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This paper proposes an implicit difference solution to design the position of the horizontal drain
in a saturated-unsaturated soil ground system (SUSGS). A complete system of classic diffusion
equations is used to describe the transient flow of air and water phases in the soil system. Con-
solidation equations and boundary conditions are discretized by using the Crack–Nicolson (C-N)
and virtual grid methods, respectively. The numerical scheme has been verified to be uncondition-
ally stable based on von Neumann’s theorem. The comparison with existing analytical predictions
confirms that the proposed solution is effective and accurate. According to the verified numerical
solution, the optimum position of horizontal drains is designed to elevate the consolidation rate of
the saturated-unsaturated soil ground system.

Keywords: consolidation; implicit difference solution; horizontal drain; saturated-unsaturated
system; virtual grid method.

Articles in JTAM are published under Creative Commons Attribution 4.0 International.
Unported License https://creativecommons.org/licenses/by/4.0/deed.en.
By submitting an article for publication, the authors consent to the grant of the said license.

1. Introduction

In nature, the soil above and below the groundwater level exhibits unsaturated and saturated
states, which forms a saturated-unsaturated soil ground system (SUSGS) (Li et al., 2021). Due to
the infiltration of rainfall, transpiration of plants, and extraction of groundwater, the soil system
will change with the phreatic line. The decline or rise of groundwater may lead to building crack
and non-uniform settlement of grounds. Therefore, some engineering requirements have been
proposed to accelerate the discharge of the water phase. For instance, the horizontal drain is
widely used in the construction of large airports (Mesri & Funk, 2015), highways (Zhou et al.,
2023), and railways (Gu et al., 2020) to accelerate the drainage consolidation and improve the
bearing capacity of the ground. The horizontal drain is placed between soil layers to shorten
the seepage path of fluid and increase the consolidation rate of soil ground (Gibson & Shefford,
1968; Zhou et al., 2024). Thus, it is meaningful to preliminarily assess the consolidation behavior
of the SUSGS with horizontal drains.
Using the saturated soil model alone in geological engineering to solve drainage consolidation

problems is convenient. Classical consolidation theory established by Terzaghi (1943) was applied
to predict the consolidation behavior of the saturated soil. Some extended models are intended for
the actual engineering problems, such as the ground with the horizontal drain (Feng et al., 2019),
layered soil (Feng et al., 2020), and non-Darcy flow (Wu et al., 2023). Based on Terzaghi’s theory
and the engineering practice, a series of engineering technologies have been proposed to enhance
the consolidation rate of soil ground. The horizontal drain is embedded at equal intervals in the
soil layers to accelerate the consolidation rate in some geotechnical engineering (Lee et al., 1987;
Mesri & Funk, 2015). Meng et al. (2019), Li et al. (2020), and Feng et al. (2020) investigated
the consolidation behavior of single-layer, double-layer, and four-layer saturated ground with the
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horizontal drains. They provided constructive design schemes for the horizontal drain under
different soil parameters.
For the consolidation of unsaturated soil, two typical diffusion equations for the air and

water phases were obtained by Fredlund and Hasan (1979), which was used to estimate the
dissipation of excess pore pressures and settlement of unsaturated soil. This original model and
its extended form have been applied in various geotechnical engineering issues (Wang et al.,
2019; Yuan et al., 2023; He et al., 2025). The consolidation of unsaturated soil with horizontal
drains needs more consideration. Zhou et al. (2023; 2024) proposed a semi-analytical solution
to predict the consolidation behavior of double-layer unsaturated soil ground and a double-
layer saturated-unsaturated soil ground system with the horizontal drain. However, in Zhou’s
literature, the horizontal drain is located at the interface between the upper and lower soil
layers, and the position of the horizontal drain is not improved to be the best for discharging
water. It is important to notice that the explicit difference method is employed to verify the
correctness of analytical or semi-analytical solutions for the positioning design of horizontal
drains in the SUSGS (Qin et al., 2008; Wang et al., 2017; 2019). With conditional stability and
slow convergence, this difference scheme will cause high computational costs and poor reliability
in solving consolidation problems.
The study reported in this paper attempts to develop an implicit difference solution with high

computational efficiency and accuracy to design the position of horizontal drains in the SUSGS.
The diffusion equations and boundary conditions are discretized using the Crack–Nicolson (C-N)
and virtual grid methods. Then, the distribution of excess pore-air and pore-water pressures is
obtained through matrix operation. Comparisons with the existing solutions are performed to
verify the reliability and effectiveness of the numerical solution. Based on the proposed solution,
the influence of horizontal drains on the SUSGS has been investigated, and the optimizing design
of depths of horizontal drains is provided.

2. Mathematical model

2.1. Model description and basic assumptions

Combining the consolidation theories of the saturated and unsaturated soils proposed by
Terzaghi (1943) and Fredlund et al. (2012), a simple mathematical description of the consolida-
tion behavior of the SUSGS with horizontal drains is shown in Fig. 1. The SUSGS is divided into
four zones by the embedment of two horizontal drains and an interface. Zone I comprises unsat-

Fig. 1. Schematic diagram of SUSGS with horizontal drains.
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urated soil with a two-way drainage system; the top and lower surfaces are permeable to air and
water. In zone II, the upper surface is permeable to air and water phases, and the lower surface
is impermeable to the air phase. Zone III is composed of saturated soil with a two-way drainage
system. Zone IV has a one-way drainage system; the upper surface is permeable to water, and
the bottom surface is impermeable. In the ground system, the thicknesses of the unsaturated
and saturated soils are h1 and h2, respectively, h1+h2 = H; zs1 and zs2 are the imbedded depths
of the first and second horizontal drains, respectively.
The main assumptions of the consolidation model for the SUSGS are as follows (Li et al.,

2021): (1) the unsaturated soil layer and saturated soil layer are both homogeneous; (2) the
soil particles, water phase and horizontal drain are incompressible; (3) the flow of air and water
phases along z-direction are independent, linear, and continuous steady-state; (4) in the consol-
idation process, the consolidation parameters keep constant; (5) the thickness of the capillary
water zone is very thin, and its impact on the hydraulic response of the SUSGS is not significant.
It is worth noting that the above assumptions are not exact for all situations. For example,

the soil is not homogeneous; it is composed of particles of different sizes and air and water.
The influence of the capillary water zone on soils may be very significant. If we consider all these
real situations, analyzing the consolidation behavior of such a complex system is far beyond our
capability. In order to simplify the mathematical derivation process and preliminarily predict
the consolidation behavior of the SUSGS, these listed assumptions are essential for developing the
analytical and numerical solutions for the consolidation equations (Moradi et al., 2019; Yuan
et al., 2023).

2.2. Consolidation equations

The volume changes associated with the water and air phases during the consolidation process
can be calculated using Darcy’s and Fick’s laws. Then, the volume changes of the soil unit are
equal to the sum of the volume changes of the air and water, and the governing equations
are obtained (Li et al., 2022):

C
∂u

∂t
+ Z

∂2u

∂z2
=
∂q

∂t
, (0 < z < h1), (2.1)

∂uv
∂t

+ cvz
∂2uv
∂z2

=
∂q

∂t
, (h1 < z < H), (2.2)

where

u =

[
ua
uw

]
, C =

(
1 ca
cw 1

)
, Z =

(
cavz 0
0 cwvz

)
, q =

[
caσ
cwσ

]
q(t),

ua and uw represent excess pore-air and pore-water pressures of unsaturated soil, respectively,
uw is excess pore-water pressure of saturated soil. In Eq. (2.1), ca, cavz, and c

a
σ are consolidation

parameters of the air phase, cw, cwvz, and c
w
σ are consolidation parameters of the water phase.

In Eq. (2.2), cvz is consolidation parameters of the saturated soil. The definitions and expressions
of these consolidation parameters can be found in (Fredlund, 2012; Terzaghi, 1943).

2.3. Model conditions

The drainage conditions of the SUSGS are:
– for zone I

u(0, t) = 0, (2.3)

u(zs1, t) = 0, (2.4)
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– for zone II

u(zs1, t) = 0, (2.5)

∂ua(h1, t)

∂z
= 0, (2.6)

kw
∂uw(h1, t)

∂z
= kv

∂uv(h1, t)

∂z
, uw(h1, t) = uv(h1, t), (2.7)

– for zone III

kw
∂uw(h1, t)

∂z
= kv

∂uv(h1, t)

∂z
, uw(h1, t) = uv(h1, t) (2.8)

uv(zs2, t) = 0, (2.9)

– for zone IV

uv(zs2, t) = 0, (2.10)

∂uv(H, t)

∂z
= 0. (2.11)

The initial conditions are expressed as

u(z, 0) = f(z)
[
u0a u0w

]T
, (0 < z ≤ h1), (2.12)

uv(z, 0) = f(z)p0, (h1 < z < H), (2.13)

where u0a, u
0
w, and p0 are initial excess pore pressures at t = 0; f(z) is a distribution function

about z.

3. Solution derivation

3.1. Crack–Nicolson (C-N) solution for consolidation equations

The C-N method has been widely used to solve a single Navier–Stokes equation (Feng et al.,
2020). For a system of partial differential equations containing three variables (ua, uw, and uv)
and a series of definite solution conditions (Eqs. (2.3)–(2.13)), some technical improvements
are needed when using the C-N method to solve it. The difference mesh for the SUSGS is
shown in Fig. 2. The time and spatial domains are divided into N and K equidistant nodes,
respectively. Time step and space step are τ and h. The node coordinates are (zk, tn), and
zk = khz, k = 0, 1, 2, ...,K; tn = nτ , n = 0, 1, 2, ..., N . zk1 and zk2 represent the positions of the
first and second horizontal drains, respectively, where z0 < zk1, zk2 < zK . zM denotes the U-S
interface.
Equations (2.1) and (2.2) can be discretized as

C
un+1
k − unk

τ
+ Z

δ2zu
n+1
k + δ2zu

n
k

2h2z
=

qn+1 − qn

τ
, (1 ≤ j ≤M − 1), (3.1)

un+1
vk − unvk

τ
+ cvz

δ2zu
n+1
vk + δ2zu

n
vk

2h2z
=
qn+1 − qn

τ
, (M + 1 ≤ j ≤ K − 1), (3.2)

where δ2zu
n
j = unk−1 − 2unk + unk+1, δ

2
zu

n
vk = unv(k−1) − 2unvk + unv(k+1).
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Fig. 2. C-N scheme for difference grid of the saturated-unsaturated soil system ground.

Equations (3.1) and (3.2) can be rewritten as

1

2
λzZu

n+1
k−1 + (C−λzZ)un+1

k +
1

2
λzZu

n+1
k+1 = −1

2
λzZu

n
k−1

+ (C+ λzZ)u
n
k − 1

2
λzXunk−1 + qn+1 − qn, (3.3)

1

2
λzcvzu

n+1
v(k−1) + (1− λzcvz)u

n+1
vk +

1

2
λzcvzu

n+1
v(k+1) = −1

2
λzcvzu

n
v(k−1)

+ (1 + λzcvz)u
n
vk −

1

2
λzcvzu

n
v(k+1) + qn+1 − qn, (3.4)

where λz = τ/h2.
Equations (3.3) and (3.4) contain three unknown quantities and three known quantities on

adjacent layer k. The value of mesh nodes can only be obtained by using the matrix operation.
Equations (3.3) and (3.4) are written as

AuD
n+1
u = BuD

n
u +Qn

u, (1 ≤ j ≤M − 1) , (3.5)

AsD
n+1
s = BsD

n
s +Qn

s , (M + 1 ≤ j ≤ K − 1) , (3.6)

where Au and Bu are coefficient matrices, Qn
u and Qn

s are composed of the external loading,
Dn
u and D

n
s are composed of the pore-air and pore-water pressures. The specific expressions of

these parameters are shown in Appendix A.
It is necessary to validate the stability and convergence of the proposed difference method,

which can be verified using von Neumann’s theorem (Sharifi & Rashidinia, 2016). The derivation
of stability is shown in Appendix B.

3.2. Boundary conditions discretization

The permeable boundary conditions, Eqs. (2.3)–(2.5), (2.9), and (2.10), are regarded as
known quantities appearing on the right-hand sides of Eqs. (3.3) and (3.4). If the interface
(z = h1 and z = H) satisfies the impermeable and continuous permeable boundaries, we use the
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virtual mesh method (Morton & Mayers, 2005) to obtain the discrete scheme of Eqs. (2.6)–(2.8),
and (2.11).
As shown in Figs. 3a and 3b, the virtual layers of the air and water pressures are constructed

outside the boundary. Then, Eqs. (2.6) and (2.11) are discretized by the central difference:

unv(K+1) − unv(K−1)

2hz
= 0, (3.7)

una(M+1) − una(M−1)

2hz
= 0. (3.8)

Fig. 3. Difference mesh at the boundary: (a) z = zK ; (b) zM for air phase; (c) zM for water phase.

Substituting Eqs. (3.7) and (3.8) into Eqs. (3.3) and (3.4) to eliminate the virtual nodes, the
difference format at the impermeable boundary is obtained.
The forward and backward difference quotients are used to discretize the left and right sides

of Eq. (2.8):

kw
unwM − unw(M−1)

h
= kv

unvM − unv(M+1)

h
, (3.9)

unwM = unvM . (3.10)

As shown in Fig. 3c, the difference scheme of Eq. (3.3) at z = zM includes the nodes unw(M−1),
unwM , and u

n
v(M+1), so it is represented as

1

2
λzc

w
vzu

n+1
w(M−1) + (1− λzc

w
vz)u

n+1
wM +

1

2
λzcvzu

n+1
v(M+1) + cwu

n+1
a(M−1) = −1

2
λzc

w
vzu

n
w(M−1)

+ (1 + λzc
w
vz)u

n
wM − 1

2
λzcvzu

n
v(M+1) + cwu

n
a(M−1) + cwσ

(
qn+1 − qn

)
. (3.11)

In the above equation, un+1
v(M+1) and u

n
v(M+1) are the virtual nodes. The difference solution

of Eq. (3.3) at z = zM is obtained by substituting Eq. (3.9) into Eq. (3.11) to eliminate these
virtual nodes.
Similarly, the difference solution of Eq. (3.4) at z = zM contains the nodes unw(M−1), u

n
vM ,

and unv(M+1) in the iteration process. The difference scheme is expressed as follows:

1

2
λzc

w
vzu

n+1
w(M−1) + (1− λzcvz)u

n+1
vM +

1

2
λzcvzu

n+1
v(M+1) = −1

2
λzc

w
vzu

n
w(M−1)

+ (1 + λzcvz)u
n
vM − 1

2
λzcvzu

n
v(M+1) + qn+1 − qn, (3.12)

where un+1
w(M−1) and u

n
w(M−1) are the virtual nodes.
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Substituting Eq. (3.9) into Eq. (3.12) to eliminate these virtual nodes, the C-N solution for
Eq. (3.4) at z = zM can be obtained. Adding the difference scheme of Eqs. (3.3) and (3.4) at
z = zM , the C-N solution at the interface (z = h1) is

αM−1u
n+1
w(M−1) + αMu

n+1
wM + αM+1u

n+1
v(M+1) + cwu

n+1
a(M−1) = βM−1u

n
w(M−1)

+ βMu
n
wM + βM+1u

n
v(M+1) + cwu

n
a(M−1) + (cwσ + 1)

(
qn+1 − qn−1

)
, (3.13)

where αm−1, ..., γm+1 are constant coefficients.
In the above derivation, we give the difference schemes of the consolidation equations and

boundary conditions. The final C-N solution can be expressed as

ADn+1 = BDn +Qn, (3.14)

where A and B are partitioned matrices. Their description can be found in Appendix C.

3.3. Settlement discretization

Based on generalized Hooke’s law, the volume change of soil structure can be formulated by
the net normal stress and matrix suction. After obtaining the excess pore pressures by using
Eq. (3.14), the volumetric strain of the unsaturated soil is expressed as (Fredlund et al., 2012):

dεnwk = ms
1d (q

n − unak) +ms
2d (u

n
ak − unwk), (3.15)

where ms
1 and m

s
2 are the coefficients of soil volume changes with respect to the net normal

stress and matrix suction.
The volumetric strain of the saturated soil is expressed as

dεnvk = mvd (q
n − unvk) . (3.16)

The settlement of the SUSGS is

S (tn) = hz

(
M∑
k=0

εnwk +

K∑
k=M+1

εnvk

)
. (3.17)

The average degree of consolidation is

S∗ =
S(tn)

S (t∞)
× 100%, (3.18)

where S (t∞) is the maximum settlement of the SUSGS.

4. Verification

In order to verify the convergence (effectiveness and reliability) of the C-N solution, a com-
parison of the numerical results and analytical solution (Zhou et al., 2023) is made. The consoli-
dation parameters are assumed as follows: ca = −0.0899, cw = 0.75, cavx = −5.3476× 10−6m/s2,
cwvz = −5.108 × 10−8m/s2, u0a = 20 kPa, u0w = 40 kPa, cvz = −8.16310−7m/s2, p0 = 100 kPa,
H = 10m, h1 = 5m, q(t) = 100 kPa. Figure 4 shows the distribution of pore pressures in
the SUSGS with one horizontal drain (t = 105 s for air phase, and t = 107 s for water phase).
The proposed numerical solution agrees with the analytical solutions, suggesting that it is reli-
able and accurate. Further validation for the computational efficiency of the proposed algorithm
under different grid ratios is given in Appendix D.
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Fig. 4. Distribution of excess pore pressures along the depth direction: (a) ua and (b) uw.

5. Numerical examples

5.1. The position design of a single horizontal drain

The purpose of installing the horizontal drain is to accelerate the consolidation rate of the
ground. The optimal position for the horizontal drain is to achieve the consolidation degree of
90% in the shortest time (Meng et al., 2019). Hence, the objective function can be expressed as

minTv = T90(zs1), (5.1)

where Tv is the objective function, T90 is the time cost for consolidation degree of 90%.
Based on Eq. (3.18), the relationship between the embedded depth of the horizontal drain

and the time costs is plotted in Fig. 5. The influence of different phreatic lines (see Table 1)
on the position design of the horizontal drain is considered. Compared with the traditional de-
sign scheme (Wang et al., 2017; Lei et al., 2016), the horizontal drain at the optimal position
can further shorten the consolidation time. A large h1 will cause the optimal position to move
downwards; conversely, the optimal position will move upwards as h1 decreases. The consoli-
dation rate of the SUSGS with the sand blanket at the optimal position significantly increased
(20–80 times) compared to that without the horizontal drain, implying that the horizontal drain
shortens the consolidation time and improves engineering efficiency (Zhou et al., 2024).

Table 1. Thickness of unsaturated and saturated soils under different case conditions.

Case h1 [m] h2 [m]

1 3 7

2 5 5

3 7 3

5.2. The position design of two horizontal drains

If the two horizontal drains are embedded in the SUSGS, the objective function is

minTv = T90(zs1, zs2). (5.2)

Figure 6 shows the distribution of time costs under different depths zs1 and zs2, under the
condition of S∗ = 90%. By comparing Figs. 5 and 6, the two horizontal drains further accelerate
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Fig. 5. Relationship between the embedded depth of the horizontal drain and the time costs when S∗ = 90%.

Fig. 6. Time distribution of different depth zs1 and zs2 when S90.
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the consolidation rate. In case 1, the smaller time region (green dashed line) can be found
if the horizontal drains are located in the saturated soil layer. The smaller the proportion of
unsaturated soil, the more the discharge of excess pore-water pressure in the saturated soil is
clogged at the saturated-unsaturated interface. Therefore, there is no need to place a horizontal
drain in the unsaturated soil layer. In cases 2 and 3, only when the two horizontal drains
are placed in different soil layers, the optimal position of drains in the SUSGS denoted by
the smaller time region is obtained. In addition, the larger the proportion of unsaturated soil
(i.e., the larger h1), the slower the consolidation rate of the SUSGS. The consolidation rate
of the SUSGS with two horizontal drains is increased 100–150 times compared to that without
the horizontal drain. According to the proposed solution’s convenience, the optimal position
of the horizontal drains in practical engineering can be preliminarily designed.
Table 2 shows the consolidation time considering the traditional design scheme and the

proposed optimal position. The horizontal drains are placed at equal intervals in the traditional
design scheme. It is found that T90 under the traditional design scheme is larger than that
under the optimal scheme. If three horizontal drains are located in the SUSGS, the shortest
consolidation time is spent. But it may need more engineering resources. A more reasonable
choice is to arrange two horizontal drains in the SUSGS. The scheme provided in this paper can
achieve a balance between consolidation time and engineering resources.

Table 2. T90 (days) for different design schemes for the horizontal drain.

Case Without horizontal drain
Number of horizontal drains

1 2 3 1 2

1 14 467 262 163 60 189 58

2 17 824 406 176 88 236 115

3 17 708 2685 1140 113 775 208

Note: Italicized numbers represent the consolidation time under traditional design schemes.
Bold numbers denote the consolidation time under the design scheme of this article.

6. Conclusions

This paper proposes a numerical solution with high computational efficiency and accuracy for
designing the position of the horizontal drains in the SUSGS. Based on the consolidation theories
of the unsaturated and saturated soils, the two sets of diffusion equations are used to simulate
the transient flow of air and water phases. Then, the diffusion equations are discretized by the
C-N scheme to obtain the numerical solution for the SUSGS. The proposed numerical solution
is reliable and accurate when compared with the analytical solution. According to the verified
solution, the influence of the horizontal drains on the consolidation behavior of the SUSGS is
investigated to design its optimal position. The results show that the arrangement of the horizon-
tal drain can significantly accelerate the consolidation rate of the entire ground. The horizontal
drain at the optimal position can save consolidation time and promote the consolidation speed.

Appendix A

Au =



1− λzc
a
vz ca 0.5λzc

a
vz · · · 0 0

cw 1− λzc
w
vz 0 0.5λzc

w
vz

0.5λzc
a
vz cw 1− λzc

a
vz

...
...

...
. . .

...
...

0.5λzc
a
vz 0 1− λzc

a
vz ca

0 0 0.5λzc
w
vz ca 1− λzc

w
vz


, (A.1)
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Bu =



1 + λzc
a
vz ca −0.5λzc

a
vz · · · 0 0

cw 1 + λzc
w
vz 0 −0.5λzc

w
vz

−0.5λzc
a
vz cw 1 + λzc

a
vz

...
...

...
. . .

...
...

−0.5λzc
a
vz 0 1 + λzc

a
vz ca

0 0 −0.5λzc
w
vz cw 1 + λzc

w
vz


, (A.2)

As =


1− λzcvz 0.5λzcvz · · · 0 0
0.5λzcvz 1− λzcvz
...

...
. . .

...
...

1− λzcvz 0.5λzcvz
0 0 · · · 0.5λzcvz 1− λzcvz

, (A.3)

Bs =


1 + λzcvz −0.5λzcvz · · · 0 0
−0.5λzcvz 1 + λzcvz
...

...
. . .

...
...

1 + λzcvz −0.5λzcvz
0 0 · · · −0.5λzcvz 1 + λzcvz

, (A.4)

Dn
u =

[
u
(1)n
a1 u

(1)n
w1 · · · u(1)na(M−1) u

(1)n
w(M−1)

]T
, (A.5)

Dn
s =

[
u
(2)n
w(M+1) u

(2)n
w(M+2) · · · u(2)nw(J−2) u

(2)n
w(J−1)

]T
, (A.6)

Qn
u =

(
qn+1 − qn

) [
caσ cwσ · · · caσ cwσ

]T
, (A.7)

Qn
s =

(
qn+1 − qn

) [
1 1 · · · 1 1

]T
, (A.8)

where Au and Bu are five-diagonal sparse matrices, As and Bs are tridiagonal sparse matrices.

Appendix B

Derivation of stability

In the von Neumann criterion, a standardized trial solution is proposed to verify the stability
of the difference scheme. The trial solution of Eq. (3.3) at point (zk, tn) is assumed to be:

unj = vneikζhz , (B.1)

where unk = [unak unwk]
T, i2 = −1, ζ reflects the small errors caused by node j iterating in the

adjacent time layers.
Substituting Eq. (B.1) into Eq. (3.3) yields:

G1v
n+1 = G2v

n, (B.2)
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where

Gu1 =

(
1− 2λzαc

a
vz ca

cw 1− 2λzαc
w
vz

)
, Gu2 =

(
1 + 2λzαc

a
vz ca

cw 1 + 2λzαc
w
vz

)
,

α =

(
sin

(
ζh

2

))2

.

The growth matrix of Eq. (3.3) is

Gu = (Gu1)
−1Gu2. (B.3)

Based on Eq. (B.3), the eigenvalues of the growth matrix are

µ1 =
cacw + 4a2λ2zc

a
vzc

w
vz − 1− 2aλz

[
(cavz)

2 − 2cavzc
w
vz + (cwvz)

2 + 4cacwc
a
vzc

w
vz

]1/2
cacw − 4a2λ2zc

a
vzc

w
vz − 1 + 2aλzcavz + 2aλzcwvz

, (B.4)

µ2 =
cacw + 4a2λ2zc

a
vzc

w
vz − 1 + 2aλz

[
(cavz)

2 − 2cavzc
w
vz + (cwvz)

2 + 4cacwc
a
vzc

w
vz

]1/2
cacw − 4a2λ2zc

a
vzc

w
vz − 1 + 2aλzcavz + 2aλzcwvz

. (B.5)

According to the von Neumann criterion, the difference scheme is unconditionally stable only
when all absolute values of eigenvalues (|u1 ∼ u2| ≤ 1) are less than or equal to 1. Otherwise, it
is conditionally stable. Based on Eqs. (B.4) and (B.5), considering that the consolidation param-
eters (cavz and c

w
vz) of soil are very small, the denominator is always greater than the numerator

in the eigenvalues. Thus, the C-N scheme for the consolidation equations of the unsaturated soil
is unconditionally stable under the arbitrary mesh ratio (λz).
Similarly, the trial solution of Eq. (3.4) at point (zk,tn) is assumed to be:

u
(2)n
wj = v(2)nw eikζh. (B.6)

Substituting Eq. (B.6) into Eq. (3.4) yields:

Gs1v
(2)n+1
w = Gs2v

(2)n
w , (B.7)

where Gs1 = 1− 2λzαcvz, Gs2 = 1 + 2λzαcvz.
The growth factor of Eq. (3.4) is:

Gs = Gs2/Gs1 =
1 + 2λzαcvz
1− 2λzαcvz

. (B.8)

It can be found that growth factor Gs is less than 1 under the arbitrary mesh ratio, so the
C-N solution for the consolidation equation of the saturated soil is also unconditionally stable.

Appendix C

A and B are the partitioned matrices, and they are expressed as

𝐀 =

(

 
 
 
 

⋯ 𝟎 ⋯ 𝟎
𝟎

⋮ ⋮
𝟎 𝟎
⋮ ⋮
𝟎
𝟎 ⋯ 𝟎 ⋯ )

 
 
 
 

𝐀0, 𝐀𝐽 

𝐀𝑢 

𝐀𝑀 

𝐀𝑠

𝐀𝑘1, 𝐀𝑘2

(C.1)
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where A0 and AJ are the coefficient matrices of Eqs. (3.3) and (3.4) at the boundary z = z0
and z = zJ , respectively, AM is coefficient matrices on the left side of Eq. (3.13), Am1 and Am2

are identity matrices:

𝐁 =

(

 
 
 
 

⋯ 𝟎 ⋯ 𝟎
𝟎

⋮ ⋮
𝟎 𝟎
⋮ ⋮
𝟎
𝟎 ⋯ 𝟎 ⋯ )

 
 
 
 

𝐁0, 𝐁𝐽 

𝐁𝑢 

𝐁𝑀 

𝐁𝑠

𝐁𝑘1, 𝐁𝑘2

(C.2)

Appendix D

Comparison of computational efficiency and accuracy

As shown in Tables D1 and D2, the numerical solution developed in this paper has high
computational efficiency and stability under the arbitrary mesh ratio condition. It is worth noting
that the C-N scheme at the local region has been proven to be unconditionally stable. In order
to verify the overall stability of the C-N solution, the boundary conditions, initial conditions,
and external loading are considered in this example. It can be seen that the numerical solution
also exhibits strong stability, indicating that the C-N solution can solve consolidation problems
under various boundary conditions, initial conditions, and time-dependent loading.

Table D1. Comparison of the calculation results between the numerical and analytical solutions.

Time step τ [s] Time costs [s]
Water pressure [kPa], hz = 1m, tn = 107 s

z = 1m z = 3m z = 5m z = 7m

10 258.25 20.33 32.64 86.04 90.13

100 24.32 20.33 32.64 86.04 90.13

1000 2.26 20.33 32.64 86.04 90.13

10 000 0.35 20.33 32.64 86.04 90.13

Yuan et al. (2023) – 20.34 32.64 86.05 90.13

Note: tN = 109 s

Table D2. Comparison of the calculation results between the numerical and analytical solutions.

Depth step hz
Water pressure [kPa], τ = 100 s, tn = 107 s

z = 1m z = 3m z = 5m z = 7m

0.1 20.33 32.64 86.04 90.13

0.2 20.33 32.64 86.04 90.13

0.25 20.33 32.64 86.04 90.13

0.5 20.33 32.64 86.04 90.13

1 20.33 32.64 86.04 90.13
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