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In this article, a newly developed support type is presented for three-point bending in the nonlin-
ear region. The support can keep the contact point’s location static during the loading process, thus
imitating an edge-like support with theoretically no radius and friction. The support can be used
for measurements in the region of large deflections without having to consider the displacement of
the contact point or dissipative forces. The support was tested on fiber reinforced composite and
steel beams. During the measurements, the movement of the supports and the beam shape was
monitored using digital image processing.
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1. Introduction

Three-point bending tests are widely used in the industry for easy and relatively cheap
material testing. They are reliable and are less demanding than proper tensile tests in terms
of instrumentation. Three-point bending tests feature loads usually only in the linear region,
where the rotation of the beam at the supports is negligible. Thus, the linearized solution for
the beam deflection holds true. If one exceeds these boundaries and increases the beam deflection
to the point where the specimen starts slipping on the supports, the solution used for the test
evaluation cannot be applied, because the reaction forces are not parallel anymore (Arnautov,
2005; Batista, 2015; Mujika, 2006; West, 1964).
For bending tests in the nonlinear region, the supports are usually cylindrical and running

on bearings to decrease the frictional forces (Batista, 2015; Mujika, 2006; West, 1964). Although
it makes friction negligible, it induces new nonlinearities into the system. As the deflection
increases, the contact point of the rollers and the beam changes location, as shown in Fig. 1a
(Arnautov, 2005; Batista, 2015; Máté & Szekrényes, 2020). Using simple edges as a support to
fix the contact point (as presented in Fig. 1b) would induce larger and unpredictable frictional
forces, especially for softer materials like polymers. It is also shown by Pandit and Srinivasan
(2017) that for the cases when the deflection is comparable to the roller size, the displacement
of the contact point must be considered. In their work, they showed that an increasing roller
radius can have a non-negligible stiffening effect.
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Fig. 1. Three-point bending support solutions: (a) rollers on bearings; (b) simple edge supports.

In this manuscript, a novel support type is proposed, which functions as a frictionless edge.
It not only eliminates friction between the support and the specimen, but also fixes the point of
contact, which can make the mechanical modeling easier, as it eliminates a source of nonlinearity.
Furthermore, as later presented, one can choose theoretically any supporting pin diameter, which
may be used to reduce contact pressure, if needed.

2. Experimental device

The schematic drawing of the support is presented in Fig. 2. The specimen (A) is sitting
on a rolling axle (B), which is supported on both ends by deep-groove ball bearings (C). The
bearings can freely roll on a cylindrical surface (D) that is machined into an aluminum supporting
block (E). The supporting block (E) is milled in such a way that the specimen ends may undergo
rotations up to 90◦. The cylindrical surface on which the bearings roll should have a diameter
that is twice the diameter of the bearings (C) and the axle (B) as follows:

D = d+ db. (2.1)

With this setup (if one neglects the weight of the axle and bearings), the beam (A) will always
push the axle (B) in a position where the contact forces go through the center of the cylinder (D)
and axle (B). This, together with Eq. (2.1) implies that the contact point must always coincide
with the center point. The bearings (C) ensure that the frictional forces remain negligible.

Fig. 2. Proposed solution and the working principle of a frictionless edge support (a),
and the realized support during a measurement (b).
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A demonstration of the support during a measurement is presented in Fig. 2b in a loaded and
in an unloaded state.
For a better visibility of the beam during the loading process, one can equate the bearing

and axle diameters. Thus:

d = db =
D

2
. (2.2)

While theoretically the contact point always coincides with the center of the circular track, with
the gravitational force acting on the rollers this is not always the case. For a deeper insight
into the behavior of the support, the reader is referred to Fig. 3, which shows the free-body
diagram of the roller.

Fig. 3. Free-body diagram of the roller with gravitational force (a),
and the important dimension parameters (b).

Solving the equilibrium of three forces yields the contact angle θ and contact force F as
functions of the normal force on the beam (Fn) and the beam end’s tangent angle (ϕ) as follows:

θ = acot

(
cotϕ+

G

Fn sinϕ

)
, F =

√
F 2
n +G2 + 2GFn cosϕ. (2.3)

Given the nature of the cotangent function and the fact that both G and Fn are positive
numbers, the contact angle θ will always “fall behind” the beam end’s rotation angle. The
angular difference results in a shifted contact point, as presented in Fig. 3. The contact point’s
displacement can be given for the x- and y-directions as the following:

∆x =
d

2
(sinϕ− sin θ) , ∆y =

d

2
(cosϕ− cos θ) . (2.4)

For any Fn and θ combination, the contact angle and the contact point displacement can
be calculated. However, the latter changes the beam length that undergoes bending, which in
return changes the Fnϕ pair in the equilibrium state. The equilibrium for a given Fn normal
force can be obtained iteratively. For a given Fn value, the iteration goes as follows: start by
assuming that the support points are at their nominal locations (at a distance of L0) and find
the rotation of the beam end. For the beam end rotation ϕi, find the contact angle θi and the
expected contact point displacement in the x direction (∆xi) by using Eqs. (2.3)1 and (2.4)1.
Based on the ∆x estimate, update the support span by setting Li+1 := Li − ∆xi, and solve
the beam equilibrium for the new support span, with the same Fn shear force on the beam
end. In the simulations, a convergence criterion of |∆xi −∆xi−1| < 10−5mm was used. In our
experience, this iteration converges in 4–5 steps. These calculations were repeated for several
shear force values to obtain the behavior of the beam in a nonlinear three-point flexural test with
the frictionless edge supports. The shape of the elastica curve was found by using a numerical
method developed earlier for numerical simulation of the three-roll bending process (Máté &
Szekrényes, 2020).
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3. Measurement and proof of concept

A modular three-point bending device was manufactured at the Applied Mechanics Depart-
ment of the Budapest University of Technology, which can be operated by any suitable tensile
testing machine. This device can be configured for three- and four-point bending tests, and it
can incorporate the above-mentioned support type. During the tests, an Instron 3345 universal
testing machine was used. The former was used while capturing the movement of the bearings
and the shafts, simply because there was enough space for the camera setup (as presented later,
the movement of the bearings is obtained from photographs via simple DIC algorithms similar
to the algorithm developed by Sutton et al. (1983).
In the manufactured version of the support, the axle had a diameter of d = 13mm (with

D = 26mm), and the bearings were of type 618 (Koyo Jtekt, 2024). The bearings and the shaft
have the same diameter, as it can also be seen in Fig. 2. It is emphasized here that the beam’s
centerline actually rolls on a virtual roller of radius R1 = t/2 (where t is the specimen thickness)
if the shaft perimeter touches the track’s center point. In our setup, this was the case. However,
one can design supports with a modified Eq. (2.1), which includes the specimen thickness and
reduces the radius of the virtual roller to zero:

D = db + d+ t. (3.1)

The weight of the axle-bearing assembly plays a crucial role in the contact point’s displace-
ment. A reduced weight of the shaft helps in reducing the contact point displacement. The
manufactured shaft, together with the bearings, weighs 48.7 g. Thus, G = 0.478N.
The measurement setup was tested on two slender composite beams and a thin steel strip.

The data for these specimens and the measurement setup is given in Table 1.

Table 1. Specimen and three-point bending test data.

Specimen b [mm] t [mm] L0 [mm] Material Flexural modulus
of elasticity [GPa]

Composite 1 25.1 1.22 148.2 8-ply Hexply M92 55% 220 13.81

Composite 2 25.2 2.43 148.2 16-ply Hexply M92 55% 220 14.02

Steel 30.15 1.54 301 Spring-grade steel 200.00

All three specimen types listed in Table 1 were tested both on the novel frictionless edge
support and on simple, smoothed edge supports. The measurement setup is shown with the
Composite 1 specimen under testing in Fig. 4. In the first two photographs, the measurement
can be seen with the frictionless edge support mounted on the testing jig. The third photograph
shows the simple edge realized by two 8mm thick steel blocks mounted instead of the new
support type. Before measurement, the laser cut edge was deburred with sandpaper in order not
to cut into the beam, especially in the case of the composite specimens.
The measurement results were compared to the simulation results obtained by the iterative

solution presented in Section 2, based on (Máté & Szekrényes, 2020). The measurement results
for the displacement-force characteristics for the three specimens are presented in Fig. 5. In
the plot legends, “F.E.” stands for “frictionless edge support”, while “S.E.” stands for “simple
edge support”. It is important to emphasize that the simulation results here are for the actual
setup, where the shaft and bearing assembly has weight. The beam’s own weight was considered
negligible.
The composite beam’s flexural modulus of elasticity was measured with classical three-point

flexural tests, and in the simulations these beams were treated as if they were made of linear,
isotropic materials. As can be seen in Fig. 5, the thicker composite beam’s hysteretic behavior
cannot be neglected anymore, as it undergoes relatively large deformations. To ensure that the
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Fig. 4. Measurement setup shown with the frictionless edge support (left and middle)
and with the simple edge support (right).

Fig. 5. Comparison of the measured and simulated deflection-force characteristics for the three specimens
(upper row), along with the relative difference of the measurements to the simulations (lower row).

measurements were conducted in the elastic region, both the loading and unloading cycles are
shown in the figures. To show that the hysteresis that can be seen in the measurements made
with the simple edge support is not caused by the beam material or the bearing friction, a total
of six load cycles are plotted in Fig. 5 for the Composite 1 specimen in the case of measurements
made with the simple edge support. These consist of five shorter (50 mm displacement) and
a longer cycle (70mm displacement). The composite beam follows the same path each time it is
cycled, showing that the material hysteresis and the bearing friction are negligible. In the case
of the steel beam, the match between the simulation and the measurements is remarkable. The
repeatability of the measurement was exceptional for all specimen types. The lower row of Fig. 5
shows the relative difference of the measured force to the simulation in percentage as a function
of the displacement ∆h.
It is also important to examine the deviation of the realistic loading characteristics (which

consider the shaft weight) from the ideal ones (with stationary contact point, i.e. simulation
results with G = 0N). To quantify the imperfection of the frictionless edge support, the sim-
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ulations, also visible in Fig. 5, were conducted for the weightless, ideal case too. The relative
difference is given in Fig. 6 as

δF (∆h) = 100

(
F r(∆h)

F i(∆h)
− 1

)
, (3.2)

where F r(∆h) denotes the loading characteristic obtained from simulations which consider the
shaft’s weight (also plotted in Fig. 5), while F i(∆h) stands for the results of the ideal case
(i.e. simulation result with stationary contact point). As Fig. 6 shows, the imperfection in the
loading characteristic of the new support type caused by the roller weight can be considered
negligible if the test specimen is stiff enough. For example, there is almost an order of magni-
tude difference between the two composite specimens, only because of the difference in bending
stiffness (similar support span). The oscillatory characteristic of the relative difference functions
in Fig. 6 is caused both by the inaccuracies of the numerical simulations and the fact that the
resulting F r(∆h) and F i(∆h) functions were resampled using a cubic spline interpolation to
get their value at the same ∆h locations. The theoretical contact point displacement can also
be extracted from the simulations. The ∆x and ∆y values as functions of deflection ∆h for the
three specimens are displayed in Fig. 7.

Fig. 6. Relative error of the “measured” force F , when gravity acts on the roller assembly,
compared to the ideal case, with weightless rollers.

Fig. 7. Expected, theoretical displacement of the contact point for the three specimen types.

As Fig. 7 shows, the displacement of the contact point is expected to be very small, even
for the Composite 1 specimen with the lowest flexural rigidity. These values can be lowered
further either by using either a smaller shaft diameter, according to Eq. (2.4), or by reducing
the rolling element’s weight. Note that the simulation results in Fig. 7 are the contact point
displacements compared to a simple edge support with zero radius, and do not consider the fact
that the centerline of the beam rolls on a virtual roller with a radius of t/2. However, if needed,
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unique designs may be created based on Eq. (3.1) for given specimen thicknesses, which ensure
that the support of the centerline becomes stationary.
To compare the shape of the simulated elastica curve and the measurements, the testing jig

was transferred to an Alfred J. Amsler & Co. tensile testing machine so that photographs could
have been taken from a proper distance. This ensures that the central projection of the camera
gets as close as possible to the parallel projection, making the photograph suitable for accurate
measurements. Then, the elastica curve was calculated for the measured deflection and plotted
onto the photograph, as shown in Fig. 8.

Fig. 8. Comparison of the elastica curve (dashed yellow line) with the actual measurement of a composite
beam both on the frictionless edge (left) and the simple edge (right).

This was done for the Composite 2 specimen. The images in Fig. 8 were taken at∆h = 68mm
with the frictionless edge, and at ∆h = 37mm with the simple edge support. The simulated
results (simulation was done without considering friction) represented by the dashed curve match
remarkably well with the curve on the photograph. While some deviation can be observed
between the elastica curve and the deformed shape of the beam when using simple edge supports,
this difference is hardly noticeable.

4. Measurement of the shaft and bearing rotation

The previously presented setup was used for a further analysis of the supports. An inves-
tigation was led on whether slip occurs in the system, by capturing the rotation of the shafts
and the bearings on the camera. Several photographs were taken during a full load cycle about
the supports (also shown in Fig. 9) at 21 load levels. The black random pattern on the axle
and the bearing seen in Fig. 9 is there to show the rotation of the shaft and bearing outer ring.

Fig. 9. Pattern on the roller assembly used to track the rotation of the shaft and bearing outer ring.

The rotational angle of the shaft and outer ring (φ and θ in Fig. 2) was traced with the help
of a custom MATLAB Digital Image Correlation algorithm. The displacement of the loading pin
was determined based also on digital image processing. The measured rotations are given in the
left side of Fig. 10, for the Composite 2 test specimen. Here, the yellow continuous curve shows
the theoretical outer ring rotation θ (calculated with weightless rollers). The measurements show
that, as expected, the outer ring rotation θ is smaller than the rotation in the ideal, weightless
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case. The discrete data contains a full load cycle. To check whether there is a slip in the system,
one can calculate the increment in the beam specimen’s working length (arc-length between the
two contact points with the supports). The arc-length increment between the contact point with
the rollers can be given as a function of the rotation angles as

∆L =
d+ t

2
(φl + φr − θl − θr), (4.1)

where the subindices “l” and “r” refer to the left and the right side, respectively. In the right side
of Fig. 10 the expected theoretical increment is plotted together with the increment calculated
with Eq. (4.1), based on the measured angle values, also presented in the left part of Fig. 10.
The figure also shows the relative difference between the measurements and the theoretical
calculations in the bottom plots. These show that the errors present in the beginning fade
away with increasing displacement ∆h. The bottom left plot of Fig. 10 also shows that the two
supports behaved identically during the measurements.

Fig. 10. Rotation of the axle and outer ring (left), and the working beam length increment calculated
from the measured bearing and axle rotations (right), along with relative difference of the measurements

compared to calculations from the elastica theory, shown in the bottom plots.

5. Conclusions

In this paper, a novel support is proposed, which can simulate a frictionless edge in the case
of the three- and four-point bending tests. The mechanical analysis of the support was per-
formed, and a support prototype was manufactured. Multiple tests conducted on several steel
and composite beam specimens proved that the concept functions as expected, with negligible
friction and contact point displacement. In the theoretical analysis, the bearing friction was
neglected, but the effect of the roller’s weight was considered. The measurement results revealed
that the bearing friction is truly negligible, and that the supports function perfectly, as expected,
without a significant contact point displacement. We compared the force-displacement load char-
acteristics obtained from simulations with measurement results. The results were in exceptional
agreement with the numerical calculations. We also measured the shaft and bearing rotation
by using our simple DIC algorithm, on whose basis the arc-length increment was calculated.
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The arc-length increment also follows the theoretical prediction and shows negligible hysteresis,
meaning that there is no significant slip between the rollers, the beam, and the track.
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