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The analysis of global behaviors is quite essential for the prediction of the potential dynamical
vibration of the geared system. A novel meshing stiffness formula approximated to rectangular wave
was proposed utilizing an odd harmonic superposition, the distribution maps of the parameterized
solution domain and basin of attraction of the star herringbone gear transmission system were cal-
culated containing various periodic regions and then validated. The analysis of the joint probability
density indicates that transformations occurred on the portrait structure of attractors during the
evolution into chaos. In addition, with discretization techniques and cell mapping methodology,
the two-dimensional parameterized solution domain, as well as overall distributions of periodic and
chaotic domains hidden in the basins of attraction were identified. Subsequently, the stochasticity
of the damping ratio produced in normal distribution is analyzed, which presents that the attractor
will experience perturbations before reaching a steady-state, while the periodicity of the attractor is
significantly weakened. By the comparison of evolution behaviors, the distributions of periodic basin
of attraction have little variations, but it caused some scattered periodic cells which mixed in the
original domains, resulting in the deterioration of the steady-state to the system.
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Nomenclature

b – backlash,
bc – nominal scale,
c – damping,
k – stiffness,

km – average meshing stiffness,
pij – joint probability density function,

pi1, pi2 – left and right side of the planetary gear i, respectively,
r – base circle radius,

r1, r2 – left and right side of ring gear, respectively,
s1, s2 – left and right side of sun gear, respectively,

u – dimensionless displacement,
usp11, u̇sp11 – dimensionless meshing displacement and velocity, respectively,

x, y – displacement along the X-axis and Y -axis, respectively,
E – amplitude of transmission error,
F – engagement force,
I – rotational inertia,
M – mass,
Np – number of planetary gears,
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T – torque,
Ui – uniformly distributed random number,

αt, β – pressure and helical angle, respectively,
ε – stiffness fluctuation coefficient,
θ – angular displacement,
ξ – damping ratio,

φ, φ0 – pressure, helical, phase angle, and initial phase angle, respectively,
ω – meshing frequency,
Θ – point sets.

1. Introduction

The star herringbone gear transmission system belongs to a power split gear dynamical
machinery, which is normally applied in the situations that have extremely high-speed or high-
power demands, such as warships, airplanes, gas turbines, even heavy machines and so forth.
Its power transmission is from the sun gear to the planetary gear then converges by the internal
ring gear, which could have remarkable advantages, such as quite high power density and the
large transmission ratio. Compared with the planetary gear mechanism, the star herringbone
gear transmission system adopts a fixed-axis gear train and possesses even better structural
strength (Hong et al., 2022; Arian & Taghvaei, 2021). However, the prominent issues deal with
the problem of existing various vibrations on a conventional gear transmission that is also the
concern of the technical research topics which the star herringbone gear transmission system
encounters, especially the disclosure of its parametric domains and basins of attraction turns
out to be particularly crucial for monitoring the dynamical behavior details, identifying the un-
stable dynamic regions or predicting the evolution processes of vibration more comprehensively
(Li et al., 2018).
As for now, many of the literatures regarding a gear system focusing on dynamical investiga-

tion can be mainly classified as a local analysis, that is, trying to compute dynamic solutions of
the vibration, to analyze the stability of the response or even to study the influence of a param-
eter on vibrations. This kind of a numerical method has produced rich achievements during the
previous exploration of gear dynamics. Wang et al. (2020) investigated the vibration of the GTF
aero-engine star gear-rotor coupling system, and analyzed the gradual transformation mecha-
nism of the bifurcation phenomenon. Marafona et al. (2024) studied the gear design optimization
problem to minimize dynamic excitation by implementing the genetic algorithm (GA). Xiang
et al. (2020) obtained the global bifurcation diagram of multi-stage gear transmission by altering
the bifurcation parameter. Tang et al. (2020) presented an analytical model of time-varying sup-
port stiffness based on the Hertz contact theory, their calculations indicate that the planetary
gear system with an external node engagement will enter uncertainties and cause chaos nearby
the resonance frequency. Nevertheless, many studies on the excitation behavior of a gear system
mainly investigate the primary unidirectional dimension. In the matter of the dynamical mod-
eling of the star herringbone gear transmission system, apart from considering the conventional
excitations, such as, the time-varying meshing stiffness and external load fluctuation, then the
designated strong nonlinear influencing factor such as backlash has also been taken into account.
But diverse excitations are mutually related or coupled with each other to determine the system
vibration properties, on the other hand, the stochasticity present in the parameter excitations
also has a significant impact on the long-term global behaviors. If one wants to thoroughly figure
out the internal mechanism between these factors versus the global evolution of dynamical solu-
tions or clarify the hierarchical domain distribution between excitation channels, the exploration
of solution domain will be essential and feasible. The research on the solution domain of the
star herringbone gear transmission system mainly focuses on the region of a parametric solution
domain and the analysis of the global characteristics of attractors in the basin of attraction,
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so as to track the evolutionary behaviors of the attractor and state basins from a given phase
space and acquire the spatial microscopic details of global solutions.
In global analysis, the cell mapping technique (Wang et al., 2023; Koh et al., 2021) has been

mostly used for the investigation of dynamical issues, as a well-known computation algorithm
based on the evolutionary probability vector, it is also suitable for exploring meshed gear-tooth
pair dynamics with strong nonlinearity. Besides, it is also able to track out the potential vibration
situation of the system due to its ability to comprehensively evaluate the attractive region and
the emergence location of chaos. Gyebrószki et al. (2017), Ma et al. (2020), Yue et al. (2019),
and Zhang et al. (2019) have published relevant researches and applications involving different
fields adopting that methodology, and also discussed the development tendency and technical
challenges. Tang et al. (2011) utilized a graph cell mapping method to achieve the global solution
sets of a spur gear system with a single degree of freedom (DOF) earlier. Mo et al. (2022)
calculated the phase trajectory of the discrete cell on the Poincaré section, and observed the
influence of the initial state on dynamic behaviors. Farshidianfar et al. (2014) and Saghafi et al.
(2016) developed the homoclinic bifurcation and chaotic migration of the gear system in the
global domain based on the Melnikov method, and accurately predicted the location of the
chaotic parameter band. According to the regional discretization investigation, Lin et al. (2021)
studied the bifurcation evolutions of a power-split gear transmission under multiple dynamical
excitations. With the combination of simple cell mapping and the escape time algorithm, Gou
et al. (2015) captured the variety of coupled vibration information of the torsional vibration
gear system on the two-parameter plane.
Advantageous dynamical status conditions are meaningful to improve the stability of various

gear transmission systems. In this study, the global nonlinear characteristics of the star herring-
bone gear transmission system from the view of multiple dimensions have been investigated,
the dynamic parameters subjected to stochastic disturbance causing global variational effects
were considered as well. Associated with the joint probability density function and the domain
discretization technology, the determination criteria of the boundary and domain of attraction
are deduced theoretically, the borderline structure and attractor behavior of the solution domain
under two parameterized dynamic excitations of speed and input power are computed, and the
stability and transition pattern of the attractive domain in the meshing vibration state space
are simulated too. The researches show that the vibration sensitivity of the system to the initial
states can be weakened and excellent steady-state characteristics can be obtained by reasonable
configuring the operating conditions of the initial parameters, thereby providing the reference
for the optimization of global domains and resonance parameter designs of the star herringbone
gear transmission system.

2. Modeling of the star herringbone gear transmission system

The translational-torsional dynamical model of the star herringbone gear transmission system
with backlash is established by employing the lumped mass method, as shown in Fig. 1. Wherein,
θs, θpi (i = 1, 2, 3), and θr denote the rotational vibration displacements of the sun gear, the
i-th planetary gear and the ring gear around the Z-axis direction, respectively; xs, xpi, xr, ys,
ypi, and yr are the translational vibration displacements of the sun gear, the i-th planetary
gear and the internal ring gear measured along the X-axis and Y -axis direction, respectively;
Fm is the meshing force between the teeth along the line of action. In the model presented in
Fig. 1b, the planetary carrier is fixed to the frame without any displacement, so the rotational
and translational vibrations of the carrier could be ignored. All herringbone gears in the entire
system should be with a standard involute tooth profile, which are regarded as the splicing of
two helical gears with opposite helical angle and the same physical property, regardless of the
sliding or sliding friction between meshing teeth. Meanwhile, the Euler beam unit is connected
between the left and right gear tooth.
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Fig. 1. (a) Dynamic schematics of star herringbone gear transmission system; (b) dynamic model between
sun gear and planetary gear; (c) dynamic model between planetary gear and ring gear.

Considering the symmetry in the circumferential of the system, in order to characterize the
dynamic details between component gears, the meshing translational-torsional dynamical model
shown in Figs. 1b and 1c are established for only one of the planetary gears. The mass nodes s1
and s2 represent the left and right side of helical teeth of the sun gear, pi1 and pi2 represent
the left side and right side of the planetary gear i (i = 1, 2, 3), similarly, r1 and r2 represent the
two side helical teeth of the ring gear, respectively.
In light of the analysis of the gear meshing movement, the dynamical differential governing

equations of vibration of the system could be established.
The dynamical differential equations of motion of the left side of the sun gear can be expressed

as Eq. (2.1). The dynamical differential equations of motion of the right side of the sun gear
can be expressed as Eq. (2.2). The dynamical differential equations of motion of the left side
of the planetary gear pi can be expressed as Eq. (2.3). The dynamical differential equations of
motion of the right side of the planetary gear pi can be expressed as Eq. (2.4). The dynamical
differential equations of motion of the left side of the internal ring gear can be expressed as
Eq. (2.5). The dynamical differential equations of motion of the right side of the internal ring
gear can be expressed as Eq. (2.6).

Is1θ̈s1 = −
3∑

i=1

Fspi1 rs1 cosβ1 + Ts,

Ms1ẍs1 = −
3∑

i=1

Fspi1 sinφspi cosβ1 − ksxs1 − csẋs1,

Ms1ÿs1 = −
3∑

i=1

Fspi1 cosφspi cosβ1 − ksys1 − csẏs1,

(2.1)

Is2θ̈s2 = −
3∑

i=1

Fspi2 rs2 cosβ2,

Ms2ẍs2 = −
3∑

i=1

Fspi2 sinφspi cosβ2 − ksxs2 − csẋs2,

Ms2ÿs2 = −
3∑

i=1

Fspi2 cosφspi cosβ2 − ksys2 − csẏs2,

(2.2)
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Ipi1θ̈pi1 = −Fspi1 rpi1 cosβ1 + Frpi1 rpi1 cosβ1,

Mpi1ẍpi1 = Fspi1 sinφspi cosβ1 − Frpi1 sinφrpi cosβ1 − kpixpi1 − cpiẋpi1,

Mpi1ÿpi1 = Fspi1 cosφspi cosβ1 + Frpi1 cosφrpi cosβ1 − kpiypi1 − cpiẏpi1,

(2.3)

Ipi1θ̈pi2 = −Fspi2 rpi2 cosβ2 + Frpi2 rpi2 cosβ2,

Mpi2ẍpi2 = Fspi2 sinφspi cosβ2 − Frpi2 sinφrpi cosβ2 − kpixpi2 − cpiẋpi2,

Mpi1ÿpi2 = Fspi2 cosφspi cosβ2 + Frpi2 cosφrpi cosβ2 − kpiypi2 − cpiẏpi2,

(2.4)

Ir1θ̈r1 = −
3∑

i=1

Frpi1 rr1 cosβ1,

Mr1ẍr1 = −
3∑

i=1

Frpi1 sinφspi cosβ1 − ksxr1 − csẋr1,

Mr1ÿr1 = −
3∑

i=1

Frpi1 cosφspi cosβ1 − ksyr1 − csẏr1,

(2.5)

Ir2θ̈r2 = −
3∑

i=1

Frpi2 rr2 cosβ2 + Tr,

Mr2ẍr2 = −
3∑

i=1

Frpi2 sinφspi cosβ2 − ksxr2 − csẋr2,

Mr2ÿr2 = −
3∑

i=1

Frpi2 cosφspi cosβ2 − ksyr2 − csẏr2.

(2.6)

From Eq. (2.1) to Eq. (2.6), I indicates the rotational inertia; M denotes the equivalent
mass, where M = I/r2; β1 and β2 are the helical angle of the herringbone gears, assuming that
left-hand rotation is positive and right-hand rotation is negative, then there the relationship
occurs β2 = −β1. Fspi is the meshing force between the sun gear and the planetary gear, and
Frpi is the meshing force between the planetary gear and the ring gear, given as

Fspi = kspif (xspi, b) + cẋspi,

Frpi = krpif (xrpi, b) + cẋrpi,
(2.7)

where kspi and krpi are the meshing stiffness between the sun gear and the planetary gear, and
cspi, crpi are the meshing damping between the planetary gear and the ring gear, respectively;
f(x, b) describes the expression of the backlash; b is the backlash; xspi and xrpi are the relative
displacements along the line of action between meshing pairs.
Here, we define the time-varying meshing stiffness by an approximate square wave, which

can be built by the abbreviated function k(t) and the mean meshing stiffness km, when we take
the first three orders of j (j = 1, j = 2, j = 3) and draw the superimposed harmonic waveform
in Fig. 2a:

k′(t) =
2km
π

[
sin(ωt) +

1

3
sin(3ωt) + ...+

1

j
sin(jωt) + ...

]
, (2.8)
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where (j = 1, 3, 5, ..., 2n + 1), E represents the square wave amplitude. The first three order
harmonic waveforms of meshing stiffness can be plotted, respectively, in Fig. 2b.

Fig. 2. (a) Superposition of the first three order harmonic waveform of time-varying meshing stiffness;
(b) harmonic waveform superposition of the first three orders (1 period); (c) approximate model of the

time-varying meshing stiffness.

In Fig. 2c, then the time-varying meshing stiffness of the gear system can be expressed by
the Fourier series as

k(t) = km + εk′(t) = km + ε
2km
π

∞∑
i=1

(
sin

(
1

j
ωt+ φ0

))
, (j = 1, 3, 5, ..., 2n+ 1), (2.9)

where ω is the meshing frequency, and ε represents the fluctuation coefficient of the time-varying
meshing stiffness; φ0 denotes the initial phase angle, and defines the initial phase angle φspi and
φrpi, respectively:

φspi = αt − 2π(i− 1)/Np, (i = 1, 2, 3),

φrpi = αt + 2π(i− 1)/Np, (i = 1, 2, 3).
(2.10)

The meshing damping related to the meshing stiffness is derived, and given as Eq. (2.11).
The nonlinear function of the backlash can be expressed as Eq. (2.12):

cspi = 2ξ
√
km/Mesp, (2.11)

f(x, b) =


x− b/2 x > b/2,

0 −b/2 ≤ x ≤ b/2,

x+ b/2 x < −b/2,

(2.12)
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where ξ is the meshing damping ratio,Mesp denotes the equivalent mass of mating gears between
the sun gear and the planetary gear.
Then along the line of action, xspi1 and xspi2 are the relative meshing displacements between

the sun gear and the i-th planetary gear; similarly, xrpi1 and xrpi2 denote the i-th planetary gear
and the ring gear, which can be separately expressed as follows:

xspi1 = [(xs1 − xpi1) sinφspi + (ys1 − ypi1) cosφspi

+ (rs1θs1 + rpi1θpi1)] cosβ1 − ei1(t),

xspi2 = [(xs2 − xpi2) sinφspi + (ys2 − ypi2) cosφspi

+ (rs2θs2 + rpi2θpi2)] cosβ2 − ei2(t),

xrpi1 = [(xpi1 − xr1) sinφspi + (yr1 − ypi1) cosφspi

+ (rr1θr1 − rpi1θpi1)] cosβ1 − ei3(t),

xrpi2 = [(xpi2 − xr2) sinφspi + (yr2 − ypi2) cosφspi

+ (rr2θr2 − rpi2θpi2)] cosβ2 − ei4(t),

(2.13)

where eij(t) = E sin(ωt+φ0) (i = 1, 2, 3; j = 1, 2, 3, 4), eij(t) is the comprehensive transmission
error, and E indicates the amplitude. Taking the second derivative to Eq. (2.13) and substitut-
ing it into Eqs. (2.1)–(2.6), then the differential equations adopted for eliminating rigid body
displacement can be obtained as follows:

ẍspi1 =

[
(ẍs1 − ẍpi1) sinφspi + (ÿs1 − ÿpi1) cosφspi + rs1Ts/Is1

−
3∑

i=1

Fspi1 cosβ1/Ms1 + cosβ1 (Frpi1 − Fspi1) /Mpi1

]
cosβ1 − ëi1(t),

ẍspi2 =

[
(ẍs2 − ẍpi2) sinφspi + (ÿs2 − ÿpi2) cosφspi

+

(
−

3∑
i=1

Fspi2/Ms2 + (Frpi2 − Fspi2) /Mpi2

)
cosβ2

]
cosβ2 − ëi2(t),

ẍrpi1 =

[
(ẍpi1 − ẍr1) sinφspi + (ÿr1 − ÿpi1) cosφspi

+

(
−

3∑
i=1

Frpi1/Mr1 + (Fspi1 − Frpi1) /Mpi1

)
cosβ1

]
cosβ1 − ëi3(t),

ẍrpi2 =

[
(ẍpi2 − ẍr2) sinφspi + (ÿr2 − ÿpi2) cosφspi + rr1Tr/Ir1

−
3∑

i=1

Frpi2 cosβ2/Mr2 + cosβ2 (Fspi2 − Frpi2) /Mpi2

]
cosβ2 − ëi4(t).

(2.14)

With the help of above expressions, the dynamical equations of the entire system in a unified
form after eliminating rotational rigid displacement is simplified as

[M] Ẍ+ [C] Ẋ+ [K] f (X, b) = F, (2.15)

where X represents the displacement vector; M, C, K, and F, respectively, indicate the mass
matrix, damping matrix, stiffness matrix, and load vector, each of them is given as

X = [xspi1, xspi2, xrpi1, xrpi2, xs1, ys1, xs2, ys2, xpi1, ypi1, xpi2, ypi2, xr1, yr1, xr2, yr2]
T, (2.16)
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M =



E2×2 02×2 A −A 02×4

02×2 E2×2 02×4 B −B

02×2 02×2 m1 02×4 02×4

02×2 02×2 m2 02×4 02×4

02×2 02×2 02×4 m3 02×4

02×2 02×2 02×4 m4 02×4

02×2 02×2 02×4 02×4 m5

02×2 02×2 02×4 02×4 m6


, A =

[
−a1 −a2 0 0

0 0 −a3 −a4

]
,

m1 =

[
ms1 0 0 0

0 ms1 0 0

]
, m2 =

[
ms2 0 0 0

0 ms2 0 0

]
,

m3 =

[
mpi1 0 0 0

0 mpi1 0 0

]
, m4 =

[
mpi2 0 0 0

0 mpi2 0 0

]
,

m5 =

[
mr1 0 0 0

0 mr1 0 0

]
, m6 =

[
mr2 0 0 0

0 mr2 0 0

]
,

(2.17)

K\C =



D1 D2 02×2 02×2 02×2 02×2 02×2 02×2

D3 D4 02×2 02×2 02×2 02×2 02×2 02×2

D5 02×2 Ks 02×2 02×2 02×2 02×2 02×2

02×2 D6 02×2 Ks 02×2 02×2 02×2 02×2

D7 D8 02×2 02×2 Kpi 02×2 02×2 02×2

D9 D10 02×2 02×2 02×2 Kpi 02×2 02×2

02×2 D11 02×2 02×2 02×2 02×2 Kr 02×2

02×2 D12 02×2 02×2 02×2 02×2 02×2 Kr


,

F = [(rs1Ts cosβ1) /Is1 01×2 (rs1Tr cosβ2) /Ir2 01×12]
T ,

(2.18)

where

D1 =


(

3∑
i=1

Γspi/ms1 + Γspi/mpi1

)
cos2 β1 0

0

(
3∑

i=1
Γspi/ms2 + Γspi/mpi2

)
cos2 β2

,
D2 =

[
−
(
Γrpi cos

2 β1
)
/mpi1 0

0 −
(
Γrpi cos

2 β2
)
/mpi2

]
,

D3 =

[
−
(
Γspi cos

2 β1
)
/mpi1 0

0 −
(
Γspi cos

2 β2
)
/mpi2

]
,

D4 =


(

3∑
i=1

Γrpi/mr1 + Γrpi/mpi1

)
cos2 β1 0

0
(

3∑
i=1

Γrpi/mr2 + Γrpi/mpi2

)
cos2 β2

,

D5 =


3∑

i=1
Γspia1 0

3∑
i=1

Γspia2 0

, D6 =


0

3∑
i=1

Γspia1

0
3∑

i=1
Γspia2

, D7 =

[
−Γspia1 0
−Γspia2 0

]
,
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D8 =

[
Γrpib1 0
−Γrpib2 0

]
, D9 =

[
0 −Γspia3
0 −Γspia4

]
, D10 =

[
Γrpib3 0
−Γrpib4 0

]
,

D11 =


−

3∑
i=1

Γrpib1 0

3∑
i=1

Γrpib2 0

, D12 =


−

3∑
i=1

Γrpib3 0

3∑
i=1

Γrpib4 0

,
Ks = ΓsE2×2, Kpi = ΓpiE2×2, Kr = ΓrE2×2,

where

E2×2 =

[
1 0
0 1

]
,

a1 = sinφspi cosβ1, a2 = cosφspi cosβ1, a3 = sinφspi cosβ2, a4 = cosφspi cosβ2,

b1 = sinφrpi cosβ1, b2 = cosφrpi cosβ1, b3 = sinφrpi cosβ2, b4 = cosφrpi cosβ2.

To simplify the computation of aforementioned matrices, the symbol Γ is introduced, Γ would
be substituted by stiffness or damping according to Eq. (2.15). The following Eq. (2.19) is demon-
strating the substitution of Γ in the matrix D1 by means of stiffness kspi:

D1 =


(

3∑
i=1

kspi/ms1 + kspi/mpi1

)
cos2 β1 0

0
(

3∑
i=1

kspi/ms2 + kspi/mpi2

)
cos2 β2

, (2.19)

ωn =
√
km (1/Ms + 1/Mpi). (2.20)

Additionally, ks, kpi, and kr are the support stiffness of the sun gear, planetary gear and ring
gear, respectively; similarly, cs, cpi, and cr represent their damping correspondingly.
During the numerical computation of Eq. (2.15), a dimensionless operation is required to

avoid the convergence problem due to the huge differences in the order of magnitude of the poly-
nomial coefficient. Therefore, the dimensionless nominal scale parameter is defined as Eq. (2.20),
where Ms and Mpi indicate the equivalent masses of the sun gear and the planetary gear, sepa-
rately. Once the nominal time scale ωn and displacement scale bc, bc = 100×10−6m are defined,
then the time τ , vibration displacement u and backlash b with normalized dimensions can be
derived as τ = ωnt, u(τ) = x(t)/bc, and b = b/bc.

3. Global behaviors of parameterized solution domain and basins of attraction

3.1. Solutions inside the parameterized plane

The followings and Table 1 provide the essential dynamical parameters of the star herringbone
gear transmission system. For instance, the amount of planetary gears is 3; all the gear modulus
is 4mm; the installation angle αpi (i = 1, 2, 3) of each planetary gear is 0, 2π/3, and 4π/3; the
normal pressure angle αn is 20◦, and the base helical angle βb is 22.5◦. The mean stiffness km is
2× 109N/m; the support stiffness k is 1× 106N/m; the stiffness fluctuation coefficient ε is 0.1;
the meshing damping ratio ξ is 0.1; the power is 3000 kW, and the backlash b is set 0.1mm.
The two-dimensional parametric domain is composed of the horizontal parameter µj (j =

1, 2, ..., j) and the vertical parameter λi (i = 1, 2, ..., i), both directions are discretized into
a certain number of cells, cij represents a single cell (see Fig. 3). Next, combining with Eq. (3.1)
and adopting the Runge–Kutta method to compute the dynamical differential equations in
Eq. (2.20). Parameterized cells that have the same periodic solution constitute a periodic domain
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Table 1. Partial major parameters of the gears.

Sun gear Planetary gear Ring gear

Number of teeth Z 36 32 100

Mass m [kg] 5.30 4.50 16.08

Moment of interia I [kg ·m2] 0.0226 0.0149 0.6564

Fig. 3. Cell discretization of two-dimensional parametric domain.

of period-K (P -K), K is the periodic state, and called P -K motion. Similarly, chaotic solution
can also be calculated.
In global analysis of the parameterized plane, each discretized cell represents an exact value of

an excitation parameter for numerical calculation, and the initial state (0, 0) is brought into the
differential equations of motion. The mapping iteration starts from time τ = 0, and 4 adjacent
mapping points of the attractor in state space are extracted from the Poincaré section, then
compared with the criteria value of ε1 = 1.0 × 10−3, and ε2 = 1.0 × 10−4, respectively, here
the ε2 determines the periodic state of the attractor domains in calculation.
For point sets Θ ∈ Rn, n is the dimension of the system, and Θ is the set of all points

on the Poincaré section achieved by mappings. Assuming X(i) is one of the points in the Θ,
accordingly, X(i) ∈ P (i = 1, 2, ..., k), k is the quantity of points in the set Θ. Here, Y is another
point on the Poincaré section, and Yj (j = 1, 2, ..., n) is the j-th component of Y , then we can
define the 2-norm between point Y and point set Θ as

ρ(Y,Θ) = min
(
dis (Y,X(i))

)
, i = 1, 2, ..., k, (3.1)

where

dis (Y,X(i)) = max
∣∣∣Yj −X

(i)
j

∣∣∣ , j = 1, 2, ..., n. (3.2)

If point Y and the point set Θ satisfy the following expression, ρ(Y,Θ) < ε.
Consequently, it can be determined that point Y falls within the domain of attraction com-

posed of the point set A. If the ρ(Y,Θ) < ε is still not satisfied, that means there might exist
a chaotic attractor under the present parameter. To ensure that result, preset 5 extra mappings
to the potential chaotic attractor.
In Fig. 4, which is divided into 300× 300 regular cells in the parameterized plane, after

discretization and iteration, the two-dimensional solution domains could be plotted out. The
distribution of various dynamic parameter domains is identified with the aid of series of discrete
cells. One can clearly see that the period-doubling bifurcation imbedded in the parametric plane,
which is presented while the rotational speed raises from 4000 rpm to 20000 rpm.
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Fig. 4. Two-dimensional plane of parameterized solution domain.

A parametric cell at (8000, 0.15) is select from Fig. 4 and its phase portrait and the Poincaré
diagram are computed as shown in red color in Fig. 5. Then chaotic attractor is also analyzed
in the same way, at this point, the phase trajectory in chaotic state exhibits a little bit local
repeated with winding, and the fractal characteristic of the mapping points on the Poincaré
section are obvious. The period-4 attractor now with slightly larger size maintains a certain
distance away from the chaotic attractor. That implies the period-4 attractor will move down if
the speed or damping ratio varies properly into the chaotic domain. Accordingly, on the selection
of parameters from solution cells, a chaotic vibration can be also eliminated by driving into the
periodic domains.

Fig. 5. (a) Phase portrait and (b) Poincaré section of attractors.

One of the global analysis is to study the movement behaviors of the attractor. The projection
of the phase trajectory will play a major role. Next, to explore the behavior of the attractor
transformation by using the joint probability density function P (X,Y ). We define the two-
dimensional discrete variable (X,Y ), all possible points in the target region Ω could be defined
by (x, y), then it has Eq. (3.3).
In the study of the star herringbone gear transmission system, the joint distribution of two-

dimensional discrete variables is defined as Eq. (3.4):

P ((X,Y ) ∈ Ω) =

�
A
f(x, y), for all Ω, (3.3)

pij = P{X = usp11, Y = u̇sp11}. (3.4)

Then, by using the Monte Carlo method (Dreeben et al., 1998) the joint probability density
function is calculated. For the period-4 attractor, the vertical peak representing the probability
density of the attractor at the intersection of the Poincaré section. In Fig. 6, four convex peaks
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Fig. 6. (a) Joint probability density of period-4 attractor; (b) the evolution of attractor
from period-4 to chaos.

between each of them are almost equal proving that this attractor has only four harmonic periods
and no other coexisting attractors. Afterwards, as the damping ratio decreases to 0.05, we see
the period-4 attractor has started to move down and approach to the chaotic attractor gradually.

3.2. Validation of parameterized solution domains

The local domain of interest which consists of speed and power with the finite field of
[4000, 20000]× [1500, 4000]. The solutions reveal information on the steady-state oscillations
in a more overall way on the plane (Fig. 7), and mainly including period-1, period-2, period-4,
multi-period, and chaotic parameterized regions. The various regions suggest the differences of
steady-state result if under excitation, particularly, more uncertainties will appear adjacent to
the borderline. During the increasing of horizontal speed, the periodic state changes frequently,
which indicates the system behavior is sensitive to the variation of the sun gear velocity, how-
ever, while in the vertical direction at 4000 r/min, the dynamic domain seems to keep period-1
motion with the increase of power.

Fig. 7. Parameterized solution domain with speed and power.

The validation to the global parameterized results is carried out along the horizontal and
vertical bifurcation process. In Fig. 8, these two bifurcation routes are following the white lines
in Fig. 7 at 3000 kW and 11500 rpm, respectively. Evolutionary phenomena such as period dou-
bling, chaos, as well as disturbances, is consistent with the parameterized solutions. Where the
fluctuation weakens along the horizontal axis in the bifurcation diagram. Accordingly, the vibra-
tion and stability of the system could be globally predicted and improved by properly adjusting
the dynamical parameters.
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Fig. 8. Bifurcation evolution process with respect to (a) speed and (b) input power.

3.3. Fundamentals of attraction solution

The calculation of global domains associates with a couple of methods, as the continuous
target parametric domain or state space are discretized into a series of cell units by the re-
gional discretization technology combined with cell mappings. When subdividing the selected
region, the reasonable number of cells can be set depending on the numerical accuracy and
computational efficiency.
Define a simple cell mapping C, where the cell Z∗ satisfying Z∗ = C(Z∗), and Z∗ is called

the fixed cell of the geared system, let Cm represents the cell mapping iterated m times, and
C0 refers to the self-map. If there are another cells Z∗(j), j ∈ {K}, and K (K ≥ 2) denotes the
total amount, which satisfies the relationships:

Z∗(m+ 1) = Cm (Z∗(1)) , m ∈ {K − 1}, (3.5)

Z∗(1) = CK (Z∗(1)) . (3.6)

Then Z∗ is said to constitute the periodic solution of period K, and each cell Z∗(j) is
a periodic cell with the period K. In order to strengthen the identification, such cells are called
P -K cells. For example, a monocycle solution is a stable cell, which is called P1 cell. Figure 9
exhibits a system with two periodic solutions, Z1 is the first periodic solution with one period,
Z2, Z3, and Z4 finally go toward the second periodic solution with a period of 3.

Fig. 9. Convergence of mapping cells in dynamical system.

When the initial state is discretized, the global domain of attraction with oscillation de-
tails can be computed by analyzing the evolution of cells, these computations often take a lot
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of time due to the 14 degrees of freedom contained in our system. Note that, if in the solu-
tions a cell (µi, λj) shows different periodic property with its neighbors (µi+1, λj), (µi, λj+1),
and (µi+1, λj+1), that means the current cell (µi, λj) is located on the border of the domain.
Hence, the above technique is able to compute the borderline of different domains as well.

3.4. Evolution behaviors of basin of attraction

3.4.1. Global behaviors without stochasticity

The global behaviors inside a state space reveal the vibration evolution of the system under
initial conditions. Cells are calculated individually on the region of [−1, 1]× [1, 1]. In Fig. 10,
the state domain consists of period-2, period-4, and multi-periodic basins. The proportion of
period-2 state cells in the whole domain continues to reach to 34%, and the number of period-4
cells amount to 12393, accounting for 30%. The period-2 basin of attraction is still expand-
ing, and the chaotic domain has completely degenerated into the multi-periodic basin of attrac-
tion and period-4 basin of attraction, then the system is mainly covered by period-2 and period-4
basins of attraction, accounting for as high as 64%, which further decreases the sensitivity to
the initial status parameters.

Fig. 10. Basin of attraction without stochasticity when ξ = 0.1.

Take the altered parameters set as n1 = 9000 rpm, ξ = 0.1, b = 1. Select and verify one of
the state cells at the location of [x, ẋ] = [0.8,−0.07] (see Fig. 10). In Fig. 11, the portrait of the
attractor in black is stable, while in red is still evolving. Thus, the phase trajectory and Poincaré
mapping points double affirm that the responses of the system coming into period-2 state in the
end, while the black dots reveal that the period-2 phase portrait has stabilized after entering
a steady-state. At this point, the attractor is stable.

Fig. 11. Period-2 attractor without stochasticity when ξ = 0.1: (a) phase portrait; (b) Poincaré section.
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3.4.2. Global behaviors under stochasticity

In terms of the global basins of attraction with stochasticity, which is to be compared. The
basic value of the stochastic term is from the original excitation. First of all, the damping ratio ξ
is selected as the stochastic parameter, and one may generate the stochastic number that cor-
responds to the normal distribution. Then, the necessity is to determine whether the stochastic
factor η is within the upper and lower limits of the fluctuations of the analyzed parameter. Once
satisfied, the stochastic number is taken as the current excitation and assigned to the parame-
ter. If not, a normal distribution stochastic number will be regenerated again for judgment to
guarantee satisfying the critical values. Subsequently, the dynamic response of the stochastic
nonlinear system during meshing period is carried out.
By employing the central limit theorem (CLT) to define the meshing damping ratio ξ as

a normal distribution ξ∼N (0.1, 0.00022) for a system under stochastic excitation, then ξ has
the upper and lower maximum of excitations as 0.1006 and 0.0994 following the criterion of 3σ
in normal distribution. Generated normal distribution of a pseudo-random damping ratio pa-
rameter could be plotted as in Fig. 12.

Fig. 12. Normal distribution of stochastic damping ratio.

Here, the computing formula of stochastic damping ratio ξ could be expressed as

ξ = 0.1 + 0.0002


n∑

i=1
Ui − n/2√
n/12

 ,


n∑

i=1
Ui − n/2√
n/12

 ∼ N (0, 1) , (3.7)

where Ui is a uniformly distributed random number, and Ui∼U (0, 1), n represents the total
amount of Ui. The global basins of attraction are calculated as shown in Fig. 13. The state domain
mainly consists of period-2, period-4, and multi-period attraction domains. The proportion of
period-2 attraction domain state cells in the entire space is 33%, while the proportion of period-4
and period-6 attraction domain cells is about 31%. Among them, the number of period-6 cells
is 57, accounting only for 0.14%. Compared to Fig. 10, where without stochasticity on the
damping ratio, although there no significant change occurs to the proportion of periodic attrac-
tors in the entire domains, due to the mutual abrupt transitions between period-2, period-4,
and multi-period attractors, the number of boundary cells gradually increases, and the basin of
attraction begins to turn into chaos together with more scattered period-2 cells. Additionally,
a boundary between the adjacent attraction domain is suffering interference, and the vibration
of the boundary cell changes frequently indicating instability. The system becomes sensitive to
the initial state, and the global attraction domains develop slightly deteriorated.
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Fig. 13. Basin of attraction under stochasticity when ξ∼N (0.1, 0.00022).

The concerned state cell still at [0.8, −0.07] under stochasticity is calculated and shown in
Fig. 14. From the view of structural perspective, the period-2 phase portrait and Poincaré map-
pings exhibit small fluctuations gradually, and it is noteworthy that the vibration of the system
tends to converge towards the two fix points especially with certain oscillations on the Poincaré
section in the final stage.

Fig. 14. Period-2 attractor under stochasticity when ξ∼N (0.1, 0.00022):
(a) phase portrait; (b) Poincaré section.

By comparing the attractors and their joint probability density distribution (Figs. 15 and 16),
we found while the damping ratio is subjected to stochastic excitation, the geometric structure
of the trajectory still remains in the period-2 state without much movements, but shrinks sig-
nificantly in size. Meanwhile, the periodic intensity of the attractor weakens too much, and the
phase portrait loosened up and dispersibility stands out. It demonstrates that stochasticity of
the damping ratio could minimize the vibration stability, while their impact on the period state
is not validated through this comparison.

Fig. 15. Evolution transformations of period-2 attractor.



Global behaviors of parameterized solution domain and basins of attraction of star herringbone. . . 305

Fig. 16. Comparisons of joint probability density of period-2 attractor:
(a) without stochasticity; (b) under stochasticity.

4. Conclusions

1) A novel meshing stiffness expression approximated to a rectangular wave was proposed uti-
lizing odd harmonic superposition, the distribution map of parameterized solution domain
and the evolutions of basin of attraction subjected to two dimensional excitations were
identified. The period-doubling bifurcation route was detected and verified in accordance
with the bifurcation region.

2) The evolution of the geometric feature of attractors was performed associated with the joint
probability density function. The phase portrait scatters during period-4 attractor going
into a chaotic state, simultaneously, the Poincaré section transformed from the previous
4 point sets down to a chaotic segment fractal point groups, which causes the shift and
converge occurred on attractors.

3) The global two-dimensional parameterized solution domain was calculated out, and the
overall distribution patterns of periodic and chaotic cell domains on parametric planes such
as speed and the damping ratio were achieved. The verification for the solution domains
was confirmed correctly by means of the bifurcation diagram.

4) The period-2 attractor experienced resonance while reaching the stable state under stochas-
tic fluctuations that in normal distribution influences on the damping ratio, the period-
icity of the attractor was significantly weakened. By the comparison of the behaviors of
the basin of attraction, the distributions of each periodic domain inside the overall domain
keeps barely transforms, but it generates more scattered periodic cells mixed in the original
domains, resulting in the deterioration of the steady-state of the system.
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