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Department of Applied Mechanics, Faculty of Mechanical Engineering,

Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
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Dry adhesives utilizing the Van der Waals forces are the focus of many applications. Detachment
phenomena are especially important to explore in this field. Most previous research was done using
axisymmetric models. However, several important cases cannot be analyzed with this simplification.
In this work, we build a 3D model to examine the classical “poker chip” problem. We analyze the
propagation stability for detachments initiating at the edge of the chip. Novel stability maps are
presented for the investigated non-axisymmetric cases. The effect of compressibility and propagation
front shape are presented as well.
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1. Introduction

Throughout history, people have used different types of adhesives. Most commonly, these
connect two surfaces by chemical or mechanical bonding mechanisms (Bricotte et al., 2024).
In recent decades, another type, called “dry adhesion”, has gained the interest of several re-
searchers. This type of adhesion is based on the Van der Waals forces, for which two surfaces
need to get in extremely close contact. This type of adhesive has several practical benefits com-
pared to other types. These are well presented by numerous species of animals – mostly reptiles
and insects – which utilize this effect (Gorb & Varenberg, 2007; Autumn et al., 2002; Arzt et al.,
2003). Among them, the gecko has the largest body mass and remarkable climbing abilities.
Geckos are able to rapidly climb smooth and rough vertical surfaces, even when the surface is
wet. Their feet strongly bond to the surface, but they can also quickly and reversibly detach from
the surface. Animals achieve this by having hierarchical spatula-like hair structures on their feet,
allowing them to get sufficiently close to the other surface to exploit the Van der Waals forces.
These structures are well visualized in (Varenberg et al., 2010) where several images of various
animals are presented using a scanning electron microscope.
Artificial structures mimicking gecko-like adhesion are mostly manufactured from polymer-

like materials. These structures have simpler geometry compared to the gecko’s feet, utilizing
patterns made of pillars. The shape of the contact geometry has a notable effect on adhesion
strength and has been studied by many researchers. Hensel et al. (2018) studied the effect of the
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shape of artificial pillars on adhesion in such structures. Almost all previous research assumes
axisymmetric geometry. Hao et al. (2024) investigated the importance of considering the effect of
nonlinear material behavior and compressibility depending on layer thickness with such a model.
To understand these structures, a better description of the underlying mechanical phenomena

is needed. In general, adhesion has been studied using numerical and analytical tools. Both
approaches often used the toolset of linear fracture mechanics (Schneider & Swain, 2015; Benvidi
& Bacca, 2021). The FEM is well suited for calculating the stored strain energy (U) in the system
for arbitrary geometry and material parameters.
Gent and Lindley’s (1957) work from the last century is often considered to be the first

important contribution regarding the “poker chip” problem. Their research was concerned with
material failure, showing that under tensile load, rubber specimens fail under surprisingly low
loads due to the triaxial stress state. A decade later Lindsey (1967) published analytical ap-
proximations to the normal stress distribution. Since then, several other approximate solutions
have been developed, but all of them rely on significant assumptions, like the chip being “thin”
and the material being perfectly incompressible (Movchan et al., 2021). They are also limited
to axisymmetric cases only. Several other researchers used numerical tools to investigate the
internal cracks and cavitation in the material.
The poker chip problem is commonly used to investigate adhesive phenomena. In this case,

the interfacial debonding is considered. The poker chip arrangement (see Fig. 1) was used in
numerous studies focusing on separation as one of the simplest geometries. Despite being seem-
ingly simple, this setup shows strongly nonlinear behavior regarding, e.g., stress distributions
and stored elastic energy. Many more complex geometries (e.g., mushroom, funnel-tip) are used
in practice. Their behavior is expected to be even more complex. Thus, it is important to un-
derstand the simplest available case as well as possible.

Fig. 1. Poker chip setup.

The most important aspect of previous results for this paper is the importance of the chip
thickness and Poisson’s ratio regarding detachment stability. The importance and effect of these
two parameters are analyzed in detail in (Horváth & Kossa, 2024), where they used an axisym-
metric model. They presented stability maps for the axisymmetric edge and center detachment
cases. It was shown that the region of stable detachment is narrowed as the thickness of the
chip is increased, and there exists a critical thickness above which no stable detachment occurs.
Increasing volumetric compressibility slightly decreased the size of the stable zone in these cases.
Local detachment initiated on the outer edge of the poker chip often does not propagate

in an axisymmetric way in reality. This can also be observed on the measurements made by
Balijepalli et al. (2017). In their work, two cases are shown where the detachment initiates from
the edge of the chip. In one case the detachment front resembles a circle-like shape, in the
other it is closer to straight line. This cannot be investigate with axisymmetric models, which
are used in previous studies. The aim of our work is to explore three-dimensional detachment
cases initiated on the edge of the poker chip. We created a 3D numerical model to investigate



3D stability analysis of the poker chip detachment problem 573

these previously unexplored cases. We present three stability maps, demonstrating the effect of
compressibility as well as shape of the propagating detachment. These basic crack front shapes
reveal the previously unknown fundamentals of 3D detachments. Our presented methodology
can be extended for more complex, arbitrary detachment propagation fronts.
Section 1 of this article provides an introduction to the topic and summarizes the related

literature. Section 2 presents the poker chip problem and the quantities important for our in-
vestigation. Section 3 describes the created numerical model and the process used to determine
stability. The topic of automated mesh generation is touched upon as well. In Section 4 the
obtained novel results are presented, most importantly the stability maps for the investigated
cases. Section 5 summarizes the new results. Additionally, the distribution of normal stresses
along the contact interface is illustrated in the Appendix at the end of the manuscript.

2. Problem description

The poker chip setup involves a cylindrical elastic solid layer, which is fixed between stiff
plates. In real measurements, the elastic layer is made of some polymer, and the plates (substrate)
are made of steel. The plates are moved axially, either compressing or pulling the elastic specimen
– most research is concerned with the tension case. As the plates are pulled apart, the elastic
material may fail due to void nucleation and growing internal cracks. Several papers discussed
this in great detail, our work is not concerned with these phenomena (Asp et al., 1995; Kumar
& Lopez-Pamies, 2021).
Alternatively, the elastic layer can start to detach from the substrate due to interfacial fail-

ure. This scenario is adopted by numerous researchers to study adhesion-related phenomena
(Balijepalli et al., 2016). Our work is concerned with this case as well, with detachment prop-
agation stability in the focus. We utilize linear fracture mechanics to study this phenomenon;
thus, detachment is modeled as a crack. This approach has been used in multiple previous stud-
ies (Antunes et al., 1999; Millwater et al., 2016). The concept of energy release rate is applied.
The energy release rate (G) is defined as the decrease of potential energy (π) per unit of contact
area (A) decrease:

G =
∂π

∂A
. (2.1)

Note that some papers write G using derivative according to the crack length (which is
denoted by a in some papers). This causes the sign of the expression to change. However, in this
paper we follow the form adopted by the researchers concerned with detachment and define the
energy release rate as per Eq. (2.1).
As a critical value of G is reached (the specific value depends on the strength of the ad-

hesive bond between the surfaces), crack propagation is initiated. Stability analysis is used to
determine whether additional external work is needed for the detachment to propagate further.
If the detachment process is stable, then additional energy is needed. If the detachment is un-
stable, the decrease of potential energy will cover the energetic cost of creating the new surface.
Thus, the detachment propagates further without the need for additional external work. Stabil-
ity is determined by the partial derivative of the energy release rate. Importantly, detachment
stability does not depend on the type and strength of adhesion between the poker chip and the
rigid plate. We investigate a displacement-driven case, thus the potential energy (π) will be equal
to the stored strain energy in the system (U). For this reason, investigating the strain energy is
sufficient for all of our calculations. Thus, the condition for stable detachment propagation in the
displacement-driven case is

0 <
∂G

∂A
=
∂2π

∂A2
=
∂2U

∂A2
. (2.2)
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Most previous research focuses on axisymmetric detachments, as this considerably simplifies
numerical as well as analytical calculations. In this paper, however, we will not use this assump-
tion, and we will investigate two more general detachment cases. In both cases, detachment is
initiated at a single point on the outer edge of the poker chip. In the first case, the detachment
propagation front is a straight line. In the second case, the detachment front is circular.
We investigate this problem with numerical tools – FEM specifically. This allows us to

investigate quantities that are difficult (or impossible) to measure during experiments. The
stored strain energy (U) is easily obtained with FE calculations, making stability evaluation
possible.
Our approach matches the method widely adopted by the researchers of adhesion. This

makes our results easier to compare to other studies. Detachment is modeled as a crack, but
more complex methods, like XFEM or the cohesive zone mode, are not needed for our investi-
gation.

3. Numerical model

Previous research shows that the governing parameters for stability are the relative chip
thickness and Poisson’s ratio. The polymers used to create artificial structures with dry ad-
hesive properties are usually nearly incompressible. For this reason, many researchers used in-
compressible models (ν = 0.5). In this paper, the effect of slight compressibility is analyzed as
well. The radius of the poker chip is denoted by a. The thickness of the chip is given relative
to the radius and it is denoted by h/a. The detachment is characterized by its length along
the axis of symmetry in both cases; this length is also compared to the radius and denoted
by c/a. The radius is chosen to be a = 1mm during our calculations. The parameters of the
model are visualized in Fig. 2. “A” denotes the detachment initiation point, “B” is the last
point to detach, and “C” marks the current intersection of the detachment front with the axis
of symmetry.

Fig. 2. Model parameters.

As mentioned previously, we consider a case with a straight detachment front and a case
with a circular detachment front. Detachment is initiated from the outer edge of the chip.
We can describe a circular front with an arbitrary radius using parameter k/a, denoting the
dimensionless distance between the detachment initiation point and the center of the circular
detachment front. According to the geometry, 0 ≤ k/a ≤ ∞. The straight front corresponds
to the k/a = ∞ limit case. The other investigated case will be the k/a = 0 limit, where the
initiation point coincides with the center of the circular front.
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The chip is modeled with an isotropic linear elastic material, as material nonlinearities can
be neglected due the presence of only small strains and deformations in the system. Note that
Young’s modulus acts as a constant multiplier on U . As derivatives are taken according to
Eq. (2.2), it has no influence on the stability properties. During our simulations, we chose
E = 1MPa.
The non-detached part of the interface is assumed to be perfectly bonded to the rigid sub-

strate – this assumption is also commonly used in the literature to model dry (or other types of)
adhesive contact. The substrate material is assumed to be rigid, as commonly used in the
literature. The no-slip boundary condition is applied to the non-detached part of the elastic ma-
terial, which represents perfect bonding to the substrate. The detached part is free to deform,
thus no boundary condition is applied there. As the contact with the substrate is well-modeled
by the boundary condition and the substrate is assumed to be rigid, it can be fully omitted from
the FE model. The meshed model is illustrated in Fig. 4.
The upper interface is prescribed to move by u vertically (see Fig. 1). The particular value

has no effect on stability, and it is chosen to be u = h/100 in all simulations.
We built our 3D finite element model in ABAQUS (Dassault Systèmes, 2022). Multiple el-

ement types are available for modeling structural 3D problems. After evaluating the options,
we predominantly used hex-shaped C3D8(H) elements, but in some cases a few wedge-shaped
C3D6(H) elements were also needed to create a well structured mesh. These are general purpose,
deformation based linear elements with 8 or 6 nodes respectively. As per ABAQUS recommenda-
tions, hybrid formulation was used if Poisson’s ratio was greater or equal to 0.495. The problem
has planar symmetry, thus a half-model is used to reduce computational costs.
In ABAQUS, our calculation is realized in two simulation steps. The initial step defines the

symmetry boundary condition (corresponding to the half model) as well as the no-slip (fixed 0
displacement and rotation) boundary condition on the non-detached part of the interface. These
boundary conditions are propagated to the second step, where the prescribed u displacement is
applied to the top interface.

3.1. Stability calculation

Stability is determined according to Eq. (2.2). The value of U is obtained at several values of
detachment length (c/a). Assuming a = 1, the contact area (A) is calculated from the detachment
length as

A =





1

4
(− sin (2 acos (1− c)) + 2 acos (1− c)) if c ≤ 1,

1

4
(sin (2 acos (c− 1))− 2 acos (c− 1)) + π if c > 1,

(3.1)

for the straight detachment front and as

A =
πc2

3
− 0.5

√
c2 · (2− c)(c+ 2) + acos

(
1−

c2

2

)
, (3.2)

for the circular detachment front (assuming k/a = 0).
From these relations, the value of U(A) is determined at a series of points. This needs to be

differentiated twice to investigate stability. Although several approaches are available to do this,
we chose to fit a spline of sufficiently high order on the points of U(A), then carried out the
differentiation step on the spline. The exact method for interpolation does not have a notable
effect on the obtained values.
These numerical differentiation steps generate small numerical “noise” by nature. This causes

the investigated function to oscillate. To mitigate this issue, we applied a Savitzky–Golay filter



576 A.L. Horváth, A. Kossa

to the 2nd derivative. After the filtering, the dataset becomes sufficiently smooth for stability
evaluation.
The process of stability evaluation is illustrated in Fig. 3 for one particular case (straight

detachment front, h/a = 0.1, ν = 0.5). U and G denote the normalized stored strain energy and
energy release rate, calculated as

U =
U

Umax
and G =

G

Gmax
. (3.3)

Stable regions are denoted by a green background, and unstable regions are shown in red.

Fig. 3. Illustration of the stability evaluation process (straight detachment front, h/a = 0.1, ν = 0.5):
(a) normalized strain energy and energy release rate; (b) stability map, green is stable, red is unstable.

3.2. About mesh generation

For creating stability maps with sufficient resolution, several thousands of simulations were
needed. For this reason, it was necessary to fully automate mesh generation. The parameters,
which influence mesh generation are summarized in Table 1.

Table 1. Parameters describing individual simulations.

Parameter Possible value

Detachment front shape Straight or circular

Chip thickness (h/a) 0.01 ... 1.5

Poisson’s ratio (ν) 0.5 or 0.48

Detachment length (c/a) 0 ... 1.99

In ABAQUS, the user can control the generated mesh by “seeding” the edges. The following
principles were used during the development of the meshing strategy:
– a mesh was characterized by two numbers, one related to the minimum and one to the
maximum edge length near the detachment front. These numbers are kept constant for
each combination of front shape and h/a;
– the region near the detachment front needs to be the most refined, a smooth transition is
needed from the mesh far away from the detachment front;
– the mesh should be well-structured near the detachment front. This means nearly brick-
shaped elements with edges parallel/orthogonal to the crack front.
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Fig. 4. Illustration of FE model and meshing strategy.

The structure of the mesh is illustrated in Fig. 4. The mesh is well structured in the vicinity
of the propagation front, where smaller elements are needed to capture the nonlinear stress
distributions.
It is not trivial to fulfill these requirements for the entire range of parameters. In both straight

and circular front cases, the main source of problems is the intersection of the detachment
front and outer edge of the elastic material. These lines intersect at very shallow angles if c/a
is either too small or too large. This leads to highly distorted elements being generated or even
failure to generate any mesh – both lead to errors during simulation.
While, in some cases, sharp angles cannot be avoided in the immediate vicinity of the inter-

section point, these alone did not lead to major issues. Some methods were applied to eliminate
mesh generation issues. The meshing strategy was changed based on the value of c/a. If the
detachment was very short, the entire detached area was meshed with a uniform dense mesh.
As c/a got larger, the entire detached area was meshed as a transition zone. As c/a got sufficiently
large, the meshing structure shown in Fig. 4 was used. As cases with almost full detachment
were investigated, a similar strategy was applied to those at low values of c/a. First, the left
transition zone is extended to the entire non-detached area; then, as full detachment is almost
reached, the entire non-detached area is meshed with a uniform dense mesh.
The meshing parameters are chosen so a limit node number is not exceeded by any mesh

for a given detachment front shape and h/a. This ensures that computational costs are kept
reasonable. Some examples are shown in Table 2.

Table 2. Example node and element numbers for some cases.

Front type h/a c/a Number of nodes Number of elements

Circular (k/a = 0) 0.2 1.6 186802 176505

Circular (k/a = 0) 0.2 1.9 188716 178206

Circular (k/a = 0) 1.0 0.4 100672 95675

Straight (k/a = ∞) 0.4 1.75 99840 93467

Straight (k/a = ∞) 0.4 0.15 76470 70876

Straight (k/a = ∞) 0.7 0.3 90720 85120
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4. Results

Three main cases were investigated. These are a straight detachment front with incom-
pressible material (ν = 0.5) and slightly compressible material (ν = 0.48), then a circular de-
tachment front with incompressible material. The effect of compressibility and shape of the
detachment front will be investigated by comparing their respective simulations to the case with
the straight detachment front and incompressible material.
The stability map obtained for the straight detachment front and incompressible material

case is presented in Fig. 5. Each line for any chip thickness (h/a) is made from 200 simulations;
this resolution is sufficiently dense to be drawn as a continuous line. Blue dashed lines denote
the interpolated boundary of the stable domain.

Fig. 5. Stability map for the straight detachment front and incompressible material.

We can see that for any thickness value, detachment propagates in an unstable way after
initiation. This unstable region may be followed by a stable segment, and then the final part
of the detachment process is unstable once again. For thin chips, the stable region covers almost
the whole detachment process. As the chip gets thicker, the stable region starts later and ends
sooner. After a critical value of thickness (visible as a blue “X” with a white middle point on
the boundary), no stable region exists. This thickness value is denoted by hcr/a, and the corre-
sponding value of detachment length is denoted as ccr/a. Based on the interpolated boundaries,
we can calculate the critical values. In the current case hcr = 1.006 and ccr/a = 1.233. Overall,
the limit points of stability follow relatively simple, monotonous trends.
The stability map for the slightly compressible case (ν = 0.48) is presented in Fig. 6. Com-

pared to the previous case, the most noticeable difference is for low thickness values (h/a ≤ 0.3).
A “dent” forms in the stable region and the trend of stability limit points is no longer monotonous.
For very thin chips, stability is hard to evaluate, leading to discontinuity in the stable region.
The rest of the stable region is qualitatively similar to the incompressible case but quantita-
tively gets smaller in every direction. This includes a decrease in critical thickness, for this case
hcr/a = 0.957 and ccr/a = 1.233.
The stability map for the circular detachment front case is presented in Fig. 7. The general

trends are the same as with the straight detachment front. The stable region is generally quan-
titatively smaller, but the difference is marginal. The critical thickness changes to hcr/a = 0.963
and ccr = 1.193. At extremely small thickness values, the stable region is wider. Overall, the
change in the propagation front shape results in a surprisingly small difference regarding the sta-
bility maps.
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Fig. 6. Stability map for the straight detachment front and slightly compressible material.

Fig. 7. Stability map for the circular detachment front and incompressible material.

4.1. Stress distributions

The stress distribution is easily obtained from the built model. The mesh is most refined
near the detachment front, making the areas with the highest stress gradients the most resolved.
The main focus of this paper is detachment stability, not stress distributions. However, we
show some of the stress results as well to demonstrate the nonlinearities in the normal stress
distributions.
Stresses are normalized by σ, which is the average stress along the contact area. Due to

the prescribed vertical displacement u on the upper rigid plate, the strain energy U stored
in the elastic body is induced. In the absence of energy dissipation, this energy equals the work
done by the external force system. With this, the reaction force F generated during loading can
be calculated from the strain energy, from which the average normal stress along the contact
surface can be calculated as

U =
1

2
Fu → F =

2U

σ
→ σ =

F

A
, (4.1)

where A is calculated as per Eqs. (3.1) or (3.2).
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One illustration of the stress distributions is shown in Fig. 8. We can see that the shape of
the crack front has no significant impact on the normal stresses along the symmetry line. The
normal stress distributions along the entire contact interface are included in the Appendix.

Fig. 8. Illustration of normalized normal stress distributions along the C-B line of symmetry (see Fig. 2),
contact interface (h/a = 0.2 and ν = 0.5): (a) straight detachment front; (b) circular detachment front.

5. Discussion

The detachment stability of the poker chip problem was investigated in detail using a fully
3D FE model built in ABAQUS. This allowed us to study detachment phenomena, which had
previously not been investigated in the literature. In all of the cases considered, the detachment
initiated from a point on the edge of the chip. In one case, the detachment front propagated as
a straight line. The effect of slight compressibility was also demonstrated using this scenario.
In the second case, a circular propagation front was considered.
We analyzed two different crack front shapes: straight and circular. The difference in crack

front shape had only a minor effect on the stability maps – the stable region got slightly smaller
for the circular front case. These can be considered as two extreme cases: the circular front’s
center of curvature matches the detachment initiation point. The straight front can be viewed as
a circle with an infinite radius, and the center of curvature is infinitely far from the detachment
initiation point. Thus, we hypothesize that a circular crack front with an arbitrary center of
curvature will produce similar results and have only a minor quantitative effect on the stability
of the detachment.
In all the investigated cases, the detachment was initially unstable. This unstable region may

be followed by a stable region. The detachment turned unstable once again, nearing complete
detachment. The width of the stable region is determined by the chip thickness (h/a). Generally,
the thicker the chip gets, the narrower the stable region becomes. For very thin chips, almost the
entire detachment process is stable. Above a critical thickness value (hcr/a), no stable region
can exist, and the detachment is fully unstable.
The effect of slight compressibility is presented. At low (h/a ≤ 0.3) thickness values, a no-

ticeable “dent” forms on the stability map – detachment gets stable later. This effect may be
relevant for practical applications, as materials that are used to manufacture structures with
dry adhesive properties show little, but not negligible, volumetric compressibility. If h/a > 0.3,
the stable zone shrinks by a small amount.

Appendix – Example: normal stress distribution

The distribution of normal stress on the bottom interface is shown in Fig. 9. In this case
h/a = 0.2 and ν = 0.5 (these contour plots are not normalized with average stress σ).
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Fig. 9. Normal stress distribution for straight and circular detachment fronts, h/a = 0.2, ν = 0.5.
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