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This study investigates the influence of geometry on stress distributions in equibiaxial test-
ing of rubber-like materials using hyperelastic models. Two geometries were examined, charac-
terized by parameters specifying configurations like corner angles and normalized radii. A finite
element approach was employed to simulate deformation under equibiaxial stretching, revealing
non-homogeneous stress states. Apparent stress ratios were derived to evaluate geometry-induced
deviations from purely equibiaxial stress-strain behavior. Results highlight the significance of geo-
metrical factors in stress distributions. The findings offer insights for optimizing specimen designs
for equibiaxial material characterization and improving the accuracy of extracted material pro-
perties.
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1. Introduction

The execution of equibiaxial material testing for rubber-like materials remains a challenging
task even today, whether involving symmetric or asymmetric biaxial measurements. Such tests
frequently utilize so-called cruciform test specimens, but the exact geometry of these specimens
remains a subject of debate. There is no consensus or standardized shape; thus, researchers
typically design their own specimen geometries for their experiments. To illustrate the wide
variety of specimen geometries reported in the literature, we highlight several characteristic
designs in the following paragraph.
Perhaps the simplest design is a basic cruciform shape with rectangular arms (Labus & Put-

tlitz, 2016; Avanzini & Battini, 2016). A more complex variation involves angling the arms at
a certain degree (Avanzini & Battini, 2016). However, the corners act as stress concentration
regions, and localized rounding can help reduce high stresses in these domains (Bertin et al.,
2015). A further refinement involves continuous rounding between the arms, reducing stress
concentration effects over a wider section (Jiang et al., 2022; Chen et al., 2013; Seibert et al.,
2014; Palacios, Pineda et al., 2017; Avanzini & Battini, 2016; Silberstein et al., 2011). Intro-
ducing a central cutout in the specimen allows larger and more visually apparent deformations
to be measured (Hartmann et al., 2018; Ranjan et al., 2023). Extending these cutouts toward
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the corners can create a more homogeneous stress field (Hartmann et al., 2018; Makinde et al.,
1992). If the goal is to ensure that tensile loading is dominant along the arms, notches can
be introduced to minimize deformation in the transverse direction (Avanzini & Battini, 2016;
Kuwabara et al., 1998). Another approach to reduce transverse deformation in the arms is to
incorporate larger incisions rather than small notches (Zhao et al., 2014). These can be com-
bined with a central cutout extending toward the incisions (Hartmann et al., 2018; Makinde
et al., 1992). To facilitate easier clamping, head sections can be added to the ends of the arms,
tapering toward their intersection (Putra et al., 2020). The tapering can also vary and need not
form parallel arm edges in the geometry, potentially featuring a continuously changing shape
that helps concentrate stresses in the central region (Palacios-Pineda et al., 2017; Lamkanfi
et al., 2015). A middle-way solution involves adding cutouts to a continuously rounded design,
focusing the effects more distinctly on the central region of the specimen (Morris et al., 2020).
An alternative method is to design the head sections with rounded edges instead of straight
sides (Vitucci, 2024). For testing scenarios with low force measurements, thinner arms can be
advantageous, as their stress distribution becomes less influential (Seibert et al., 2014). Simi-
lar specimen designs can also be used for failure mode investigations, such as specimens with
a central notch (Marano et al., 2010) or a central hole to concentrate forces and stresses toward
the corners (Oliveira et al., 2021; Hamdoun & Mahnken, 2024). It should also be noted that
asymmetric specimens can be used for testing purposes, not just symmetric ones (Chen et al.,
2023). The geometries found in the cited articles are illustrated in Fig. 1. For each specimen
under biaxial loading the center region, often called a Region of Interest (ROI), shows a cer-
tain stress distribution typical for the specimen in use that approximates the pure equibiaxial
stress-strain relationship (Chen et al., 2013; Seibert et al., 2014; Morris et al., 2020). It can
be concluded that the shapes of these specimens have a great impact on the exact stress fields
forming in the material due to the applied loads, thus it would be possible to characterize the
effects of the specimen geometries and use this information to grasp the equibiaxial behavior of
the experiments carried out.

Fig. 1. Illustration of different biaxial test specimen geometries.

As demonstrated, a wide variety of test specimens can be proposed, each tailored to the
experimental equipment available to the researcher and the specific properties to be measured.
However, it is not possible to identify a globally optimal specimen design that universally satisfies
all research needs. As a result, specially designed specimen geometries created to meet specific
experimental needs are still widely used.
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2. Description of the mechanical problem

In the present study, we investigate two distinct geometries of equibiaxial test specimens,
as illustrated in Fig. 2. For both types, the overall dimensions of the specimen form a square
with a side length of 3L, while the ROI is defined by a square with a side length of L located
at the center of the specimen. Both geometries are characterized by a single parameter. In the
case of the specimen depicted in Fig. 2a, the defining parameter is the angle α as marked in
the figure, whereas for the specimen shown in Fig. 2b, the characteristic geometrical parameter
is the dimensionless ratio β = R/L. By varying the parameters α and β, we can generate spec-
imens with different geometrical configurations. The thickness of all specimens is denoted as t.
Given that thin specimens are examined, the stress distribution is assumed to be constant along
the thickness direction, reducing the original three-dimensional problem to a two-dimensional
analysis. For both geometric configurations, we investigate 10 distinct cases, which are identified
using a specific coding scheme detailed in Table 1. This table also provides the characteris-
tic geometrical dimensions associated with each code. It is noteworthy that for the geometry
coded as B, the case β = 0 corresponds to case A00; therefore, it is not examined separately.
In total, we analyze 20 different specimen geometries (see Fig. 3), enabling us to obtain a com-
prehensive understanding of how geometry influences the stress distribution in both configura-
tions.

Fig. 2. The two examined geometrical configurations.

Table 1. Coding of the analyzed cases and their corresponding geometric parameters.

Case code α [◦] Case code β = R/L [1]

A00 0 B01 0.1

A05 5 B02 0.2

A10 10 B03 0.3

A15 15 B04 0.4

A20 20 B05 0.5

A25 25 B06 0.6

A30 30 B07 0.7

A35 35 B08 0.8

A40 40 B09 0.9

A45 45 B10 1.0

The specimens are subjected to identical elongations in the horizontal and vertical directions.
Due to the geometrical design, a non-homogeneous stress state develops within the specimens,
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Fig. 3. Illustration of the 20 different geometries analyzed.

and only a single material point (located at the center of the specimen) experiences a purely
equibiaxial stress state. Our objective is to determine how the geometrical configuration affects
the stress distributions and how the equibiaxial stress-strain relationship, characteristic of the
base material, can be extracted from the non-homogeneous stress state. To address these ques-
tions, finite element analyses are conducted. The finite element model is described in detail in
the following section.

3. Finite element models

Since the aim is to examine purely elastic material behavior, the mechanical behavior of the
test specimens is modeled using a hyperelastic material model. The theoretical framework of hy-
perelastic material modeling is extensively described in various textbooks and scientific articles
(Holzapfel, 2010). Due to space constraints, this paper does not provide a detailed presentation
of all equations; only the most essential relationships necessary for understanding the results are
presented. For isotropic material behavior, the strain energy potential can be expressed using
the principal stretches: U = U(λ1, λ2, λ3). The principal stretches are the eigenvalues of the left
stretch tensor (V) and the right stretch tensor (U), which can be determined via the polar de-
composition of the deformation gradient: F = RU = VR. In the case of compressible materials,
the Cauchy stress tensor is calculated as follows:

σ =

3∑

i=1

σini ⊗ ni =
3∑

i=1

λi
J

∂U

∂λi
ni ⊗ ni, (3.1)

where J = detF represents the volume ratio, and ni (i = 1, 2, 3) are unit vectors in the prin-
cipal directions of the current configuration. For incompressible materials (J = 1), the hydro-
static stress component cannot be determined from the displacement field. In this case, the
Cauchy stress tensor is expressed as

σ = dev

[
3∑

i=1

λi
∂U

∂λi
ni ⊗ ni

]
+ p, (3.2)

where p, the hydrostatic stress, is determined based on the boundary conditions of the specific
problem. In our computations, we employ the Ogden incompressible hyperelastic material model,
where the strain energy potential is defined as

U =

N∑

i=1

2µi
α2
i

(λαi

1 + λαi

2 + λαi

3 − 3) . (3.3)

Note that the U function presented here corresponds to the version used by Abaqus (Dassault
Systèms, 2022). The model’s analytical stress solutions for uniaxial, equibiaxial, and planar
loading conditions are given by the relations (Steinmann et al., 2012):
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Puniaxial (λ) =

N∑

i=1

2µi
αi

(
λαi−1 − λ−αi/2−1

)
,

Pequibiaxial (λ) =
N∑

i=1

2µi
αi

(
λαi−1 − λ−2αi−1

)
,

Pplanar (λ) =

N∑

i=1

2µi
αi

(
λαi−1 − λ−αi−1

)
.

(3.4)

For the analysis presented in this manuscript, a third-order Ogden model was fitted to the
Treloar data, which are among the most frequently cited experimental datasets in (Treloar,
1944; Steinmann et al., 2012). During the fitting process, only values of λ ≤ 5 were considered.
Parameter fitting was conducted using the Wolfram Mathematica built-in NMinimize function
to minimize the relative error. The fitted model parameters are as follows:

µ1 = 0.0309526MPa, µ2 = 0.352102MPa, µ3 = 0.00646444MPa,

α1 = 3.61341, α2 = 0.871956, α3 = −2.18698.
(3.5)

The comparison between the fitted model and the experimental data is presented in Fig. 4b. The
results show that the fitted model is accurate and closely follows the experimental data. The co-
efficient of determination (R2) for the fit is 0.999471. A Drucker stability analysis was conducted
for the fitted hyperelastic model using the Abaqus built-in module. The results indicate that
the hyperelastic model is stable across the entire range.

Fig. 4. (a) Illustration of homogeneous loading modes; (b) comparison of experimental data and the model
for each loading case.

The finite element simulations were performed using Abaqus software. The test specimens
were discretized using 8-node biquadratic plane stress quadrilateral elements (CPS8) with full
integration scheme. Note that for plane stress element types, hybrid elements are not required to
model incompressible material behavior. Prior to selecting the finite element meshes for analysis,
a detailed mesh-independence study was conducted. A global element size was chosen such that
the numerical results converged. Due to the symmetry of the geometries, only a quarter of each
specimen was modeled with appropriate symmetric boundary conditions. While it would be
possible to use an eighth model, for convenience, we opted for the quarter model, as it simplifies
the application of boundary conditions. For all geometries, L = 100mm was used with a global
element size of 1mm. To illustrate the finite element meshes, two cases are presented in Fig. 5.
The codes shown in the figure correspond to those in Table 1. For these example cases, the
number of elements and nodes are as follows: case A20: 16,616 elements and 50,511 nodes;
case B05: 14,756 elements and 44,871 nodes.
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Fig. 5. Finite element meshes applied to the quarter models:
(a) geometry with A20 code; (b) geometry with B05 code.

The prescribed load was applied as displacements at the grips in the horizontal and verti-
cal directions, based on the part of the specimen considered. Displacements perpendicular to
the prescribed displacement were constrained, simulating ideal clamping conditions. A displace-
ment value of u = 600mm was prescribed at the grips. At this magnitude, sufficiently large
deformations are expected for all geometries. The applied boundary conditions are illustrated
schematically in Fig. 6.

Fig. 6. Schematic illustration of the applied boundary conditions.

The problem was solved using the General Static procedure. The total load was applied in 500
equal increments, providing a sufficiently dense load distribution and reducing numerical errors.
During the simulations, reaction forces at the grips were recorded to compute apparent stress
values. Let F/2 denote the reaction force at the grips in the quarter model. For the investigated
loading and geometries, an apparent stretch and nominal stress can be defined as follows:

λ = 1 +
2u

3L
, P =

F

Lt
, (3.6)

where t is the thickness of the specimen. The resulting stretch and nominal stress values cor-
respond to non-purely biaxial stress states, incorporating the influence of geometry. Plotting
the nominal stress (P ) as a function of λ reveals deviations from the purely equibiaxial solu-
tion valid for the material model. To characterize these deviations, a dimensionless stress ratio
(or geometry factor) can be introduced:

η (λ) =
Pequibiaxial (λ)

P (λ)
. (3.7)

The resulting stress ratio (or geometry factor) reflects the influence of geometry on the stress
distribution. Knowing η, the purely equibiaxial stress solutions can be computed by multiplying
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the measured P values by η. The solutions for each geometry are presented in the following
section.

4. Results

First, we present the deformed configurations corresponding to each geometry at the end
of loading in Fig. 7. Notably, despite the significant differences in initial configurations, the
deformed shapes at the end of the applied large deformation appear very similar. More important
than examining the deformed shapes is the variation in reaction forces and the apparent nominal
stresses calculated from them. The engineering stress values computed for each specimen are
presented in Fig. 8, with different cases distinguished by various colors. The figure also includes
the stress solution derived under purely equibiaxial loading conditions, as per Eq. (3.4)2.

Fig. 7. Deformed configurations obtained for the analyzed geometries.

Fig. 8. Plots of the calculated stress values: (a) geometry with A coding; (b) geometry with B coding.

Using these stress solutions, we can compute the variation of the previously introduced η
stress ratio as a function of λ. The results are shown in Fig. 9. Analyzing the results reveals
that the geometry of the specimen has a significant impact on the value of the stress ratio.

Fig. 9. Plots of the η stress ratio: (a) geometry with A coding; (b) geometry with B coding.
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In all cases, the stress ratio depends on the stretch (λ) and consistently falls within the range
of 1.5 to 3. If necessary, analytical functions can be fitted to the numerical values of η, but this
aspect is beyond the scope of the present paper.

5. Conclusions

In this study, we present a comprehensive analysis of the influence of specimen geometry on
the non-homogeneous stress state that develops during biaxial testing of rubber-like materials.
Using finite element analysis, we examined a total of 20 configurations based on two characteristic
geometries, modeling the base material with a third-order Ogden hyperelastic material model.
Apparent stretch and nominal stress quantities were introduced, which can be directly calculated
from the crosshead displacement and the measured force. We defined the dimensionless stress
ratio, which is the ratio of the stress under purely equibiaxial loading of the base material to
the apparent stress, interpreting it as a geometry-specific geometry factor. The stress ratio was
calculated for all examined geometries. With the knowledge of the stress ratio, the mechanical
behavior of the base material under purely equibiaxial loading conditions can be estimated for
various geometries. The presented methodology is extendable to other geometries and materials.
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mum specimen geometry for equibiaxial experimental tests of reinforced magnetorheological elas-
tomers with iron micro- and nanoparticles. Nanomaterials, 7 (9), Article 254. https://doi.org/
10.3390/nano7090254

18. Putra, K.B., Tian, X., Plott, J., & Shih, A. (2020). Biaxial test and hyperelastic material models
of silicone elastomer fabricated by extrusion-based additive manufacturing for wearable biomed-
ical devices. Journal of the Mechanical Behavior of Biomedical Materials, 107, Article 103733.
https://doi.org/10.1016/j.jmbbm.2020.103733

19. Ranjan, R., Murthy, H., Bhowmik, D., & Sadavarte, V.S. (2023). Behaviour of composite solid pro-
pellant under biaxial tensile loading. Polymer Testing, 124, Article 108054. https://doi.org/10.1016/
j.polymertesting.2023.108054

20. Seibert, H., Scheffer, T., & Diebels, S. (2014). Biaxial testing of elastomers – experimental setup,
measurement and experimental optimisation of specimen’s shape. Technische Mechanik, 34 (2), 72–
89. https://doi.org/10.24352/UB.OVGU-2017-054

21. Silberstein, M.N., Pillai, P.V., & Boyce, M.C. (2011). Biaxial elastic–viscoplastic behavior of Nafion
membranes. Polymer, 52 (2), 529–539. https://doi.org/10.1016/j.polymer.2010.11.032

22. Steinmann, P., Hossain, M., & Possart, G. (2012). Hyperelastic models for rubber-like materials:
consistent tangent operators and suitability for Treloar’s data. Archive of Applied Mechanics, 82 (9),
1183–1217. https://doi.org/10.1007/s00419-012-0610-z

23. Treloar, L.R.G. (1944). Stress-strain data for vulcanized rubber under various types of deformation.
Rubber Chemistry and Technology, 17 (4), 813–825. https://doi.org/10.5254/1.3546701

24. Vitucci, G. (2024). Biaxial extension of cruciform specimens: Embedding equilibrium into design
and constitutive characterization. Experimental Mechanics, 64 (4), 539–550. https://doi.org/10.1007/
s11340-024-01052-2

25. Zhao, X., Berwick, Z.C., Krieger, J.F., Chen, H., Chambers, S., & Kassab, G.S. (2014). Novel design
of cruciform specimens for planar biaxial testing of soft materials. Experimental Mechanics, 54 (3),
343–356. https://doi.org/10.1007/s11340-013-9808-4

Manuscript received December 3, 2024; accepted for publication February 11, 2025;

published online May 17, 2025.

https://doi.org/10.1016/j.jmbbm.2016.05.003
https://doi.org/10.1016/j.polymertesting.2014.09.016
https://doi.org/10.1016/j.polymertesting.2014.09.016
https://doi.org/10.1007/BF02324725
https://doi.org/10.1007/BF02324725
https://doi.org/10.1002/polb.22054
https://doi.org/10.1002/app.48400
https://doi.org/10.1177/03093247211027061
https://doi.org/10.3390/nano7090254
https://doi.org/10.3390/nano7090254
https://doi.org/10.1016/j.jmbbm.2020.103733
https://doi.org/10.1016/j.polymertesting.2023.108054
https://doi.org/10.1016/j.polymertesting.2023.108054
https://doi.org/10.24352/UB.OVGU-2017-054
https://doi.org/10.1016/j.polymer.2010.11.032
https://doi.org/10.1007/s00419-012-0610-z
https://doi.org/10.5254/1.3546701
https://doi.org/10.1007/s11340-024-01052-2
https://doi.org/10.1007/s11340-024-01052-2
https://doi.org/10.1007/s11340-013-9808-4

