθ1 = 2EbhL
ksa2s

– dimensionless coefficient, ks – spring stiffness [N/mm], as – size [mm].
Equating both expressions (2.37) and (2.38), one obtains the algebraic equation

1− q

tan(q)
+ kθ1F = 0. (2.39)

Based on this equation, the dimensionless critical force FCR of this beam is determined.
Analyzing this equation, it is easy to notice two classic cases of support:
1) a simply supported beam for ks = 0, kθ1 → ∞, then tan(q) = 0, from which q = π,
2) one clamped end for ks → ∞, kθ1 = 0, then tan(q) = q, from which q ∼= 4.4934.
Example calculations are carried out for the following data: χmp = 4/5, β0 = 1/10, n = 10,

ν = 0.3, λ = 40, and the dimensionless coefficient (0 ≤ kθ1 < ∞). The results of analyti-
cal calculations of the selected values of the dimensionless critical force FCR are specified in
Table 1.

Table 1. Values of the dimensionless critical force FCR for the compressed beam.

kθ1 0 2000 4000 7000 15 000 30 000 ∞
104FCR 6.93366 6.14493 5.60592 5.08517 4.42156 3.98617 3.41070
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Moreover, these critical force values are graphically presented in Fig. 8.

Fig. 8. Graph of the dimensionless critical force.

3. Analytical study of the individual I-beam without the shear effect

The two differential equilibrium Eqs. (2.32) and (2.33), in this case, are reduced to one in
the following form:

d2v
dξ2

+
F

Jz
λ2 v(ξ) = ξ

R

Jz
λ2L. (3.1)

The solution of Eq. (3.1), with consideration of the boundary conditions, v(0) = v(1) = 0, is
in the following form:

v(ξ) =

[
ξ − sin(kF ξ)

sin(kF )

]
R

F
L, (3.2)

where kF =
√
F
/
Jzλ – dimensionless coefficient.

The derivative of this function is given by:

dv
dξ

=

[
1− kF

cos(kF ξ)

sin(kF )

]
R

F
L. (3.3)

Consequently, the angle of rotation of the simply supported end of this beam (ξ = 1), with
rotation limitation, takes the following form:

θ1 =
dv
Ldξ

∣∣∣∣
1

=

[
1− kF

tan(kF )

]
R

F
. (3.4)

This angle of rotation is consistent with the angle (2.38); therefore, by equating these two
angles, one obtains the algebraic equation:

1− kF
tan (kF )

+ kθ1F = 0. (3.5)

Based on this equation, the dimensionless critical force F
(0)
CR of this beam without the shear

effect is determined. Similarly to the beam that considers the shear effect, when analyzing
Eq. (3.5) for the two classic support cases, one obtains:
1) simply supported beam for ks = 0, kθ1 → ∞, then tan(kF ) = 0, from which kF = π, and

so F
(0)
CR = π2Jz

λ2
,
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2) one clamped end for ks → ∞, kθ1 = 0, then tan(kF ) = kF , from which kF ∼= 4.4934, and

so F
(0)
CR = π2Jz

(0.699λ)2
.

Example calculations are carried out for the same data as for the beam with the shear effect.
The results of the analytical calculations of the selected values of the dimensionless critical force
F

(0)
CR are specified in Table 2.

Table 2. Values of the dimensionless critical force F
(0)

CR for the compressed beam.

kθ1 0 2000 4000 7000 15 000 30 000 ∞
104F

(0)

CR 7.01980 6.20522 5.65306 5.12268 4.45039 4.01093 3.43141

Taking into account the dimensionless critical force FCR for the beam with the shear effect
and the dimensionless critical force F

(0)
CR for the beam without the shear effect, the dimensionless

shear effect coefficient of this beam is formulated as follows:

CSE = 1− FCR

F
(0)
CR

. (3.6)

The example values of this coefficient are specified in Table 3.

Table 3. Values of the dimensionless shear effect coefficient CSE for the beam.

kθ1 0 2000 4000 7000 15 000 30 000 ∞
103CSE 12.2710 9.7160 8.3388 7.3223 6.4781 6.1731 6.0354

Moreover, these dimensionless coefficient values of the shear effect are graphically presented
in Fig. 9.

Fig. 9. Graph of the dimensionless coefficient of the shear effect.

The value of this dimensionless coefficient CSE is small, so the influence of the shear effect
on the critical force is insignificant.
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4. Conclusions

The presented analytical studies of the elastic buckling problem for the individual I-beam,
simply supported at the first end and with limited rotation at the second end, allow the following
conclusions to be formulated:
– the applied procedure for analytically determining the deformation function of a planar
beam cross-section is easy and effective (expressions (2.4)–(2.13)), (Figs. 3–5);
– the two different supports adopted at the beam ends make it possible to carry out tests
on beams ranging from simply supported to clamped at one end (Table 1 and Fig. 8);
– the influence of the shear effect on the critical force values for the tested beam family is
insignificant (Table 3 and Fig. 9).
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