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Composite materials have gained significant attention in various engineering applications due to
their ability to exhibit unique properties that can be tailored to meet specific design requirements.
Among these, auxetic materials stand out for their counterintuitive behavior of expanding in all
directions when stretched, as opposed to traditional materials which contract. This property makes
auxetic materials promising candidates for applications such as impact protection, energy absorp-
tion, and advanced engineering structures. In this paper we investigate the application of direct
search methods in determining new designs of auxetic composite materials.
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1. Introduction

Structural optimization is a significant area of focus in mechanical engineering and has been
continuously evolving over the years. It is commonly applied to reduce the material usage and
total deformation energy of structures while ensuring adequate strength and mechanical stiffness
(Li et al., 2020). Traditionally, structural optimization can be categorized into three main types:
1) dimensional optimization, which involves determining the optimal distribution of parameters
such as plate thickness or cross-sectional areas of truss bars; 2) shape optimization, aimed at
identifying the optimal geometry of a specified domain; and 3) topological optimization, which
stands apart from the other two as it allows the material to occupy any position within the
defined domain (Bendsøe & Sigmund, 2004).
Structural optimization nowadays encompasses a much broader range of topics, extending

beyond the previously mentioned classical approaches. Notable examples include, among others,
cellular microstructures (Pan et al., 2020; Ptochos & Labeas, 2012), deformable mechanisms (Zhu
et al., 2020), spinodal structures (Kumar et al., 2020), multiphysics problems (Yoon, 2021),
and composite materials (Casalotti et al., 2020; Gu et al., 2018a). Alongside the diversity of
applications, significant attention is also devoted to the mathematical methods used to solve
these problems. These methods can generally be grouped into three major categories: gradient-
based approaches (Ghiasi et al., 2009; 2010; Luu & Banh, 2023; Sandhu, 1971; Tavakoli, 2014),
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direct search algorithms (Coropet,chi et al., 2022; Sait et al., 2023; Vasile et al., 2022), and
artificial intelligence techniques (Gu et al., 2018b; Harish et al., 2020; Yu et al., 2019; Zhang
et al., 2019).
In mechanical engineering, the development of efficient methodologies for solving optimiza-

tion problems remains a continually evolving area of research. The intricate and dynamic nature
of structures needs advanced optimization techniques capable of exploring the entire solution
space and identifying designs that meet specific performance requirements. As computational
capabilities and methodologies progress, researchers have access to a variety of optimization
techniques, each offering unique advantages and limitations.
This article focuses on reviewing direct search methods for solving structural optimization

problems in the field of composite materials. We investigate the application of these methods
in determining new designs of auxetic materials. The methods are valued for their simplicity,
versatility, and applicability to a wide range of problems. Unlike gradient-based approaches,
direct search methods do not depend on explicit knowledge of the gradient of the objective
function. Instead, they explore the optimization space through a structured sequence of trial
points, making them particularly well suited to problems with non-differentiable, discontinuous,
or computationally intensive objective functions.
The purpose of this article is to compare and assess various direct search methods based on

their performance in solving structural optimization problems. For each method, its strengths,
weaknesses, and practical considerations are analyzed in the context of the problem being ad-
dressed. This analysis aims to highlight the specific advantages and trade-offs associated with
each method, providing valuable insights for their application in structural optimization tasks.

2. Problem definition

This study aims to evaluate the performance of various direct search methods in solving
structural optimization problems. To facilitate this evaluation, we define an optimization prob-
lem involving composite materials, which serves as a benchmark for testing the methods. As the
primary focus of the paper is to compare the performance of the methods rather than solving
a specific structural problem, the selected problem is largely theoretical but has also practical
application in the field of auxetic materials.
Composite materials, known for combining the properties of multiple constituents, introduce

a new dimension to structural design. The optimization of structures made from these mate-
rials highlights the inherent complexity of balancing material proportions and orientations to
achieve desired performance criteria. With their unique combination of strength, lightweight
properties, and durability, composite materials present a challenging and yet rewarding domain
for optimization methodologies.
We consider a 2D periodic structure consisting of two different materials for which the ma-

terial domains are defined by triangular pixels in a representative volume element (RVE) which
is shaped as a hexagon with 4 pixels on each side. Each pixel can be of hard or soft material.
Hexagonal cells are obtained by rotation of the base area, as shown in Fig. 1. In the base triangle

Fig. 1. Base area rotated 6 times with 60◦.



Direct search methods for determining new designs of auxetic composite materials 481

area of the hexagon, there are 16 material domains. In our problem, we impose the condition
that half of the material domains must be soft and the other half hard.
The RVE can be repeated in a pattern so that it can form the periodic structure presented

in Fig. 2. Analyzing the figure, we can identify a rectangular area that contains two RVEs and
form the analysis domain that will be used in FEM simulations.

Fig. 2. Periodic structure and analysis domain.

The materials from which the analysis domain is built are represented with magenta and cyan
colors. For each material, Young’s modulus and Poisson’s coefficient are known. The materials
properties corresponding to each color are presented in Table 1.

Table 1. Materials description.

Material Hard Soft

Color

Young’s modulus 100000MPa 1000MPa

Poisson’s ratio 0.2 0.4

In order to simulate the analysis domain in a periodic structure, specific boundary conditions
must be applied for every load case to determine Poisson’s coefficient. According to (Sorohan
et al., 2018) for bidimensional analysis, one should use 3 load cases for determining the specific
material properties. These load cases are traction alongside the X-axis, traction alongside the
Y -axis and shear in theXY plane. The representation of the boundary conditions for the analysis
domain in the first load case is shown in Fig. 3, and the boundary conditions for all three load
cases are presented in Table 2. In Fig. 3, the nodes that have 0 displacement are represented
with blue arrows alongside the direction in which this constraint is imposed, and the nodes that
are coupled in terms of displacement are represented with green arrows alongside the direction
in which the coupling of the displacement is imposed.
The finite elements utilized can be quadrilaterals with either four or eight nodes. In a linear

elastic analysis, the stress distribution within each finite element may vary unless techniques such
as reduced integration for linear quadrilateral elements or stress averaging across the element
are applied. However, for practical purposes, constant stresses are often assumed for each finite
element to simplify the calculations.
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Fig. 3. Representation of load case 1.

Table 2. Periodic boundary conditions for the three load cases.

Load case Nodes ux uy Observation

1
Traction X

1 (X = 0) 0 Free Symmetry X

2 (X = a) ε01a Free –

3 (Y = 0) Free 0 Symmetry Y

4 (Y = b) Free Coupled –

2
Traction Y

1 (X = 0) 0 Free Symmetry X

2 (X = a) Coupled Free –

3 (Y = 0) Free 0 Symmetry Y

4 (Y = b) Free ε02b -

3
Shear XY

1 (X = 0) Free 0 Asymmetry X

2 (X = a) Free 0 –

3 (Y = 0) 0 Free Asymmetry Y

4 (Y = b) γ03b Free –

While performing the FEM simulations, we observed that all the solutions are isotropic. This
can be explained by the way the periodic model is constructed with the rotation of the base
triangle into forming a hexagonal RVE and the repeating of the RVE. In this case, we can use
only the first load case in order to determine all the mechanical properties of a configuration.
For the present problem, the parameter of interest is the effective Poisson’s coefficient which

can be obtained using the relation:

ν12eff = −εy
εx

= −

1
V

NE∑
i=1

Viεyi

1
V

NE∑
i=1

Viεxi

, (2.1)

where ν12eff – effective Poisson’s coefficient, ε̄y – average strain in the y-direction, ε̄x – average
strain in the x-direction, V – total volume of the analysis domain, NE – number of finite elements
in the domain, Vi – volume of element i, εyi – average strain in y-direction in element i, εxi –
average strain in x-direction in element i.
Validating the performance of an optimization algorithm requires knowledge of the optimal

solution. To identify the optimal solution, the brute force method is applied by evaluating all
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possible configurations. For the described problem with 16 material domains in the base area,
there are 12,870 possible solutions.The distribution of Poisson’s coefficient values for all solutions
is illustrated in Fig. 4 as a histogram. Notably, only 1.2% of the solutions exhibit a negative
Poisson’s coefficient.

Fig. 4. Histogram of Poisson’s coefficient for all solutions.

In evaluating our optimization algorithm, we choose the first three values as optimal solutions,
representing almost 0.1% of all solutions. The periodic model of the chosen best solutions and
the value for Poisson’s coefficient are presented in Fig. 5.

Fig. 5. Optimal solutions for 16 material domains base triangle:
(a) 1st best, ν = −0.174072; (b) 2nd best, ν = −0.155901; (c) 3rd best, ν = −0.142588.

3. Direct search methods

Analytical methods are renowned for their rapid convergence rates. However, direct search
methods offer a significant advantage by not requiring gradient information for either the objec-
tive function or constraints. This characteristic is particularly beneficial in the field of topological
optimization, where computing the gradients of the objective function can be computationally
expensive or, in some cases, infeasible. Instead, direct search methods rely solely on the objective
function values from previous iterations to identify the optimal solution.
Enumeration, also known as brute force search, is a method that involves exploring and eval-

uating all possible combinations of the problem’s variables to identify the best solution. While
this approach guarantees finding the global optimum, it is often impractical or computationally
impossible due to the immense number of combinations that must be evaluated. Nevertheless,
the brute force method can be valuable for generating data sets in smaller-scale problems. For
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instance, in (Gu et al., 2018a), this method is employed to create a labeled dataset used to train
a neural network. Once trained, the neural network can efficiently identify optimal structures
within a larger search space, where the problem size makes the brute force approach infeasible.
The greedy algorithm iteratively evaluates a set of configurations, making incremental changes

toward the best configuration at each step, until no further improvements to the objective func-
tion are possible. However, a key limitation of the greedy algorithm is its inability to achieve
a better solution if it must pass through a suboptimal solution as an intermediate step. To ad-
dress this limitation, the algorithm requires a well-defined variable space and an appropriately
chosen iteration step. In (Coropet,chi et al., 2022), the greedy algorithm was applied to design
repetitive composite cellular microstructures aimed at maximizing stiffness in two orthogonal
directions. The flowchart of the greedy algorithm is presented in Fig. 6.

Fig. 6. Flowchart of the greedy algorithm.

As previously discussed, the greedy algorithm evaluates a set of configurations and iteratively
makes changes toward the best configuration until no further improvements to the objective
function can be achieved. For the described problem, the process begins with a random material
distribution. The algorithm evaluates all potential configurations derived from this initial setup
by swapping pairs of material domains with different materials. Specifically, in the case of the
base triangle, there are 16 material domains – eight of material #1 and eight of material #2. At
each iteration, the greedy algorithm examines 64 possible configurations resulting from exchang-
ing pairs of different materials. It selects the configuration with the best objective function and
repeats the process in the next step. The algorithm continues this process, selecting the best
modification at each iteration, and stops when no further improvements are found, returning
the best solution discovered.
The greedy algorithm offers notable advantages, including simplicity of implementation and

a relatively small number of objective function evaluations needed to reach an optimal solution.
At each iteration, it converges to a local optimum, which, in some cases, may coincide with
the global optimum. However, its primary drawback is its inability to guarantee the global
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optimum. This limitation arises from the possibility that achieving a better solution may require
simultaneous changes to multiple pairs of material domains – something the algorithm does not
account for.
According to Clerc (2006), particle swarm optimization (PSO) is a collective, iterative, and

decentralized optimization method that emphasizes cooperation among solutions. This partially
random algorithm operates without a selection operator. To identify the global optimum within
a solution space, the algorithm begins with a swarm of particles (potential solutions), which
share information such as their current positions and corresponding objective function values.
Inspired by the social behavior observed in bird flocks (Engelbrecht, 2007), the algorithm

models individual solutions, referred to as particles, “flying” through a multidimensional solution
space. The movement of each particle is influenced by socio-psychological factors, specifically the
tendency of individuals to compete and learn from the success of others. As a result, a particle’s
position updates are guided by its own experience as well as the knowledge and performance of
its neighboring particles. The flowchart of the PSO algorithm is shown in Fig. 7.

Fig. 7. Flowchart of the PSO algorithm.

This algorithm was proven to be efficient in many optimization problems, among which we
can mention Arjomandi et al. (2024), Perez and Behdinan (2007).

4. Results and discussions

The optimization algorithms – greedy and particle swarm optimization – were developed us-
ing Python, leveraging its simplicity and extensive library support for efficient implementation.
The integration of the PyAnsys package facilitated seamless interaction with Ansys for finite
element analysis, enabling the algorithms to utilize structural simulations for objective func-
tion evaluation. In Table 3 are highlighted key computation times for the brute force method
across various configurations. The data presented below was obtained using a computer with
the following specifications: Intel® Xeon® W-2104 CPU @ 3.20GHz, 32GB DDR5RAM, and
an NVIDIA Quadro P2000 4GB GDDR5 graphics card.
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Table 3. Estimated time necessary for evaluating all solutions in different configurations.

Material domains in base area Possible combinations Estimated time

16 12,870 64350 seconds ∼17.87 hours
36 9,075,135,300 1,522,325,936 seconds ∼2896.35 years

To assess the success rate – defined as the probability of an algorithm achieving the optimal
solution or, in this case, one of the top three optimal solutions outlined in Section 2 – each
algorithm was executed 100 times for the problem involving 16 material domains in the base area.
Additionally, to evaluate the performance of the algorithms, the number of objective function
evaluations required to reach the optimum was also recorded. The results are presented in Fig. 8.

Fig. 8. Final values of Poisson’s ratios obtained as depending on number of evaluations
– greedy and PSO.

If we analyze this chart, we can see that there is a big difference between how these two
optimization algorithms perform. We would like to have an optimization method that would
give us a very good objective function value for a small number of evaluations. In this figure,
we can see that the greedy algorithm always returns a final solution after a small number of
function evaluations but the value is not very good. At the same time, PSO delivers a very good
objective function value but with a higher number of evaluations. In this case, the user must
make a compromise and should choose which thing is more important: speed or performance.
Some summary statistics of these 100 runs are presented in Table 4.
After validating that the two algorithms can find the optimal solutions, we proceeded to the

next step in which we performed the optimization process on a problem featuring 36 material
domains instead of 16 in the base triangle. For this problem, we showed that it is impossible to
apply the brute force method, mainly because there are over 9 billion solutions. We performed 5
runs with each algorithm for this problem and compared the results. To make a direct comparison
between these two algorithms, it is necessary to present the evolution of the objective function
against the number of evaluations of the function because each algorithm evaluates a different
number of solutions at each iteration.



Direct search methods for determining new designs of auxetic composite materials 487

Table 4. Summary statistics of the 100 runs performed on greedy and PSO.

Algorithm Greedy PSO

Reached 1st best 27 41

Reached 2nd best 9 26

Reached 3rd best 14 17

Success rate 50% 84%

Auxetic 90 100

Mean – objective function value −0.103819 −0.154334
Mean – number of evaluations 231.04 1470.90

Median – number of evaluations 192 1470

Standard deviation – number of evaluations 67.67 834.05

We can see in Fig. 9 that in the beginning PSO performs better than greedy but then
reaches a plateau indicating a blocking in a local minimum. For the greedy algorithm, we can
see a steady decrease in the objective function value until it reaches a dead end and for the long
run it performs better than PSO in 2 out of 5 runs. The periodic representations of the 3 best
obtained configurations are shown in Fig. 10.

Fig. 9. Objective function evolution vs. the number of evaluations needed for each algorithm
– greedy and PSO.

Fig. 10. Best configurations found for the 36 material domains base triangle – periodic model:
(a) 1st best – greedy, ν = −0.152223; (b) 2nd best – greedy, ν = −0.096786; (c) 3rd best – PSO,

ν = −0.074124.
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5. Conclusions

This study evaluates the performance of two optimization algorithms, greedy and PSO, in
solving structural optimization problems. The evaluation focuses on metrics such as conver-
gence speed, solution quality, computational efficiency, and robustness. The greedy algorithm
demonstrates impressive convergence speed, making it computationally efficient and capable of
finding good solutions with minimal cost. However, it has a notable limitation: its tendency
to become stuck in suboptimal solutions, as it cannot explore solution spaces requiring inter-
mediate steps through less favorable configurations. In contrast, PSO exhibits a higher success
rate, reaching 84% for the low-dimensional problem with 16 material domains. Both algorithms
successfully attain the global maximum for this problem, but the computational efforts required
by PSO are notably higher compared to greedy.
When scaling up to the more complex problem of 36 material domains, the differences be-

tween the two algorithms become more pronounced. PSO is more likely to encounter deadlocks
in local minima, reducing its effectiveness for larger problems, whereas greedy shows greater
resilience by consistently reaching a good solution. Although the solutions found by greedy may
not always be the global optimum, they are achieved at a lower computational cost, making
it a more practical choice for problems with constrained resources. On the other hand, PSO
demonstrates its strength by producing higher-quality solutions when computational cost is less
of a concern. Overall, the greedy algorithm is an effective choice for cost-efficient optimization,
while PSO excels in scenarios where solution quality is prioritized over computational efficiency.
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