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A process is described that allows the identification of the road profile traversed by a tractor
based only on acceleration signals measured in the field. The objective of this identification process
is to obtain a field path profile that, when simulated, produces accelerations in the tractor as
close as possible to those generated by the original profile, thereby causing similar damage values
to the structure of the tractor. This process requires an accurate multibody system model of the
vehicle with a sophisticated tire model. Under these considerations a method has been developed
making it possible to invert the dynamic problem and to determine the field path profile, which can
subsequently be used for simulations of arbitrary tractors.
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1. Introduction

Virtual development of tractors requires an accurate load case definition with a reasonable
correspondence between simulation and real-world field conditions, which is the fundamental
prerequisite for the strength and mechanical fatigue analysis (see (Renius, 2020)). The predom-
inantly used input load parameters are the forces at the wheel hubs and excitations caused by
the field path profile.
A well-established method to measure the forces at the wheel hubs is to use measurement

rims (see Fig. 1), although this approach is time consuming (Ferhadbegović, 2008).

Fig. 1. Measurement rim.
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Moreover, these forces are specific to one particular parameter set, whereby even a minor
change (e.g., adjusting ballast mass, using another implement, etc.) makes these measured forces
unusable for further simulations with the established tractor model.
Therefore, parameters are needed which are independent of the specific tractor configuration.

Since the field path profile fulfills this requirement, it emerges as a promising approach (also see
(Gattringer, 2023)).

2. Field path detection based on measured accelerations

An accurate multibody system simulation model of the tractor including a high sophisticated
tire model is the prerequisite for field path detection, which has been elaborated in (Fuchs &
Pauschenwein, 2019; Jedinger-Pauschenwein et al., 2024).
For setting up the multibody system (see (Schrattbauer, 2024)), the software system Adams,

version 2022.2.0, has been used in combination with FTire. Adams is a multibody dynamics
simulation software system (see (Adams)), whereas FTire is used for modeling tires (see (Gipser,
2007; Leister, 2009; Oertel, 2007; FTire)).
The method presented here allows the identification of the road profile traversed by a tractor

based solely on measuring accelerations.
The target is to derive a profile that, when simulated, generates accelerations in the tractor

as closely as possible to those generated by the original profile. As a result, the identification of
the road profile excitations on basis of measured accelerations is an inverse problem.
Considering an inverse problem, a simplified model with a reduced number of degrees of free-

dom seems to be advantageous. Therefore, such a model is derived from the complex nonlinear
tractor model in Adams replicating the dynamic behavior of the real tractor very accurately.
Referring to Schiller (2018) comparative simulations proved that a reasonable reduction of de-
grees of freedoms has a negligible influence on the accelerations (e.g., fixing cabin rigidly to the
tractor body, etc.). Furthermore, the high sophisticated FTire model is replaced by a spring
damper system, and further simplifications of the inverse problem are achieved by linearization.

2.1. Mathematical framework

Linear time-invariant mechanical systems are characterized by the differential equation:

Ms̈+Dṡ+Ks = f . (2.1)

Description of the parameters and the variables:

q – number of degrees of freedom, M ∈ R
q × R

q – mass matrix,
s ∈ R

q – generalized displacement vector, D ∈ R
q × R

q – damping matrix,
ṡ ∈ R

q – generalized velocity vector, K ∈ R
q × R

q – stiffness matrix,
s̈ ∈ R

q – generalized acceleration vector, f ∈ R
q – external forces vector.

Using the substitution ṡ = v and adjusting the notation such that M−1f = B̂u leads to
a first order system of linear differential equations:

[
ṡ
v̇

]
=

[
0 E

−M−1K −M−1D

]

︸ ︷︷ ︸
A

[
s
v

]
+

[
0

B̂

]

︸ ︷︷ ︸
B

u. (2.2)

Introducing the state vector xT =
[
sT,vT

]
, the linear time-invariant (LTI) system results in

a more compact form, whereby the wheel hub forces are collected in the input vector u:

ẋ = Ax+Bu with y = Cx+DTu. (2.3)
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Description of the matrices:

A ∈ R
n × R

n – system matrix C ∈ R
k × R

n – output matrix
B ∈ R

n × R
m – input matrix DT ∈ R

k × R
m – direct transmission matrix.

This LTI system comprises matrices A, B, C, DT , state vector x ∈ R
n (positions and

velocities), input vector u ∈ R
m, and output vector y ∈ R

k.
Since in this study the direct transmission matrix DT , not to be confused with the damping

matrix D, is consistently zero, the output vector (measured variables) can be expressed as

y = Cx. (2.4)

Differentiating Eq. (2.4) and substituting the vector ẋ from Eq. (2.3), ẏ becomes

ẏ = CAx+CBu. (2.5)

Reorganizing the terms to isolate the input vector u leads to

u = (CB)−1 ·
[
ẏ−CAC−1y

]
. (2.6)

Generally, matrix C possesses dimensions k × n while matrix B has n ×m. Upon multiplying
these matrices, the resulting dimensions of CB are k × m. If m is equal to k, and assuming
CB is regular, it could be conventionally inverted. However, for non-square CB matrices, the
equation has to be modified to (see (Freund & Hoppe, 2007)):

u = (CB)+ ·
[
ẏ−CAC−1y

]
, (2.7)

with the so-called Moore–Penrose pseudo-inverse for non-square matricesCB, which is described
in (Freund & Hoppe, 2007):

(CB)+ =
[
BTCTCB

]−1
BTCT. (2.8)

Using the abbreviation S = BTCTCB, the pseudo-inverse becomes

(CB)+ = S−1BTCT, (2.9)

and Eq. (2.7) transforms to

u = S−1BTCT ·
[
ẏ−CAC−1y

]
. (2.10)

Matrix S must be invertible for this algorithm’s application. This necessitates matrix C to be
regular. Considering this relationship, the input variables of an LTI-system can be deduced, and
this research indicates that, in general, the addressed problem is a pseudo-inverse one.
A significant merit of this approach is the elimination of frequency domain transformations

which are normally used for inversion by virtual iteration (see (Gattringer, 2023; Reichl, 2011;
Witteveen, 2023)). Furthermore, matrix S requires only one single inversion, regardless of the
computed time steps, as it comprises fixed values.
Since the second derivation of the positions is measurable (accelerations), only signal inte-

gration is required to obtain ẏ and y, which is a stable numerical procedure. In this special case
it has been chosen for simplicity without loss of generality that ẏ = ẋ and y = x.
Knowing the forces u, the state vectorx, tire stiffness and damping, a differential equation is

applied to deduce the field path profile (ground elevationxG) considering the geometry referring
to the tire radius.
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2.2. Identification of wheel center point displacement

The system description (2.2) and (2.3), along with its inverted variant (2.10), is relevant only
for systems that have forces as their inputs, but field path detection requires a further relation
between forces and displacements which will be the final inputs.
To establish the relationship between force and displacement, a single-mass oscillator com-

posed of a spring and damper is utilized, as depicted in Fig. 2. In this context, the linear
spring/damper model approximates the complex stiffness and damping properties of the tire.
Consequently, the values for the spring constant k and the damping coefficient d can be derived
from parameters of the FTire-model.

Fig. 2. One-mass-oscillator.

The equation of motion for the mass in Fig. 2 is

mẍ = −d(ẋG − ẋ)− c(xG − x), (2.11)

where x and ẋ represent the vertical position and velocity of the wheel center point (WCP).
Both state variables are obtained from the simulation directly or from integration of the sensor
signal. The force F , which is identical to the right side of Eq. (2.11), has been determined by the
inverse algorithm to identify the wheel hub forces. As a result, it becomes feasible to determine
xG by solving the differential equation:

ẋG =
c(x− xG) + dẋ+ F

d
. (2.12)

In simulations with different profiles, it is not ensured that, even with otherwise unchanged
simulation parameters, the average speed remains the same. This implies that when comparing
two simulation results over the time parameter, a reliable comparability of the state variables
cannot be guaranteed.
However, as part of the iteration process, it is essential to compare and link state variables

from different simulations with varying track profiles. For the before mentioned reason, the
dependence on time is transformed into a dependence on distance s(t). By introducing

v(t) =
ds(t)
dt

(2.13)

and applying the chain rule

dx(s(t))
dt

=
dx(s(t))
ds

v(t) →
dx(s)
ds

=
dx(t)
dt

1

v(t)
. (2.14)

Equation (2.12) results in

dxG(s)
ds

=
c(x(s)− xG(s)) + dẋ(s) + F (s)

d

1

v(s)
. (2.15)

To transform the simulation data from the time domain to the space domain, the variable xtd
(traveled distance) was introduced. This variable integrates the longitudinal velocity component
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of the chassis center of mass, storing the distance covered at each sample time point (the traveled
distances of the wheel hub centers should be identical with xtd of the chassis center of mass).
By replacing the time vector with the resulting displacement vector, the state variable data can
be transformed into the space domain.
Generally, it is important to realize that traversing a road profile in reality involves a tire

with a non-zero radius, as sketched in Fig. 3.

Fig. 3. Merry-go-round profile.

The line connecting the point of contact to the wheel center is supposed to remain always
approximately normal to the road profile. This implies that the resulting movement of the wheel
center will not represent the geometry of the traversed profile. Therefore, it becomes essential
to construct the road profile from the determined displacements of the wheel center points.
Moreover, it is crucial to recognize that the determination of wheel center point movements,

based on the differential Eq. (2.2), presupposes that the tire’s contact with the road occurs
precisely at a single point vertically below the wheel center point. However, this is an idealized
simplification, because multi-point contacts as illustrated in Fig. 3 can occur as well as tire’s
compression at edges (see Fig. 4). Due to these multi-point contacts and extreme tire deflections
the field path profile cannot be captured accurately within this section.

Fig. 4. Tire compressed by edge.

Regarding the influence of tire radii on the quality of identification, this study aims to
demonstrate that an identified profile achieves satisfactory accelerations even when traversed
with tires of larger radii. As a result, re-identification is not necessary when using tires with
larger radii.
Another point to consider is that during the simulation or during the field test, one or more

wheels may lift off the roadway. It is impossible for the identification algorithm to distinguish
between an actual lift off and a touching road profile. In addition, tires starting to skid can
cause another problem: since the identified profiles will always differ from the original profile,
these effects will never occur at the same time, with the same duration, or at the same place in
subsequent simulations of an iteration.
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As a result, there can be phase shifts in the acceleration signals of different simulations.
All these real-world effects influence the identified road profile, whereby a geometrically precise
identification of the road profile using this method seems to be unattainable.
For future investigations it may be expected that AI-methods incorporate potential for fur-

ther improvements concerning the identification and inversion process.
Nevertheless, it must be emphasized that the highest accuracy is not the primary aim,

anyway. The goal is to ensure that the accelerations resulting from the identified road profile
sufficiently approximate the accelerations caused by the original road profile, because in this
case the damage values referring to the identified road profile can be expected satisfactorily
close related to those caused by the original road profile, see (Fuchs et al., 2024).

2.3. Road generation

The unknown track profile can be generated from the identified wheel center point deflections
using geometrical considerations. As already explained in the preceding section, the wheel center
point deflections arise approximately by following the line always perpendicular to the track with
a length of the constant tire radius r as illustrated in Fig. 3.
The track profile can now be determined in the opposite manner. The derivative of the wheel

center point deflection pWCP defines g(s) as

dpWCP(s)

dx
= g(s), (2.16)

and the gradient of the deflection curve is

g(s) =

(
1
g(s)

)
. (2.17)

By rotating the gradient by 90◦ clockwise, one obtains

ǵ(s) =

(
g(s)
−1

)
. (2.18)

As a unit vector multiplied by the tire radius rW , the desired vector

gr(s) =
1

|ǵ(s)|
ǵ(s)rW (2.19)

is obtained, pointing from the current wheel center point position to the corresponding contact
point or point on the track. Adding the wheel center point position and the vector (Eq. 2.19)
yields the absolute position of the current track point.
Adding the tire radius in the z-direction (vertical) ensures that the track coordinate in the

z-direction starts at 0:

pR(s) = pWCP(s) + gr(s) +

(
0
rW

)
. (2.20)

Since the longitudinal components of the tire contact forces are known from the Adams simula-
tion, and the longitudinal stiffnesses kLong of the tires are available, the determined position of
the current contact point can be further corrected in the x-direction by estimating

c(s) =
FLong(s)

kLong(s)
(2.21)

as an additional shift:

p(s) = pWCP(s) + gr(s) +

(
c(s)
rW

)
. (2.22)
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A significant observation is that the road created using this method cannot generally be directly
utilized. This stems from the fact that it cannot be assumed that in the identified wheel center
point movements, all local radii of curvature are greater than or equal to the idealized tire radius
as already mentioned (see Fig. 4).
If the radii of curvature are smaller than the tire radius, a track profile can emerge that

self-penetrates, resulting in road points whose x-coordinates have multiple z-coordinates.
This phenomenon is illustrated in Fig. 5, which exemplifies such a generated road.

Fig. 5. Generated road profile from identified wheel center point movements.

Realistically, such tracks cannot be either created or traversed. Addressing these issues re-
quires additional considerations. A sorting of all the generated track points according to their
x-coordinates has been conducted. This sorting ensures a track with a unique x/z mapping.
Figure 6 displays the track that results from sorting the track shown in Fig. 5.

Fig. 6. Generated road profile with sorted x-coordinates.

Having achieved a unique x/z mapping, the next step involves eliminating the peaks that
arose during the sorting process. This elimination is executed via a search algorithm. Starting
from the current point, the algorithm searches for the first point in the x-direction such that the
connecting line between the points does not exceed a predetermined maximum gradient value.
This newly identified point then serves as the starting point for subsequent searches. The final

profile generated through this process is depicted in Fig. 6. This methodical approach ensures
a road profile that can be used in subsequent simulations.
A summarizing description of the identification algorithm is described in Fig. 7.
The original accelerations refer to a complex nonlinear model, especially in view of the highly

sophisticated tire model. Since identifications are carried out with the simplified LTI models,
the identified profiles deviate from the original one. Therefore, a virtual iteration process in the
time domain has been developed so that the identified solutions should converge to the original
profiles (see Fig. 8).



614 W. Fuchs et al.

Fig. 7. Identification algorithm.

Fig. 8. Iteration process for road identification.

However, it must be emphasized that convergence cannot be warranted, and it has to be
checked with a keen eye whether the process is successful and whether the iterated accelerations
are sufficiently close to the original ones.

2.4. Simplified model for inversion

It is crucial to select an appropriate number of degrees of freedom and, consequently, an ade-
quate number of state variables (see (Popp & Schiehlen, 2010; Shabana, 2013)). Typically, a rigid
body possesses six degrees of freedom, encompassing movements in the x-, y-, and z-directions,
and rotations about these axes. An additional degree of freedom arises from the front axle,
which can rotate about the longitudinal axis independently of the main chassis in the case
presented here.
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In the context of the simplified model, movement in the longitudinal direction is not consid-
ered, and the model is fixed in this direction at the center of gravity. Additionally, the movement
of the center of gravity in the lateral direction and its rotation about the vertical axes have been
selected as the fifth and sixth degrees of freedom.
Consequently, the following six degrees of freedom remain:
1) movement of chassis in vertical direction;
2) movement of chassis in lateral direction;
3) rotation of chassis about vertical axis;
4) rotation of chassis about longitudinal axis;
5) rotation of chassis about lateral axis;
6) rotation of front axle about longitudinal axis of chassis.
These six degrees of freedom can be expressed via transformations of the six state vari-

ables (X1, X2, X3, X4, X5, X6), as seen in Fig. 9, where also the chosen combination of state
variables and boundary conditions is illustrated.

Fig. 9. Simplified model, state and boundary condition.

The four sensor locations from the nonlinear model, depicted in Fig. 10, are selected, whereby
all sensors can measure accelerations in x-, y-, and z-directions. Without loss of generality, the
sensor positions have been virtually shifted to the wheel center points, which requires transfor-
mations of the measured acceleration signals.

Fig. 10. Tractor, position of acceleration sensors.

All these transformations serve to reduce potential error sources during development, as the
movement of the wheel center points is integral to the identification process.



616 W. Fuchs et al.

Fortunately, this system comprises six degrees of freedom and six input parameters which are
four vertical and two lateral forces (one lateral force per axle). As a result, in this case a direct
inversion of the matrix CB is possible. If a swing arm at the front axle is to be considered,
the number of degrees of freedom will be greater than the number of input parameters, which
requires the application of the Moore-Penrose pseudo-inversion.

3. Examples for field path detection

General remark: references to measurement details (tractor manufacturer, test location) can-
not be provided because of confidentiality agreements with AVL’s customer.

3.1. Merry-go-round test

The merry-go-round test (MGR) is specifically designed to test the durability and resilience
of vehicles when exposed to real or simulated working conditions, whereby periodical excitations
due to obstacles as shown in Figs. 11 and 12 are to be considered. In literature it is also referred
to as a bump test track circuit with obstacles (see (Renius, 2020)).

Fig. 11. Merry-go-round test. Fig. 12. Obstacle in detail.

A tractor was tested with a speed of 7.5 km/h. Based on accelerations measured close to the
wheel hub centers, the obstacle shape has been identified, as seen in Fig. 13.

Fig. 13. MGR, 7.5 km/h, path profile.

However, the comparison between Figs. 12 and 13 indicates that the iterated profile does not
match the original one exactly. The reason for the deviations can be explained by the following
example.
For simplicity, a stiff disc is considered instead of an elastic tire, and furthermore, it is

assumed that there will be no loss of contact between the profile and the disc. Even with these
extremely simplified conditions it gets obvious that the red profile in Fig. 14 will cause the
same vertical wheel center movement as the original black one, which means that in some cases
the road profile cannot be uniquely determined on the basis of acceleration measurements.
In reality contact loss and multi-point contacts can additionally occur as well as compression

of the tires at edges (see Fig. 4). It is impossible for the identification algorithm to distinguish
between an actual lift off and a slight touching of the road profile. This is an illustrative ex-
planation that convergence cannot be warranted. Therefore, it always must be checked if the
iterated accelerations are sufficiently close to the original ones.
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Fig. 14. Different road profiles achieving the same acceleration at wheel center point.

Nevertheless, Figs. 15 and 16 indicate that the acceleration results achieved with the identified
profile correspond very well with the acceleration achieved with the original one. This is the most
important condition for the simulation to present a realistic dynamic behavior of the tractor,
also in view of subsequent strength and mechanical fatigue analyses.

Fig. 15. MGR, 7.5 km/h, front acceleration.

Fig. 16. MGR, 7.5 km/h, rear acceleration.

3.2. ISO 5008 track

The second test track was modeled on the basis of the ISO 5008 rougher road course (see
(Wiesebrock, 2016)), the so-called Holperbahn-35 (jolting path or “Sturzacker”) as seen in
Fig. 17.



618 W. Fuchs et al.

Fig. 17. ISO 5008, rougher road course in reality.

This road course was traversed unballasted at a speed of 7.5 km/h.
Although the ISO 5008 profile challenges the inversion algorithm with its instances of multiple-

point tire contacts and several sharp edges, Fig. 18 indicates that the original and the identified
field path profiles correspond very well.

Fig. 18. ISO 5008, rougher road, path profile.

Nevertheless, a geometric match is not the ultimate objective, because the goal is to achieve
vertical accelerations when traversing, which closely resemble the original ones. This must be ver-
ified by conducting another simulation using the identified track, and as seen in Figs. 19 and 20,
the accelerations correspond sufficiently accurately with those achieved with the original profile,
so that a satisfactory lifetime prediction should be possible.

Fig. 19. ISO 5008, rougher road, 7.5 km/h, unballasted, front acceleration.
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Fig. 20. ISO 5008, rougher road, 7.5 km/h, unballasted, rear acceleration.

3.3. Four-poster test rig

The four-poster test rig is designed to simulate working conditions in the field. It consists of
four hydraulic actuators, each positioned under a wheel of the vehicle (see also (Reichl, 2011)).
The objective is to achieve the same vertical accelerations as measured in the field. The presented
inversion algorithm provides the input signals for the actuators, also for random and long test
tracks. The simplified model is adjusted to the boundary conditions at the test bed, which
means that the lateral degree of freedom is fixed by two bars at one front/rear wheel, as shown
in Fig. 21. This measure and the fact that multiple tire contact surfaces cannot occur at the
four-poster test rig accelerate the convergence.

Fig. 21. Boundary conditions at four poster test rig.

Fig. 22. Four-poster, MGR, 7.5 km/h, ballasted, front acceleration.
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Using the merry-go-round test as example, Figs. 22 and 23 indicate that the target of repro-
ducing the original acceleration on the test rig is met very well.

Fig. 23. Four-poster, MGR, 7.5 km/h, ballasted, rear acceleration.

4. Conclusions

An iterative method in the time domain has been established for field path detection based
on measured accelerations. This method is cost-effective and sufficiently accurate as can be seen
in the examples carried out.
Furthermore, in contrast to wheel hub forces, field path profiles do not depend on a certain set

of tractor parameters, and therefore, they are outstandingly suitable for setting up an input data
base for tractor multibody system simulations, also in view of different countries and farmlands.
Based on reliable input data, these tractor multibody system simulations will deliver suffi-

ciently accurate load cases for the finite element analysis and mechanical fatigue life prediction,
which is a prerequisite for the weight optimized tractor design.
For the future it may be expected that AI methods will provide further potential for process

improvements.
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