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In this investigation, the traditional seismic response problem of tunnels in single-phase and
saturated soil under the incidence of plane waves is extended to the ground motion problem consid-
ering the overlying water. Firstly, the site model of underwater tunnel under plane P -wave incidence
is established. Then, the influence of thermal physical parameters such as incident angle, incident
frequency and porosity on the ground motion of an underwater tunnel is studied using the Fourier–
Bessel series expansion method of the wave function, which provides a reasonable explanation for
the ground motion of an underwater site.
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1. Introduction

As a result of the scarcity of land resources, many cities began to focus on constructing
underground facilities. With the construction of ocean engineering, an increasing number of
scholars have begun to pay attention to the study of the effect of ground motion on underwater
sites. The underwater tunnel is a significant transport terminal-junction. If damaged by the
earthquake, it would inevitably cause significant property damage. The essence of the research
on the impact of the underwater tunnel on ground motion is to examine the diffraction of
the elastic wave, which can simulate the influence of seismic waves on various linear structures.
Accordingly, it is significant to investigate the diffraction of seismic waves by underwater tunnels
and to examine the influence of topographic conditions on ground motion and the ground motion
of underground sites considering local geological structures.
Currently, many scholars have conducted the analysis and research on seismic response prob-

lems and achieved important scientific research results. Pao and Mow pioneered the use of the
wave function expansion method to investigate the DSCF of a hole in the whole space under
seismic wave incidence (Achenbach, 1973). Subsequently, Lee and Karl (1992) extended the
method to half space and investigated the analytical solution of plane wave diffraction through
a cavity. Luco and de Barros (1994) obtained the two-dimensional response of a circular cav-
ity in a viscoelastic half-space under the action of plane P -wave, SH-wave, SV -wave, and the
Rayleigh wave based on the two-dimensional Green’s function and the indirect boundary integral
method. Gomes et al. (2015) investigated the scattering of seismic waves by a circular tunnel in
two layers of linear elastic soil using the finite element method. Liang et al. (2023) investigated
the scattering of plane SH-waves by a circular tunnel in a nonlocal fractional-order viscoelastic
half-space by using the complex variable function method.
However, the contents of the above research are the scattering law in the single-phase foun-

dation, without considering the influence of other factors in soil. In fact, owing to the presence
of groundwater and air, the state of soil is closer to saturated or unsaturated soil. Subsequently,
on the basis of the Biot theory of porous media (Biot et al., 1956a; 1956b), the diffraction of
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elastic waves in saturated soil sites has been extensively investigated. Kattis et al. (2003) used
the boundary integral method to solve the scattering problem of elastic waves by lining and
unlined caverns in a saturated full space. Xu et al. (2019) investigated the diffraction of a plane
wave by a lining tunnel on the basis of the nonlocal Biot theory. Liu et al. (2017) made use of the
indirect boundary element method (IBEM) to investigate the diffraction for the plane P -wave by
a tunnel. Ding et al. (2020) gave the analytical solution of the seismic response of lining tunnels
under P -wave incidence. Ba et al. (2022) used IBEM to investigate the diffraction of a tunnel in
a layered site. Xiang et al. (2024) investigated the seismic response of the water-rich tunnel under
P -wave incidence. Tan et al. (2020) used the wave function expansion method to investigate the
scattering problem of a plane dilatational wave disturbed by a lined tunnel with an imperfect
interface embedded in an infinite unsaturated poro-elastic solid. Yue and Liu (2023) solved the
scattering problem of P - and SV -waves by lining tunnels in unsaturated soil using the method
of complex variable function. Zhao et al. (2024) investigated the scattering of plane P -waves by
unlined and single-layer lined tunnels in unsaturated soils using the Fourier–Bessel expansion
method of wave functions. The diffraction of local topography under plane wave incidence has
been widely investigated (Ma et al., 2023). The above research shows that the diffraction of
local topography in porous elastic media is quite different in single-phase media. Therefore, the
multiphase effect of soil cannot be ignored in the investigation of seismic response.
It can be seen that the diffraction of plane waves by a single-layer soil foundation has been

widely investigated, but there are few investigations on underwater sites. Therefore, it is of engi-
neering significance to research the diffraction of elastic waves by tunnels in underwater saturated
soil sites. On the basis of the Biot theory of saturated porous elastic medium, the diffraction
law for the P -wave around the underwater tunnel is investigated using the Fourier–Bessel series
expansion method of the wave function. Through numerical examples, the effect of incident wave
frequency, angle, porosity and buried depth on the displacement amplitude of dynamic stress
concentration factor at the water-soil interface and tunnel surface in the underwater tunnel is
analyzed.

2. Materials and methods

The underwater tunnel site model is shown in Fig. 1, using the rectangular coordinate system
and cylindrical coordinate. The radius and buried depth for the tunnel are a and d, respectively,
and the thickness of the water layer is h. The soil medium is saturated porous medium.

Fig. 1. Model of circular underwater tunnel site.



Diffraction of plane P -wave by an underwater tunnel 3

The constitutive equation and motion equation for the fluid are as follows:
– the constitutive equation:

−PW = KW∇ ·UW , (2.1)

– motion equation:

KW∇∇ ·UW = ρW ÜW , (2.2)

where PW is the hydrodynamic pressure of water; KW denotes the bulk modulus of water;
ρW denotes the density of water; UW denotes the displacement vector of water.
The displacement vector UW of the water layer can be written as

UW = ∇φW . (2.3)

Equations (2.1) and (2.2) could be expressed by potential functions:

−PW = KW∇2φW , (2.4)

KW∇2φW = ρW φ̈
2
W . (2.5)

The wave velocity and wave number of a compression wave in the water layer could be
written as

cW =
√
KW /ρW , (2.6)

kW = 2πf
√
ρW /KW . (2.7)

For the establishment of the wave equation of saturated soil, referring to the modified Biot
model proposed by Zhou et al. (2013), which ignores the mass coupling coefficient and considers
the compressibility of soil particles and pore fluid, the wave equation of saturated soil is derived
from the basic equation of homogeneous saturated porous media.
The wave equation of saturated soil is

µ∇2us + grad [(µ+ λ+ α2M)θ]− grad (αMζ) = ρüs + ρf üf , (2.8)

grad (αMθ −Mζ) = ρf üs +müf + bu̇f . (2.9)

According to the Helmholtz vector decomposition theorem, the displacement vector in satu-
rated soil could be expressed as

us = ∇φs +∇× ψs, uf = ∇φf +∇× ψf . (2.10)

In saturated soil, there are two kinds of compression wave P -waves and one kind of shear
wave SV -wave. When P -wave is incident, the circular frequency is ω and the incident angle
is θip1. The incident wave could be indicated as

φι
i(x, y) = Aι

ip1 exp [ikip1(x sin θip1 − y cos θip1)− iωt], (2.11)

where kip1 is the wave number of P1-wave, i =
√
−1. exp(iωt) is left out for simplicity, the

aforementioned equations could be expressed as

φι
i(x, y) = Aι

ip1 exp [ikip1(x sin θip1 − y cos θip1)]. (2.12)

P -wave will produce reflected P1-, P2-, and SV -waves at the water-soil interface, and produce
the transmitted P -wave and reflected P -wave in the water. The wave potential functions could
be written as:
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– in saturated soil:

φι
rp1(x, y) = Aι

rp1 exp [ikrp1(x sin θrp1 + y cos θrp1)], (2.13)

φι
rp2(x, y) = Aι

rp2 exp [ikrp2(x sin θrp2 + y cos θrp2)], (2.14)

ψι
rs(x, y) = Bι

rs exp [ikrs(x sin θrs + y cos θrs)], (2.15)

where krp1, krp2, and krs represent the wavenumbers of reflected P1-, P2-, and S-wave,
respectively; θrp1, θrp2, and θrs represent the reflection angles. Aι

rp1, A
ι
rp2, and B

ι
rs rep-

resent the amplitude for the reflected waves in ι phase media and δL1 = Af
rp1/A

s
rp1,

δL2 = Af
rp2/A

s
rp2.

– in the water layer:
a) transmission P -wave:

φw
i (x, y) = Aw

tp exp [ikw(x3 sin θw − y3 cos θw)], (2.16)

b) reflected P -wave:

φw
rp(x, y) = Aw

rp exp [ikrp(x3 sin θw + y3 cos θw)], (2.17)

where Aw
tp and A

w
rp are the amplitude coefficients of the transmitted and the reflected

P -waves, respectively, kw is the wave number of the P -wave in the water, θw is the reflection
angle of the P -wave in the water layer.
For the convenience of analysis, it can be expressed as follows in cylindrical coordinates:

φι
i(r1, θ1) = Aι

ip1 exp (idkip1 cos θip1) exp [−ikip1r1 cos(θ1 + θip1)], (2.18)

φι
rp1(r1, θ1) = Aι

rp1 exp (−idkrp1 cos θrp1) exp [ikrp1r1 cos(θ1 − θrp1)], (2.19)

φι
rp2(r1, θ1) = Aι

rp2 exp (−idkrp2 cos θrp2) exp [ikrp2r1 cos(θ1 − θrp2)], (2.20)

ψι
rs(r1, θ1) = Bι

rs exp (−idkrs cos θrs) exp [ikrsr1 cos(θ1 − θrs)], (2.21)

φw
i (x, y) = Aw

ip exp [ikw(d+ h cos θw] exp [−ikw cos(θ1 + θw)], (2.22)

φw
r (x, y) = Aw

rp exp [-ikw(d+ h cos θw] exp [ikw cos(θ1 − θw)]. (2.23)

The aforementioned equation is expanded into the Fourier–Bessel series form:

φι
i+rp1(r1, θ1) =

∞∑
n=0

Jn(kip1r1)(C01,n cosnθ1 +D01,n sinnθ1), (2.24)

φι
rp2(r1, θ1) =

∞∑
n=0

Jn(krp2r1)(C02,n cosnθ1 +D02,n sinnθ1), (2.25)

φι
rp3(r1, θ1) =

∞∑
n=0

Jn(krp3r1)(C03,n cosnθ1 +D03,n sinnθ1), (2.26)

φw
i+r(r1, θ1) =

∞∑
n=0

Jn(kwr1)(C04,n cosnθ1 +D04,n cosnθ1). (2.27)

There are scattered P1-, P2-, and SV -waves caused by the tunnel in the saturated soil layer,
and scattered P1-, P2-, and SV -waves caused by the large arc approximation. The scattered wave
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field in a half space could be represented by the Fourier–Bessel series. In the r1-θ1 coordinate
system, since the scattered wave fields generated by large arcs satisfy the Sommerfeld condition
at infinity, their potential functions can be written as the Fourier–Bessel series:
– in saturated soil:

φι
dp1(r1, θ1) =

∞∑
n=0

H(1)
n (krp1r1)

(
C

(1)
11,n cosnθ1 +D

(1)
11,n sinnθ1

)
, (2.28)

φι
dp2(r1, θ1) =

∞∑
n=0

H(1)
n (krp2r1)

(
C

(1)
12,n cosnθ1 +D

(1)
12,n sinnθ1

)
, (2.29)

ψι
ds(r1, θ1) =

∞∑
n=0

H(1)
n (krsr1)

(
C

(1)
14,n sinnθ1 +D

(1)
14,n cosnθ1

)
, (2.30)

where Jm ( ) and H(1)
n ( ) are the Bessel functions and the Hankel functions, respectively.

The aforementioned equations are established in the (r1, θ1) coordinate system, it cannot
satisfy the boundary conditions of the water-soil interface and the water layer surface. In this
research, the water-soil interface and the free surface of the water layer are simulated by using
an arc centred on O2 (as shown in Fig. 1). Accordingly, the solution in the research is the
approximate analytical solution. The research proves that: if the radius of the arc R is sufficiently
large (R > 50a), the error of the calculation result is rather small, and the appropriate result
could be obtained.
In the r2-θ2 coordinate system, the potential function of the wave generated by the large arc

boundary is expressed as follows:
– in saturated soil:

φι
ap1(r2, θ2) =

∞∑
m=0

Jm(krp1r2)
(
C

(2)
21,n cosmθ2 +D

(2)
21,n sinmθ2

)
, (2.31)

φι
ap2(r2, θ2) =

∞∑
m=0

Jm(krp2r2)
(
C

(2)
22,n cosmθ2 +D

(2)
22,n sinmθ2

)
, (2.32)

ψι
as(r2, θ2) =

∞∑
m=0

Jm(krsr2)
(
C

(2)
24,n sinmθ2 +D

(2)
24,n cosmθ2

)
, (2.33)

– in the water layer:

φw
a1(r2, θ2) =

∞∑
m=0

Jm(kwr2)
(
C

(2)
31,m cosmθ2 +D

(2)
31,m sinmθ2

)
, (2.34)

φw
a2(r2, θ2) =

∞∑
m=0

Hm(kwr2)
(
C

(2)
32,n cosmθ2 +D

(2)
32,n sinmθ2

)
. (2.35)

The total wave potential function can be expressed as follows:
– in saturated soil:

φι = φι
ip1 + φι

rp1 + φι
rp2 + φι

dp1 + φι
dp2 + φι

ap1 + φι
ap2, (2.36)

ψι = ψι
rs + ψι

ds + ψι
as, (2.37)

– in the water layer:

φw = φw
i + φw

r + φw
a1 + φw

a2. (2.38)
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Before introducing the boundary conditions, it is necessary to use the Graf addition formula
to unify the coordinates for the wave functions:

Cn (kr2)

{
cosnθ2
sinnθ2

}
=

m=+∞∑
m=−∞

Cm+n (kD)Jm (kr1)

{
cosmθ1
sinmθ1

}
, (2.39)

where D is the distance from O1 point to O2 point, as shown in Fig. 1, Cn( ) can be Jn( )

function or H(1)
n ( ) function.

Therefore, the coordinate transformation of Eqs. (2.28)–(2.43) can be obtained:

φι
dp1(r2, θ2) =

∞∑
m=0

Jm(krp1r2)
(
C

(2)
11,n cosmθ2 +D

(2)
11,n sinmθ2

)
, (2.40)

φι
dp2(r2, θ2) =

∞∑
m=0

Jm(krp2r2)
(
C

(2)
12,n cosmθ2 +D

(2)
12,n sinmθ2

)
, (2.41)

ψι
ds(r2, θ2) =

∞∑
m=0

Jm(krsr2)
(
C

(2)
14,n sinmθ2 +D

(2)
14,n cosmθ2

)
, (2.42)

φι
ap1(r1, θ1) =

∞∑
n=0

Jn(krp1r1)
(
C

(1)
21,n cosnθ1 +D

(1)
21,n sinnθ1

)
, (2.43)

φι
ap2(r1, θ1) =

∞∑
n=0

Jn(krp2r1)
(
C

(1)
22,n cosnθ1 +D

(1)
22,n sinnθ1

)
, (2.44)

ψι
as(r1, θ1) =

∞∑
n=0

Jn(krsr1)
(
C

(1)
24,n sinnθ1 +D

(1)
24,n cosnθ1

)
, (2.45)

φw
a1(r1, θ1) =

∞∑
n=0

Jn(kwr1)
(
C

(1)
31,n cosnθ1 +D

(1)
31,n sinnθ1

)
, (2.46)

φw
a2(r1, θ1) =

∞∑
m=0

Jm(kwr1)
(
C

(1)
32,m cosmθ1 +D

(1)
32,m sinmθ1

)
, (2.47)

where
C

(2)
11,m

C
(2)
12,m

D
(2)
13,m

 =
∞∑
n=0

 F2+nm(krp1D)
F2+nm(krp2D)

F2+nm(krsD)



C

(1)
11,n

C
(1)
12,n

D
(1)
13,n

, (2.48)


D

(2)
11,m

D
(2)
12,m

C
(2)
13,m

 =

∞∑
n=0

 F2−nm(krp1D)
F2−nm(krp2D)

F2−nm(krsD)



D

(1)
11,n

D
(1)
12,n

C
(1)
13,n

, (2.49)



C
(1)
21,n

C
(1)
22,n

C
(1)
31,n

C
(1)
32,n

D
(1)
23,n


=

∞∑
n=0


F1+nm(krp1D)

F1+nm(krp2D)
F1+nm(kwD)

F1+nm(kwD)
F1+nm(krsD)





C
(2)
21,m

C
(2)
22,m

C
(1)
31,m

C
(1)
32,m

D
(2)
23,m


,

(2.50)
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D
(1)
21,n

D
(1)
22,n

D
(1)
31,n

D
(1)
32,n

C
(1)
23,n


=

∞∑
n=0


F1−nm(krp1D)

F1−nm(krp2D)
F1−nm(kwD)

F1−nm(kwD)
F1−nm(krsD)





D
(2)
21,m

D
(2)
22,m

D
(1)
31,m

D
(1)
32,m

C
(2)
23,m


,

(2.51)

where

F1±nm(kD) =
1

2
εn[Jn+m(kD)± (−1)mJn−m(kD)],

F2±nm(kD) =
1

2
εm[Hm+n(kD)± (−1)nHm−n(kD)].

This research assumes that the surface and the tunnel surface are permeable boundaries, and
the boundary conditions are as follows:
– on the surface of the water y = 0:

σwrr = 0, (2.52)

– on the tunnel surface r1 = a:

σSrr = 0, σSrθ = 0, σLrr = 0, (2.53)

– at the soil-water interface r2 = R1:

(1− n)uSr + nuLr = uwr , σSrr + σLrr = −σwrr, σLrr = −nσwrr, σSrθ = 0. (2.54)

Bringing Eq. (2.46) and Eq. (2.47) into the boundary condition (2.52):

∞∑
m=0

[
E

w(1)
11 (m,R2) E

w(2)
12 (m,R2)

]{C(2)
31,m

C
(2)
32,m

}
{cosmθ2}

+
∞∑

m=0

[
E

w(1)
21 (m,R2) E

w(2)
22 (m,R2)

]{D(2)
31,m

D
(2)
32,m

}
{sinmθ2} = {0} . (2.55)

Bringing Eq. (2.28)–(2.30) and Eq. (2.43)–(2.53) into the boundary condition (2.53):

∞∑
m=0


U

s(3)
111 (n, a) U

s(3)
112 (n, a) U

s(3)+
113 (n, a)

U
s(3)−
211 (n, a) U

s(3)−
212 (n, a) U

s(3)
213 (n, a)

U
s(3)
311 (n, a) U

s(3)
312 (n, a) 0



C

(1)
11,n

C
(1)
12,n

C
(1)
13,n



cosnθ1
sinnθ1
cosnθ1



+
∞∑

m=0


U

s(1)
111 (n, a) U

s(1)
112 (n, a) U

s(1)+
113 (n, a)

U
s(1)−
211 (n, a) U

s(1)−
212 (n, a) U

s(1)
213 (n, a)

U
s(1)
311 (n, a) U

s(1)
312 (n, a) 0



C

(1)
21,n + C01,n

C
(1)
22,n + C02,n

C
(1)
23,n + C03,n



cosnθ1
sinnθ1
cosnθ1



+

∞∑
m=0


U

s(3)
111 (n, a) U

s(3)
112 (n, a) U

s(3)−
113 (n, a)

U
s(3)+
211 (n, a) U

s(3)+
212 (n, a) U

s(3)
213 (n, a)

U
s(3)
311 (n, a) U

s(3)
312 (n, a) 0



D

(1)
11,n

D
(1)
12,n

D
(1)
13,n



sinnθ1
cosnθ1
sinnθ1



+
∞∑

m=0


U

s(1)
111 (n, a) U

s(1)
112 (n, a) U

s(1)
113 (n, a)

U
s(1)+
211 (n, a) U

s(1)+
212 (n, a) U

s(1)
213 (n, a)

U
s(1)
311 (n, a) U

s(1)
312 (n, a) 0



D

(1)
21,n +D01,n

D
(1)
22,n +D02,n

D
(1)
23,n +D03,n



sinnθ1
cosnθ1
sinnθ1

=


0
0
0

. (2.56)
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Bringing Eqs. (2.31)–(2.33) and Eqs. (2.40)–(2.42) into the boundary condition (2.54):

∞∑
m=0


E

(s1)
111 E

(s1)
112 E

(s1)+
113

E
(s1)
211 E

(s1)
212 E

(s1)+
213

E
(s1)
311 E

(s1)
312 0

E
(s1)+
411 E

(s1)+
412 E

(s1)
413



C

(2)
11,m + C

(2)
21,m

C
(2)
12,m + C

(2)
22,m

C
(2)
13,m + C

(2)
23,m



cosmθ2
cosmθ2
cosmθ2
sinmθ2



+
∞∑

m=0


E

(s1)
111 E

(s1)
112 E

(s1)−
113

E
(s1)
211 E

(s1)
212 E

(s1)−
213

E
(s1)
311 E

(s1)
312 0

E
(s1)−
411 E

(s1)−
412 E

(s1)
413



D

(2)
11,m +D

(2)
21,m

D
(2)
12,m +D

(2)
22,m

D
(2)
13,m +D

(2)
23,m



sinmθ2
sinmθ2
sinmθ2
cosmθ2



+

∞∑
m=0


V

(s1)
111

V
(s1)
211

V
(s1)
311

0


{
C

(2)
31,m

}
cosmθ2
cosmθ2
cosmθ2
sinmθ2

+

∞∑
m=0


V

(s1)
111

V
(s1)
211

V
(s1)
311

0


{
D

(2)
31,m

}
sinmθ2
sinmθ2
sinmθ2
cosmθ2



+
∞∑

m=0


V

(s2)
111

V
(s2)
211

V
(s2)
311

0


{
C

(2)
32,m

}
cosmθ2
cosmθ2
cosmθ2
sinmθ2

+
∞∑

m=0


V

(s2)
111

V
(s2)
211

V
(s2)
311

0


{
D

(2)
32,m

}
sinmθ2
sinmθ2
sinmθ2
cosmθ2

=


0
0
0
0

, (2.57)

where i = 1 and 3, C(i)
n is Jn(x) and H

(1)
n (x).

The coefficients can be obtained by combining Eqs. (2.55), (2.56), and (2.57).

3. Verification

Converting frequency into dimensionless frequency:

η = 2a/λβ. (3.1)

The astringency for the displacement field series could be determined in accordance with the
Cauchy criterion:

e(n; r1, θ1) = |u(n+ 1; r1, θ1)− u(n; r1, θ1)| . (3.2)

You (2005) investigated the diffraction of P -wave by underground tunnels. For the purpose of
validating the result of this research, the underwater tunnel model is degraded to an underground
tunnel model in saturated soil. The detailed parameters are shown in (You, 2005), and compared
to the displacement derived by You using the IBEM. It could be found out from Fig. 2a that
the data is rather consistent, verifying the correctness of the solutions in this research.
In order to further verify the solution of this paper, the underwater tunnel is degraded

into a saturated soil depression terrain, and compared with the surface displacement amplitude
obtained by Ba (2006) using the large arc assumption. It can be seen from Fig. 2b that the two
are in good agreement, which further verifies the correctness of the results in this paper.
If R = 107a it is ample to satisfy the accuracy requirements. The relationship between the

error e and the truncation term number n is computed. Figure 3 shows the relationship from
the x-, y-direction displacement error ex, ey to the n. To satisfy ex < 10−6, in Figs. 3a and 3b,
n satisfies n ≥ 14 and n ≥ 15, respectively. To sum up, the number of astringency terms of the
series is nc = 15.
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Fig. 2. Curve of error: (a) ex (x = 0, y = d); (b) ey (x = 0, y = d); (c) ex (x = ±a, y = 0);
(d) ex (x = ±a, y = 0).

Fig. 3. Curve of comparative verification.

4. Analysis

The parameters (Zhang et al., 2024) chosen in this research are exhibited in Table 1, the
tunnel radius a = 5m.

4.1. Impact of incident frequency on the diffraction of wave

Figure 4 shows the variety curves of the displacement amplitude at the water-soil interface
and the DSCF of the tunnel surface when the incident angle θip1 = 30◦ and the incident wave
frequencies are η = 0.5, 1, 2, respectively. It can be found out from the figure that the complex
degree of the spatial pattern for the displacement increases along the frequency. The reason is
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Table 1. Physical parameters.

Material parameters Magnitude

Porosity n 0.3

Soil particle density ρS [kg/m3] 2650

Liquid density ρL [kg/m3] 1000

Bulk modulus of soil particles Ks [GPa] 36

Bulk modulus of liquid Kf [GPa] 2

Solid skeleton bulk modulus K [MPa] 43.6

Intrinsic permeability of the soil k [m2] 3× 10−13

Viscosity coefficient of solid ηb [Pa · s] 1× 10−3

Permeability coefficient kb [Pa · s] 1× 10−10

Lamé constant λS [MPa] 26.2

Lamé constant µS [MPa] 26.1

Fig. 4. Curves of displacement amplitude and DSCF at water-soil interface changing with frequency:
(a) |ux|; (b) |uy|; (c) DSCF.

that when η is low, the incident wavelength is far above the tunnel radius, and it is insensitive to
small terrain changes. Furthermore, the displacement on the left side changes more complexly
than it does on the right side. The reason for this is the tunnel leading to the production of
scattered waves. The left side of the tunnel reflects the wave. Scattering waves interfere with each
other, causing energy convergence, so that the displacement curve at the water-soil interface
appears as crests and valleys, exhibiting the characteristics of stationary waves (Cao & Lee,
1990; Lee & Cao, 1989; Lee & Karl, 2014). As the frequency increases, the number of crests and
valleys in the figures increases, and the displacement alters more sharply, which shows that the
interference effect of the wave is enhanced. As the frequency increases, the DSCF on the tunnel
surface gradually decreases, and its distribution becomes more complex.

4.2. Impact of incident angle on the diffraction of wave

Figure 5 gives the displacement amplitude at the water-soil interface and the DSCF curve of
the tunnel surface when the incident angle θip1 = 0◦, 30◦, 60◦, and incident frequency η = 1. It
can be seen from the figures that when θip1 = 0◦, the displacement is symmetrical about x = 0.
As the θip1 increases, the displacement on the left side changes more complexly than on the
right one. Moreover, as the incident angle increases, both horizontal and vertical displacements
as well as the peak value of DSCF decrease.

4.3. Impact of porosity on the diffraction of wave

Figure 6 illustrates the displacement and DSCF curves as the incident wave frequency is
η = 1 and the porosity n = 0.1, 0.2, 0.3 gradually increases.
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Fig. 5. Curves of displacement amplitude and DSCF at water-soil interface changing with angle:
(a) |ux|; (b) |uy|; (c) DSCF.

Fig. 6. Curves of displacement amplitude and DSCF at water-soil interface changing with porosity:
(a) |ux|; (b) |uy|; (c) DSCF.

It can be found from the figures that as the porosity increases, the displacement at the
water-soil interface, as well as the DSCF of the tunnel surface decreases.

4.4. Impact of incident frequency on the diffraction of wave

Figure 7 shows the displacement and DSCF curves when the buried depth is d/a = 2, 5, 10
in the case of θip1 = 30◦ and η = 1.

Fig. 7. Curves of displacement amplitude and DSCF at water-soil interface changing with burial depth:
(a) |ux|; (b) |uy|; (c) DSCF.

With the increase of buried depth, the displacement at the water-soil interface decreases.
However, the impact of the buried depth on the peak value of DSCF on the tunnel surface is
not significant, and the DSCF at the top of the tunnel decreases as the buried depth increases.
The DSCF at the bottom of the tunnel increases along with the buried depth.
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5. Conclusion

Based on the Biot theory, the solution for P -wave scattering by underwater tunnel is given
using the Fourier–Bessel series expansion. By numerical examples, the effect of incident angle,
frequency, porosity and buried depth on displacement amplitude and dynamic stress concen-
tration factor at the water-soil interface in the underwater tunnel is examined. The research
indicates that:
1) The frequency has a considerable influence on the displacement at the water-soil inter-
face and DSCF of the tunnel surface. The complex degree of the spatial pattern for the
displacement increases along the incident frequency. The displacement amplitude inside
the tunnel and at the water-soil interface on the left side changes greatly. It is extremely
necessary to consider the impact of the incident wave frequency on the diffraction of the
elastic wave in the underwater tunnel.

2) As the incident angle amplifies, the displacement on the left side changes more complexly
compared to the right side, and the displacement amplitude and the peak value for DSCF
decrease.

3) As the porosity amplifies, the displacement amplitude at the water-soil interface and the
DSCF of the tunnel surface decrease.

4) The displacement amplitude at the water-soil interface decreases with the buried depth
increase. The DSCF at the top of the tunnel decreases as the buried depth increases, and
the DSCF at the bottom side increases with the increase of buried depth.
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