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There are typical friction self-excited vibration phenomena such as stick-slip and flutter in the
working process of a coke pushing device. For the purpose of studying the vibration mechanism,
a mechanical model of friction self-excited vibration of a double-mass-conveyor belt is established
based on the Stribeck friction effect. Mass 1 and mass 2 are used to represent the part entering the
carbonization room and the part outside the carbonization room, and the stability and bifurcation
characteristics of the two masses are studied. The results show that the critical instability velocity
and bifurcation velocity of the two masses are the same. Then the linear and nonlinear state feedback
controller is designed to control the velocity bifurcation points and limit cycles of the coke pushing
system. The numerical simulation results show that the appropriate selection of linear gain can
reduce the bifurcation velocity and ensure the stability of the system at low velocity, and the
appropriate selection of nonlinear gain can reduce the amplitude of the limit cycle and reduce
the intensity of self-excited vibration of the coke pushing device.
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1. Introduction

The mechanical device studied in this paper is a kind of coke pushing device, its function
is to push coke out of the carbonization chamber (Chen et al., 2019; 2020). In the process of
pushing red coke out of the carbonization chamber, the coke pushing rod entering the car-
bonization chamber contacts the ground through the sliding shoe to form sliding friction. In the
process of pushing coke, there is strong and complicated friction between the sliding shoe and
the carbonizing chamber floor. Through the monitoring of the production process, we can see
that there is an obvious flutter phenomenon when pushing the coke. Moreover, the vibration
exhibits typical friction-induced vibration. Usually, the unwanted vibrations will cause wear of
the contacting parts, surface damage, fatigue damage and noise, and it also will have a great
impact on working performance, operation reliability, and service life of the coke pushing device.
We often find friction-induced vibrations in mechanical systems and in daily life, such as

squeaky windshield wipers, the sound of certain arcuate instruments, the flutter of machine
tools, the brake noise of automobile and stick-slip vibration of drill pipe (Kinkaid et al., 2003).
In the field of engineering, many scholars and engineers have conducted in-depth research on
automobile braking noise. Of course, many published papers have also investigated various dy-
namic behaviours of friction-excited systems. Popp et al. (1995) investigated discrete and contin-
uous models including stick-slip motion and bifurcation and demonstrated chaotic phenomena.
Elmaian et al. (2014) described three modes of motion, stick, slip and separation in a three-
degree-of-freedom (3-DOF) model incorporating friction-induced vibration. Zhang et al. (2018)
introduced a flexible pin-on-disc system to reveal the process of generating noise in friction con-
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tact, and researched the periodic friction coefficient effect on the features of time-varying squeal.
Kruse et al. (2015) studied the influence of joints on the dynamic characteristics of a friction-
induced flutter system. Brunetti et al. (2016) established a periodic modular lumped model to
study its dynamic properties. Pilipchuk et al. (2015) studied the non-stationary mechanism of
a 2-DOF braking model in the vibration caused by friction. The results show that the responses
of the system change qualitatively as the velocity of the belt decreases. Wei et al. (2019) sim-
ulated a brake system with a 3-DOF mechanical model, and indicated bifurcation and chaotic
phenomena. Denimal et al. (2020) proposed a new method to determine the degree of influ-
ence of unstable modes in a nonlinear self-excited vibration response, and which is also used
to estimate the limit cycle. Lima and Sampaio (2020) analyzed a multi-physical system with
stick-slip oscillation in the interaction of mechanical subsystem and electromagnetic subsystem.
Papangelo et al. (2018) found that there were several local vibration states in the weakly coupled
friction-excited oscillator chain. Von Wagner et al. (2007) analyzed the stability characteristics
of the oscillating disc brake model. Sui and Ding (2018) studied the instability of the pad in the
motion interaction of the disc and carried out the random analysis. Li et al. (2018) and Wang
et al. (2020) verified experimentally the low degree of freedom models simulated numerically,
and the friction-induced vibration of the system on the real test bench. Liu and Ouyang (2020)
investigated the friction-induced vibration of a new model consisting of 5-DOF mass oscillat-
ing band including various nonlinearities. Without doubt, 1-DOF mechanical models containing
mass blocks and constant velocity belts have been widely used to study vibration mechanism
caused by friction (Wang et al., 2022). A great deal of research has also been done on the sources
of nonlinearity in friction-induced vibration problems, such as the nonlinearity of the contact
stiffness, non-smooth characteristics such as stick-slip and contact/separation. However, there
is a lack of comprehensive analysis of the effects of various nonlinearities on friction-induced
self-excited vibration.
After in-depth research, three main mechanisms by which friction drives oscillations have

been proposed. One of the main mechanisms is the Stribeck effect which is characterized by ve-
locity weakening characteristics. In contrast, two other widely investigated mechanisms are called
model-coupling and sprag-slip instability. We already know that friction-induced vibration is un-
acceptable in many systems. And rich dynamic behaviours often appear in friction-induced vibra-
tion. Saha et al. (2016) experimentally studied a test device representing a friction-induced sys-
tem with 1-DOF and showed the properties of bifurcations related to friction instability of the
system. Veraszto and Stepan (2017) investigated stability and bifurcation behaviours in digi-
tal and Saha et al. (2016) mentioned a continuous systems on the basis of 1-DOF nonlinear
mechanical model. It is also necessary to effectively control the dynamic behaviours caused by
friction vibration. In recent years, there have been many papers on how to control the friction-
induced vibration. Nonlinear state feedback control is one of the control methods, which can
realize the precise control of the system by feeding the state of the system back to the controller.
When controlling a frictional self-excited vibration system, the output of the nonlinear state
feedback controller is a nonlinear function of the system state, which can be designed according
to the characteristics and control objectives of the system. By selecting suitable nonlinear func-
tions, the system can maintain good control performance under various working conditions, and
has strong robustness to the change of system parameters and external interference. Different
active and passive vibration control methods were proposed in literature. Adaptive control is
a widely used method in the control system, which can realize the stability control of the system
when the system parameters are unstable or uncertain. The basic principle of adaptive control
is to realize the stability control of the system by estimating the uncertain parameters online
and adjusting the control coefficient in time. This involves establishing the mathematical model
of the system, using the parameter estimation and control algorithm to realize real-time adjust-
ment of the dynamic characteristics of the system. Of course, the technical challenges of adaptive
control include model stability and robustness, real-time performance, and accuracy of param-
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eter estimation. Robust control is also a frequently used control method that aims to design
a control system that can maintain stability and performance in the face of model uncertainties,
external perturbations, and parameter changes. H∞ control theory is one of the most commonly
used methods in robust control. The controller is designed by optimizing the H∞ norm of the
control system, which represents the maximum gain of the system from input to output and is
used to measure the system’s ability to suppress disturbances. Robust control is an important
branch of the modern control theory, which is very important to solve the uncertainty problem
in complex systems. By understanding and applying the robust control theory, the performance
and reliability of the system in the face of uncertainty can be improved. The linear and nonlinear
state feedback is a combination of linear and nonlinear state feedback control. The theory of
linear state feedback control is mature, easy to implement, and very effective for linear systems
and linear parts of nonlinear systems. Nonlinear state feedback control is suitable for nonlinear
systems and can provide better control performance and robustness.
However, few scholars have studied the bifurcation characteristics of the pushing coke and

how to control the vibration of this device. Therefore in this paper, a 2-DOF mass-on-conveyor
belt model including friction-induced vibration is proposed, and the bifurcation characteristics
and control methods of pushing coke are studied. The dual-mass conveyor system is also very
widely used in practical applications, such as the security conveyor of airport railway stations,
the conveyor belt of beverage production companies to transmit beverage bottles, and the carton
production transmission belt. In the field of industry and agriculture, there is also the improve-
ment of the dual-mass conveyor model to transport the whole bag of cement, the whole bag of
rice, the whole packing box, and other items from a low place to a certain height according to
the inclination angle. Without doubt, studying the friction-induced vibration of pushing coke
has good theoretical and engineering value for manufacturers.
The organizational structure of the paper is arranged as follows. In Section 2, a dynamic

model of friction self-excited vibration of a double-mass-conveyor belt is established accord-
ing to the working characteristics of pushing coke. In Section 3, the stability and bifurcation
characteristics of the coke pushing system are analyzed by the theoretical calculation and nu-
merical simulation. Then the linear and nonlinear state feedback controller is put forward to
control the bifurcation behavior of the system in Section 4. The linear gain is used to control
the change of the bifurcation velocity point, and the nonlinear gain is used to control the size
of the limit cycle of the coke pushing system. The research conclusions of this paper are drawn
in Section 5.

2. Establishment of mechanical model of coke pushing system

The device of pushing coke is a specific actuator to push the red coke out of the carbonization
chamber. Its main structure includes a coke pushing ram, a rack and pinion transmission mech-
anism, a sliding shoe, a coke pushing head and several supporting rollers. The specific structure
of the device of pushing coke is shown in Fig. 1. The device is a large mechanical equipment,
in which the length of the pushing ram is nearly 30 meters and the weight is about 40 tons.
Due to high temperature and closed coke pushing environment, it is very difficult to carry out
experimental researches on such a large equipment.
The establishment of the mechanical model of the system can well reveal the dynamic char-

acteristics of the coke pushing device in theory, which is helpful to further study the self-excited
vibration of the device and provide theoretical support for engineering application. In order
to study the complex dynamic phenomena during the operation of the coke pushing device,
considering the fact that the ram of pushing coke is partly in the carbonization chamber and
partly in the carbonization outdoor during the operation of pushing coke, based on the Stribeck
friction effect (Thomsen & Fidlin, 2003), the double mass-conveyor belt friction self-excited
vibration model is established in Fig. 2.
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Fig. 1. Main structure of coke pushing device.

Fig. 2. Mechanical model of coke pushing friction self-excited vibration system.

The conveyor belt moves continuously and unidirectionally with velocity v0, the part of the
coke pushing ram entering the carbonization chamber is represented by mass m1, while the part
of the coke pushing ram outside the carbonization chamber is represented by mass m2. The pos-
itive pressures of m1 and m2 applied on the conveyor belt are N1 and N2, respectively. The
friction forces generated by positive pressures are F1 and F2, respectively. The displacement of
m1 and m2 driven by friction is x1 and x2, respectively, and where ki (i = 1, ..., 5) is the stiffness
coefficient, c1 and c2 represent the damping coefficients of the system. The differential equation
of coke pushing system is

F1 = m1ẍ1 + c1(ẋ1 − ẋ2) + k3(x1 − x2) + k2x1 cos
2 α2 − k1x2 cos

2 α1,

F2 = m2ẍ2 + c2ẋ2 + k4x2 − c1(ẋ1 − ẋ2)− k3(x1 − x2).
(2.1)

In Eq. (2.1), friction F1 and F2 are calculated using the Stribeck friction model (Thomsen
& Fidlin, 2003), and the expression is

Fi = µ(υr)Ni,

µ(υr) = −µs sgn (υr) +
3(µs − µm)

2υm
υr −

(µs − µm)

2υ3m
υ3r ,

υr = ẋi − υ0, i = 1, 2,

(2.2)

where vr is the relative sliding velocity between the mass and the conveyor belt, µs is the
coefficient of static friction, µm is the coefficient of dynamic friction, vm represents the running
velocity of the system corresponding to the minimum coefficient of dynamic friction, Ni is the
positive pressure originates in the mass and the conveyor belt, and µ represents the friction
coefficient of the Stribeck model.
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Let ω =
√

k4/m2, L = N2/k3, the following dimensionless variables are obtained:

τ = ωt, X1 = x1k3/N2, X2 = x2k3/N2,

ξ1 = m1ω
2/k3, ξ2 = m2ω

2/k3, a1 = c1ω/k3,

a2 = c2ω/k3, β = N1/N2, β1 = k4/k3,

β2 = k1 cos
2 α1/k3, β3 = k2 cos

2 α2/k3, V0 = υ0/ωL,

Ẋ1 = dX1/dτ , Ẋ2 = dX2/dτ ,

(2.3)

where τ means the dimensionless time, X1 means the dimensionless displacement of mass m1,
and Ẋ1 means the dimensionless velocity of mass m1. X2 means the dimensionless displacement
of mass m2, and Ẋ2 means the dimensionless velocity of mass m2. By introducing the afore-
mentioned dimensionless variables, the dimensionless motion equation of the system is obtained:

βµ1 = ξ1Ẍ1 + a1(Ẋ1 − Ẋ2) + (1− β2 + β3)X1 −X2,

µ2 = ξ2Ẍ2 + a2Ẋ2 − a1(Ẋ1 − Ẋ2)−X1 + (1 + β1)X2.
(2.4)

Among which,

µi = −µs sgn(Ẋi − V0) +
3(µs − µm)

2υm
(Ẋi − V0)−

(µs − µm)

2υ3m
(Ẋi − V0)

3, i = 1, 2. (2.5)

Based on the simplification method in ordinary differential equations, the normal high-order
differential equations can be simplified into equivalent first-order differential equations to analyze
and calculate more conveniently. Let: X1 = Y1, Ẋ1 = Y2, X2 = Y3, Ẋ2 = Y4, we can get the first
order differential equations:

Ẏ1 = Y2, Ẏ2 =
−a1(Y2 − Y4)− (1− β2 + β3)Y1 + Y3 + βµ1

ξ1
,

Ẏ3 = Y4, Ẏ4 =
−a2Y4 + a1(Y2 − Y4) + Y1 − (1 + β1)Y3 + µ2

ξ2
.

(2.6)

3. Analysis of bifurcation behaviors of the coke pushing system

When the velocity of the transmission belt in the system reaches a certain value, the mass will
meet the static equilibrium state under the interaction of friction and restoring force. At the
moment, the system satisfies X ′

1 = 0, X ′
2 = 0, and the sign function of the friction coefficient of

the Stribeck model in Eq. (2.2) is sgn(υr) = −1. According to the actual data obtained from the
production of the enterprise and the actual test of the coke pushing operation site, the coefficient
of static friction, the coefficient of dynamic friction, and the running velocity of the system under
condition of the minimum dynamic friction coefficient are, respectively, set as µs = 0.8, µm = 0.6,
υm = 0.45.
Based on the Lyapunov stability theory, the equilibrium point stability of the coke pushing

system is analyzed. When Y2 = 0, Y4 = 0, the equilibrium point of the system can be obtained
from Eq. (2.6):

Y10 =
−β(1 + β1)µ1 − µ2

−(1 + β1)(1− β2 + β3) + 1
, Y20 = 0,

Y30 = (1− β2 + β3)
−β(1 + β1)µ1 − µ2

−(1 + β1)(1− β2 + β3) + 1
− βµ1, Y40 = 0.

(3.1)
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By moving the system’s equilibrium point to the zero point, the equations can be obtained:

Y1 = Ŷ1 + Y10, Y2 = Ŷ2, Y3 = Ŷ3 + Y30, Y4 = Ŷ4. (3.2)

The disturbance equation of the original system is

˙̂
Y 1 = Ŷ2,

˙̂
Y 2 =

−a1(Y2 − Y4)− (1− β2 + β3)Ŷ1 + Ŷ3 + βµ1

ξ1
,

˙̂
Y 3 = Ŷ4,

˙̂
Y 4 =

−a2Y4 + a1(Y2 − Y4) + Ŷ1 − (1 + β1)Ŷ3 + µ2

ξ2
.

(3.3)

In which,

µ1 = −µs sgn (Y2 − V0) +
3(µs − µm)

2υm
(Y2 − V0)−

(µs − µm)

2υ3m
(Y2 − V0)

3,

µ2 = −µs sgn (Y4 − V0) +
3(µs − µm)

2υm
(Y4 − V0)−

(µs − µm)

2υ3m
(Y4 − V0)

3.

(3.4)

By the Taylor series expansion on the right side of Eq. (3.3) and omitting the second and
above terms, we can get the first-order approximate equations of the coke pushing system. When
Ŷ1 = 0, Ŷ2 = 0, Ŷ3 = 0, Ŷ4 = 0, the Jacobian matrix of the first-order differential equations of
the coke pushing system relative to the variables Ŷ1, Ŷ2, Ŷ3, Ŷ4 can be obtained from Eq. (3.3)
as follows:

A =



0 1 0 0

a21 a22
1

ξ1

a1
ξ1

0 0 0 1

1

ξ2

a1
ξ2

a43 a44


. (3.5)

In which,

a21 =
β2 − β3 − 1

ξ1
, a22 =

−a1 + 0.67− 3.3V 2
0

ξ1
,

a43 = −1 + β1
ξ2

, a44 =
−a1 − a2 + 0.67− 3.3V 2

0

ξ2
.

(3.6)

The system’s dimensionless parameters are set to: ξ1 = ξ2 = 0.1, a1 = a2 = 0.01, β = 1,
β1 = 1.5, β2 = β3 = 0.01. Substituting the above parameters into Eq. (3.5), the corresponding
characteristic equation of matrix A is

|λE−A| = λ4 + (66V 2
0 − 13.1)λ3 + (1089V 4

0 − 432.3V 2
0 + 77.89)λ2

+ (1155V 2
0 − 232)λ+ 150 = 0. (3.7)

The system’s critical instability velocity Vc = 0.45 can be obtained by solving the formula
66V 2

0 − 13.1 = 0 using the Routh criterion. When the coke driving velocity is higher than this
value, the pushing device operates stably. When the coke driving velocity is lower than this value,
the pushing device operates unstably and is more prone to self-excited vibration.
In the purpose of verifying the correctness of the theoretical calculation results, the estab-

lished friction self-excited vibration system is numerically simulated at different driving veloc-
ities. The velocity values are 0.425, 0.435, 0.45, and 0.465, respectively. The simulated phase
diagrams and the corresponding displacement curves are shown in Figs. 3 and 4.
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Fig. 3. Simulation phase diagrams and displacement curve diagrams of mass 1 under different driving
velocities: (a) V0 = 0.425; (b) V0 = 0.435; (c) V0 = 0.45; (d) V0 = 0.465.
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Fig. 4. Simulation phase diagrams and displacement curve diagrams of mass 2 under different driving
velocities: (a) V0 = 0.425; (b) V0 = 0.435; (c) V0 = 0.45; (d) V0 = 0.465.
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We can see from Fig. 3 and Fig. 4 that when the operating velocity of the device is lower
than 0.45, the amplitude of the limit cycle is relatively large, and the equilibrium point of the coke
pushing system is in an unstable state. When the operating velocity of the device exceeds 0.45,
the amplitude of the limit cycle decreases rapidly, and the equilibrium point of the coke pushing
system is in a stable state. It can be seen that in the process of increasing the velocity of the sys-
tem, the equilibrium point changes from unstable to stable. From the stability analysis of the
system, it can be seen that when the driving velocity is 0.45, the Hopf bifurcation phenomenon
begins to appear in the system. In order to intuitively show the Hopf bifurcation type of the
coke pushing system, the system’s bifurcation diagram with the change of the driving velocity
is obtained by numerical calculations.
Of course, there are also factors such as friction, damping, or system inertia that can have

an impact on bifurcation points and stability. When considering bifurcation cases, such as the
transition of a system from rest to motion. The bifurcation point appears when the static friction
force is just overcome, and the bifurcation point will change accordingly when the friction factor
changes. In the process of motion, friction acts as damping. If the friction factor is large, the
stability of the system will be enhanced. As the damping increases, the dynamic behavior of
the system changes. The bifurcation point occurs at the transition from undamped periodic
motion to damped decayed motion. When the damping exceeds a certain critical value, the
properties of the equilibrium point of the system will change and bifurcation will occur. In
the case of a two-mass-spring-damping system, the natural frequency of the system changes when
one of the masses is changed. The bifurcation point is related to the natural frequency of the
system, and the change of mass will lead to the change of the modal characteristics of the system.
The amount of inertia (mass) affects how quickly the system responds to external forces. The
greater inertia makes the system more difficult to accelerate or slow down. From a stability point
of view, systems with high inertia may be less likely to quickly deviate from their equilibrium
state when subjected to external disturbances. In general, changes in the parameters of friction,
damping and inertia of the system have complex effects on the bifurcation point and stability.
They interact with each other, and in different physical systems, the specific manifestation and
degree of these effects will vary depending on the specific structure and dynamics of the system.
In engineering and physics research, the effects of these parameters on system performance need
to be carefully analyzed in order to optimize the system design and control.
The coke pushing device studied in this paper is a practical device, which has been installed

and calculated in advance. In actual use, according to the different production stages of the coke
pushing device starting from the empty stroke to the coke pushing operation process, the most
significant change in system parameters is the operating velocity of the coke pushing device.
According to the field observation, it is found that when the coke pushing device starts to push
coke, the running velocity of the device will decrease rapidly, resulting in a strong vibration
phenomenon, so this paper chooses the sensitive parameter of coke pushing velocity as the
bifurcation parameter according to the actual working condition. The controller design is also
mainly to solve the vibration control problem caused by the velocity change.
The system’s simulation parameters are set as follows: µs = 0.8, µm = 0.6, υm = 0.45,

ξ1 = ξ2 = 0.1, a1 = a2 = 0.01, β = 1, β1 = 1.5, β2 = β3 = 0.01. The bifurcation diagrams of the
system with respect to the driving velocity are shown in Fig. 5.
It can be found from the bifurcation diagrams that when the velocity is less than 0.45, the

system’s equilibrium point is in an unstable state, and the motion form is quasi-periodic motion.
When the velocity is greater than 0.45, the system’s equilibrium point is in a stable state, and
each bifurcation diagram appears as a single-valued curve. This indicates that the equilibrium
point of the coke pushing system will gradually transit from an unstable to a stable state as the
system’s velocity increases. When the driving velocity increases to 0.45, the system begins to
exhibit the supercritical Hopf bifurcation. Therefore, in the purpose of improving the stability
of the coke pushing device and reduce the intensity of the friction self-excited vibration of the
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Fig. 5. System’s bifurcation diagrams along with the driving velocity: (a) bifurcation diagram of mass 1
with respect to the driving velocity; (b) bifurcation diagram of mass 2 with respect to the driving velocity.

device, a linear and nonlinear state feedback controller is introduced at the critical bifurcation
velocity of 0.45 to control the coke pushing system.

4. Research on the bifurcation control of coke pushing system

4.1. Research on linear state feedback control

Let µs = 0.8, µm = 0.6, υm = 0.45, ξ1 = ξ2 = 0.1, a1 = a2 = 0.01, β = 1, β1 = 1.5,
β2 = β3 = 0.01. Applying the linear feedback control to the coke pushing system (Eq. (2.6)), it
can be obtained that:

Ẏ1 = Y2, Ẏ2 = −0.1(Y2 − Y4)− 10Y1 + 10Y3 + 10µ1 + k1Y2,

Ẏ3 = Y4, Ẏ4 = −0.2Y4 + 0.1Y2 + 10Y1 − 25Y3 + 10µ2.
(4.1)

Here, µ1 = 0.8 + 0.67(Y2 − V0) − 1.1(Y2 − V0)
3, µ2 = 0.8 + 0.67(Y4 − V0) − 1.1(Y4 − V0)

3,
k1 is the linear gain of the designed controller, k1 ̸= 0, the introduction of the linear part of the
controller does not change the equilibrium point of the original system. When the friction force
takes only the linear part, the expressions of friction coefficients are, respectively, simplified as:
µ1 = 0.67(Y2 − V0) − 3.3V 2

0 Y2, µ2 = 0.67(Y4 − V0) − 3.3V 2
0 Y4. When V0 is 0.45, the Jacobian

matrix of the linear part of system (Eq. (4.1)) at the equilibrium point is

A =


0 1 0 0

−10 k1 − 0.0825 10 0.1
0 0 0 1
10 0.1 −25 −0.1825

. (4.2)

The characteristic equation of matrix A is

λ4 + (0.265− k1)λ
3 + (35.005− 0.1825k1)λ

2 + (1.8875− 25k1)λ+ 150 = 0. (4.3)

In order to satisfy the Routh–Hurwitz stability criterion and ensure that the roots of the
characteristic Eq. (4.3) all have negative real parts, then

0.265− k1 > 0, 35.005− 0.1825k1 > 0, 1.8875− 25k1 > 0,

(0.265− k1)(35.005− 0.1825k1)− (1.8875− 25k1) > 0,

(0.265− k1)(35.005− 0.1825k1)(1.8875− 25k1)− (1.8875− 25k1)
2 − 150(0.265− k1)

2 > 0,

(4.4)
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that is

k1 < 0.265, k1 < 191.808, k1 < 0.0755,

k1 < 0.745 or k1 > 54.342,

k1 < 0.028 or 1.267 < k1 < 20.99.

(4.5)

In summary, k1 ∈ (−∞, 0) ∪ (0, 0.028).
To verify the correctness of the theoretical calculation, V0 is set to 0.45 and the other pa-

rameters remain unchanged. The k1 is set to −0.1, −0.5, −0.8, respectively, and the system
(Eq. (4.1)) is simulated and analyzed. The phase diagrams and time-domain displacement wave-
form diagrams are shown in Figs. 6 and 7.

Fig. 6. Phase diagrams and the corresponding displacement curves of mass 1 when the linear gain k1
takes different values: (a) k1 = −0.1; (b) k1 = −0.5; (c) k1 = −0.8.
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Fig. 7. Phase diagrams and the corresponding displacement curves of the mass 2 when the linear gain k1
takes different values: (a) k1 = −0.1; (b) k1 = −0.5; (c) k1 = −0.8.

From the simulation results of Fig. 6 and Fig. 7, it can be clearly seen that when the linear
gain k1 takes −0.1, −0.5, −0.8, compared with the phase diagrams and displacement curve
diagrams without control (Figs. 3c and 4c), the limit cycle disappears and the system stabilizes
to the equilibrium point after the control is applied. It can be seen that when the appropriate
parameter k1 is selected, the Hopf bifurcation phenomenon can be eliminated near the original
bifurcation point, the Hopf bifurcation point is changed, the supercritical Hopf bifurcation occurs
in advance, and the motion stability of pushing coke is improved. Meanwhile, the simulation
results from Fig. 3 to Fig. 7 show that the bifurcation points of the critical velocity of mass 1
and mass 2 are the same, and the change trends of the motion affected by the velocity are the
same, and the motions are also carried out according to the similar trend after being controlled,
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which indicates that after controlling mass 1, mass 2 can be affected synchronously with mass 1.
Limited in space, we only study the influence of the controller on mass 1.
For the purpose of studying the influence of different values of k1 on the Hopf bifurcation

point, the values of other parameters remain unchanged, V0 is set to 0.44 and 0.43, k1 is set
to −0.1, −0.8, −1.4, respectively, and the system (Eq. (4.1)) is simulated and analyzed. The
phase diagrams and time-domain displacement waveform diagrams are shown in Figs. 8 and 9,
respectively.

Fig. 8. Phase diagrams and corresponding displacement curves of mass 1 when V0 is 0.44
and linear gain k1 is different: (a) k1 = −0.1; (b) k1 = −0.8; (c) k1 = −1.4.

Through the analysis of the simulation results in Fig. 8a, we can intuitively find that when V0

is 0.44 and k1 is −0.1, the Hopf bifurcation behavior of the system is not eliminated. Compared
with Fig. 6a, it can be seen that when k1 is −0.1, the bifurcation velocity of the coke pushing
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Fig. 9. Phase diagrams and corresponding displacement curves of mass 1 when V0 is 0.43
and linear gain k1 is different: (a) k1 = −0.1; (b) k1 = −0.8; (c) k1 = −1.4.

system can be advanced from 0.45 to 0.44. As the value of k1 continues to decrease, the system
gradually stabilizes to the equilibrium point, and the Hopf bifurcation behavior of the system dis-
appears. Comparing Fig. 8b and 8c with Fig. 9b and 9c, we can find that when k1 is −0.8, −1.4,
the bifurcation velocity of the coke pushing system can be advanced from 0.45 to 0.43. The
simulation analysis results in Fig. 9 show that with the decrease of k1, the control effect on the
coke pushing system is more and more significant, but the bifurcation behavior of the system is
not eliminated. This shows that to a certain extent, selecting a smaller k1 value is conducive to
reducing the critical bifurcation velocity of the coke pushing system, and then to achieve the sta-
ble operation of the coke pushing device at a lower operating velocity and reduce the possibility
of self-excited vibration.
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4.2. Research on nonlinear state feedback control

The linear part of the controller can control the change of the bifurcation point of the
system, thus, the motion state of the system can be well improved. However, the linear part of
the controller has no effective control effect on the limit cycle. Cui et al. (2012) show that the
design of a suitable nonlinear state controller can effectively reduce the amplitude of the limit
cycle, so as to control the amplitude of the periodic solution generated by the bifurcation. In
view of this, this section studies the influence of nonlinear state feedback control on the vibration
amplitude of the self-excited vibration system.
Let µs = 0.8, µm = 0.6, υm = 0.45, ξ1 = ξ2 = 0.1, a1 = a2 = 0.01, β = 1, β1 = 1.5,

β2 = β3 = 0.01. By applying nonlinear feedback control to the coke pushing system (Eq. (2.6)),
we can obtain:

Ẏ1 = Y2, Ẏ2 = −0.1(Y2 − Y4)− 10Y1 + 10Y3 + 10µ1 + k2Y
3
2 ,

Ẏ3 = Y4, Ẏ4 = −0.2Y4 + 0.1Y2 + 10Y1 − 25Y3 + 10µ2.
(4.6)

Here, µ1 = 0.8 + 0.67(Y2 − V0) − 1.1(Y2 − V0)
3, µ2 = 0.8 + 0.67(Y4 − V0) − 1.1(Y4 − V0)

3, k2 is
the nonlinear gain of the designed controller, k2 ̸= 0, and the introduction of the nonlinear
part of the controller does not change the equilibrium point of the original system. When the
friction force is only a linear part, the friction coefficient expressions are simplified as: µ1 =
0.67(Y2 − V0)− 3.3V 2

0 Y2, µ2 = 0.67(Y4 − V0)− 3.3V 2
0 Y4. Then system (Eq. (4.6)) can be written

as follows:

Ẏ = BY +CQ. (4.7)

When V0 is 0.45, the expressions of matrices B, Y, C, and Q are

B =


0 1 0 0

−10 −0.0825 10 0.1
0 0 0 1
10 0.1 −25 −0.1825

, (4.8)

Y = [ Y1 Y2 Y3 Y4 ]T, (4.9)

C = [ 0 1 0 0 ]T, (4.10)

Q = [k2Y
3
2 ]. (4.11)

The characteristic equation corresponding to the matrix B is

λ4 + 0.265λ3 + 35.0051λ2 + 1.8875λ+ 150 = 0. (4.12)

According to Eq. (4.12), the characteristic roots of the system are λ1 = −0.0112 + 2.2361i,
λ2 = −0.0112−2.2361i, λ3 = −0.1213+5.4758i, λ4 = −0.1213−5.4758i. The eigenvector matrix
corresponding to the characteristic roots is

D = [ v1 v2 v3 v4 ]

=


−0.0018− 0.3651i −0.0018 + 0.3651i 0.0009 + 0.0803i 0.0009− 0.0803i

0.8165 0.8165 −0.4400− 0.0048i −0.4400 + 0.0048i

−0.0001− 0.1826i −0.0001 + 0.1826i −0.0036− 0.1606i −0.0036 + 0.1606i

0.4083 + 0.0018i 0.4083− 0.0018i 0.8798 0.8798

.
(4.13)
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Let Y = TU, where the matrices T and U are

T = [Re v3,−Im v3,Re v1,−Im v1] =


0.0009 −0.0803 −0.0018 0.3651

−0.44 0.0048 0.8165 0

−0.0036 0.1606 −0.0001 0.1826

0.8798 0 0.4083 −0.0018

, (4.14)

U = [ U1 U2 U3 U4 ]T. (4.15)

Then the system (Eq. (4.7)) can be reduced to the following form:

U̇1 = −0.1201U1 − 5.4756U2 +G1(U1, U2, U3, U4, k2),

U̇2 = 5.4760U1 − 0.1224U2 +G2(U1, U2, U3, U4, k2),

U̇3 = −0.0115U3 − 2.2359U4 +G3(U1, U2, U3, U4, k2),

U̇4 = 2.2363U3 − 0.0110U4 +G4(U1, U2, U3, U4, k2),

(4.16)

where G1, G2, G3, G4 are expressed as

G1(U1, U2, U3, U4, k2) = −0.4547k2(−0.44U1 + 0.0048U2 + 0.8165U3)
3,

G2(U1, U2, U3, U4, k2) = −0.0131k2(−0.44U1 + 0.0048U2 + 0.8165U3)
3,

G3(U1, U2, U3, U4, k2) = 0.9798k2(−0.44U1 + 0.0048U2 + 0.8165U3)
3,

G4(U1, U2, U3, U4, k2) = 0.0031k2(−0.44U1 + 0.0048U2 + 0.8165U3)
3.

(4.17)

The stability index σ2 of the Hopf bifurcation in Eq. (4.18) can be calculated by substituting
Eq. (4.17) into Appendix or the formulas in (Liu & Tang, 2008) and (Hassard, 1981):

σ2 = 2Re

{
g20g11 − 2 |g11|2 − 1

3 |g02|
2

2ω0
i+

g21
2

}
= Re {k2(0.0012i+ 0.029)} = 0.029k2. (4.18)

When k2 < 0, σ2 < 0, the Hopf bifurcation stability of the coke pushing system can be guar-
anteed. Next, the numerical calculation method is used to study the influence of the change of
the nonlinear gain k2 on the size of the limit cycle. The purpose is to determine a reasonable
parameter range to improve the working condition of the coke pushing system, so as to reduce
the self-excited vibration phenomenon of the pushing coke process.
For research on the influence of k2 on the motion state of the coke pushing device at different

velocities, the V0 is set as 0.44, 0.43, 0.42, and the k2 is set as −1, −10, and −20, respectively,
for simulation analysis. The phase diagrams and displacement curves of the system are shown
in Figs. 10–12.
From Figs. 10–12, it can be seen that the nonlinear gain k2 can effectively control the limit

cycle amplitude of the system. From the phase diagrams, it is found that with the continuous
decrease of the nonlinear gain k2, the overall trend of the limit cycle amplitude of the coke pushing
system is gradually reduced. From the displacement curves, it is found that the displacement
fluctuation amplitude is also gradually reduced, indicating that the control effect is more obvious
during the decrease of the nonlinear gain k2. Comparing with Fig. 10, Fig. 11, and Fig. 12, we
can also see that when the nonlinear gain k2 takes the same value, the closer the driving velocity
is to the bifurcation velocity 0.45, the more significant the nonlinear gain control effect is.
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Fig. 10. Phase diagrams and the corresponding displacement curves when V0 is 0.44
and nonlinear gain k2 is set as different values: (a) k2 = −1; (b) k2 = −10; (c) k2 = −20.

Therefore, the reasonable selection of nonlinear gain can effectively reduce the amplitude of the
limit cycle, and then reduce the self-excited vibration of the pushing coke process.
To characterize the effect of simultaneous control of linear and nonlinear parts of the con-

troller proposed in this article, the linear gain k1 is taken as −0.8, and the nonlinear gain k2 is
taken as −10. Then the motion behaviour of the coke pushing device under different running
velocities is controlled. For an intuitive comparison with Figs. 3a to 3c, the driving velocity
V0 of the system is set to 0.425, 0.435, and 0.45, respectively, on the basis of other parameters
unchanged. The coke pushing system is numerically simulated, and the obtained phase diagrams
and the corresponding displacement curves are shown in Fig. 13.
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Fig. 11. Phase diagrams and the corresponding displacement curves when V0 is 0.43
and nonlinear gain k2 is set as different values: (a) k2 = −1; (b) k2 = −10; (c) k2 = −20.

From the phase diagrams and displacement curve diagrams of Fig. 13, we can see that the
motion state of the coke pushing system is obviously improved after the controller is applied.
By comparing Fig. 13a and Fig. 3a, it can be clearly observed that the vibration amplitude of
the system is significantly reduced after the controller designed in this paper is applied. The
comparison result of Fig. 13b and Fig. 3b indicates that the vibration amplitude of the coke
pushing system is greatly reduced after applying the controller designed in this paper, but the
bifurcation phenomenon of the system is not eliminated. By comparing Fig. 13c and Fig. 3c, it is
found that the limit cycle disappears and the coke pushing system stabilizes to the equilibrium
point after applying the controller designed in this paper. On the whole, the control effect on the
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Fig. 12. Phase diagrams and the corresponding displacement curves when V0 is 0.42
and nonlinear gain k2 is set as different values: (a) k2 = −1; (b) k2 = −10; (c) k2 = −20.

coke pushing system is more obvious when the driving velocity is closer to the critical bifurcation
point, which is consistent with the previous results when linear gain and nonlinear gain acting
alone.

5. Conclusions

According to the fact that part of the coke rod is located in the carbonization room and
part is located outside the carbonization room, the frictional self-excited vibration model of the
double -mass-conveyor belt is established to study the friction-induced vibration characteristics
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Fig. 13. Comprehensive control effect of the controller designed in this paper when V0 takes different
values: (a) V0 = 0.425; (b) V0 = 0.435; (c) V0 = 0.45.

of pushing coke progress. The critical instability velocity of the coke pushing system is obtained
by theoretical calculations and verified by numerical simulation. Then, the bifurcation charac-
teristics of the system are analyzed, and the linear and nonlinear state feedback controllers are
proposed to control the bifurcation behaviours of the system. Numerical simulation shows the
effectiveness of the control effect. The specific conclusions are as follows:
– The newly established dynamic model of the system divides the coke pushing system
into two bodies, which can better simulate the running state of the coke pushing device,
that is, the part that enters the carbonization room and the part that stays outside the
carbonization room.
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– Both the critical instability velocity and bifurcation velocity of the coke pushing system are
0.45. When the driving velocity exceeds this value, the system is stable to the equilibrium
point. When the driving velocity does not reach this value, the coke pushing system is in
an unstable state and the self-excited vibration phenomenon is easy to occur. When the
drive velocity reaches 0.45, the system begins to appear the supercritical Hopf bifurcation.
– The linear gain of the designed controller has an important effect on the Hopf bifurcation
point of the coke pushing system. Choosing a smaller linear gain can reduce the Hopf
bifurcation velocity and help the system work stably at a lower velocity. The nonlinear
gain of the designed controller has an important effect on the limit cycle of the coke
pushing system. The smaller nonlinear gain can reduce the amplitude of the limit cycle of
the system, and then alleviate the friction self-excited vibration of the system.

Appendix. Coefficients in Eq. (4.18)

g20 =
1

4

{
∂2G1

∂U2
1

− ∂2G1

∂U2
2

+ 2
∂2G2

∂U1∂U2
+ i

[
∂2G2

∂U2
1

− ∂2G2

∂U2
2

− 2
∂2G1

∂U1∂U2

]}
,

g11 =
1

4

{
∂2G1

∂U2
1

+
∂2G1

∂U2
2

+ i

[
∂2G2

∂U2
1

+
∂2G2

∂U2
2

]}
,

g02 =
1

4

{
∂2G1

∂U2
1

− ∂2G1

∂U2
2

− 2
∂2G2

∂U1∂U2
+ i

[
∂2G2

∂U2
1

− ∂2G2

∂U2
2

+ 2
∂2G1

∂U1∂U2

]}
,

g21 = G21 + 2G1
110ω

1
11 +G1

101ω
1
20 + 2G2

110ω
2
11 +G2

101ω
2
20,

where

G21 =
1

8

{
∂3G1

∂U3
1

+
∂3G1

∂U1∂U2
2

+
∂3G2

∂U2
1∂U2

+
∂3G2

∂U3
2

+ i

[
∂3G2

∂U3
1

+
∂3G2

∂U1∂U2
2

− ∂3G1

∂U2
1∂U2

− ∂3G1

∂U3
2

]}
,

G1
110 =

1

2

{
∂2G1

∂U1∂U3
+

∂2G2

∂U2∂U3
+ i

[
∂2G2

∂U1∂U3
− ∂2G1

∂U2∂U3

]}
,

G2
110 =

1

2

{
∂2G1

∂U1∂U4
+

∂2G2

∂U2∂U4
+ i

[
∂2G2

∂U1∂U4
− ∂2G1

∂U2∂U4

]}
,

G1
101 =

1

2

{
∂2G1

∂U1∂U3
− ∂2G2

∂U2∂U3
+ i

[
∂2G2

∂U1∂U3
+

∂2G1

∂U2∂U3

]}
,

G2
101 =

1

2

{
∂2G1

∂U1∂U4
− ∂2G2

∂U2∂U4
+ i

[
∂2G2

∂U1∂U4
+

∂2G1

∂U2∂U4

]}
,

ω1
11 = − 1

4λ3(Vc)

[
∂2G3

∂U2
1

+
∂2G3

∂U2
2

]
,

ω2
11 = − 1

4λ4(Vc)

[
∂2G4

∂U2
1

+
∂2G4

∂U2
2

]
,

ω1
20 =

1

4(2iω0 − λ3(Vc))

[
∂2G3

∂U2
1

− ∂2G3

∂U2
2

− 2i
∂2G3

∂U1∂U2

]
,

ω2
20 =

1

4(2iω0 − λ3(Vc))

[
∂2G4

∂U2
1

− ∂2G4

∂U2
2

− 2i
∂2G4

∂U1∂U2

]
.
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The derivatives of the above are all at zero point, and the bifurcation parameter is the
bifurcation value.
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