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Actual records of strong motion acceleration cannot meet engineering requirements. The simu-
lated seismic waves become an equivalent source of seismic wave input. The time-varying autore-
gressive moving average (ARMA) process is a straightforward and effective method for simulating
seismic ground motions. This model can accurately replicate the non-stationary amplitude and
frequency characteristics of seismic ground accelerations, making it useful for assessing damage in-
dicators, which are then compared to spectra derived from real seismic records. It is demonstrated
that the chosen ARMA(2,1) model and the applied algorithm effectively capture the characteristics
of real seismic records, even with the varying frequency content.
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1. Introduction

Acceleration data presented as time series are a subject of considerable interest and signifi-
cance in various applications. These time series exhibit significant irregularities in both amplitude
and frequency characteristics, which are subject to change over time. Essentially, all accelera-
tion data can be viewed as time series with nonstationary characteristics, and each acceleration
time series is essentially a single realization of a nonstationary stochastic process (Sakellariou &
Fassois, 2006; Zheng & Mita, 2007). To model these time series effectively, two main approaches
are employed: in the frequency and in the time domains. The time-varying nature of the fre-
quency content is taken into account by utilizing an evolutionary density function, a valuable
tool for characterizing the frequency content in these data (Carden & Brownjohn, 2008). The
connection between theoretical concepts and practical applications has led to the development
of a practical technique for modeling acceleration using ARMA models (Ay & Wang, 2014; Luo
& Yu, 2017). These models offer the flexibility needed to accurately represent real acceleration
time series data (Bodeux & Golinval, 2001).
Analysis of linear and nonlinear response spectra reveals that the ARMA(2,1) process, when

applied to simulated acceleration time series, effectively captures the key characteristics of ac-
celeration records (Johnson et al., 2004; El-Choum, 2014). This approach also characterizes
dependency patterns in displacement plasticity and hysteretic energy (Nair et al., 2006; Zhang,
2007). By analyzing response spectra from ARMA models, dynamic structural responses are
assessed with precision, an approach also used in nonlinear analysis of concrete dams (Ouzandja
et al., 2023). In our study, the ARMA(2,1) model, analyzed in detail by Box et al. (2015), was
found most suitable for computing hysteretic energy.
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2. Earthquake process model modelling

2.1. Acceleration time series process models (ARMA)

ARMA (p, q) process model can be represented as follows:

zt − φ1zt−1 − ...− φpzt−p = at − θ1at−1 − ...− θqat−q, (2.1)

where φi and φj are constant coefficients; (p, q) is the order of the model.
The model contains p + q + 1 unknown parameters, which are usually estimated from data

based on maximum likelihood and the model order is based on the Akaike information criteria.

2.2. Autocorrelation functions

To determine the appropriate order (p, q) for the ARMA model, representing an acceleration
time series, it is essential to examine the theoretical autocorrelation function, R(k). The theo-
retical autocovariance function, C(k), can be derived by multiplying Eq. (2.1) by zt and taking
expectations (Brahimi, 1989):

C(k) = φ1C(k − 1) + ...+ φpC(k − p) + Cza(k)− θ1Cza(k − 1)− ...− θqCza(k − q), (2.2)

where

Cza(k) = E[zt−k · at]. (2.3)

The autocorrelation function R(k) is obtained by dividing Eq. (2.2) by C(0) and a similar form
is obtained:

R(k) = φ1R(k− 1) + ...+φpR(k− p) +RCza(k)− θ1Rza(k− 1)− ...− θqRza(k− q). (2.4)

The fact that the values of zt−k are correlated only to white noise values up to time t−k implies
that:

Cza(k) = 0 for k > 0. (2.5)

Thus, for processes using AR, the function takes the form of an exponential decay or series
of waves as the lag k increases. Alternatively, for MA, when the lag k reaches a specific or-
der g, the function becomes equal to zero. Finally, when the ARMA process is used, when the
first g − p lag is overcome, the function takes the form of a combination of exponential decay
waves.

2.3. The function of partial autocorrelation

The partial autocorrelation function describes the time dependence of the series, when com-
bined with the use of AR, it becomes possible to accurately identify the order and type of
the model being estimated. For stationary autoregressive (AR) processes, the autocorrelation
function continues indefinitely.
Therefore, characterizing the autoregressive process involves counting the non-zero autocor-

relation terms. The theoretical partial autocorrelation function P (k) is calculated using the
Yule–Walker equations. For a stationary and invertible ARMA process, the partial autocorrela-
tion function P (k) decays with a damped exponential or sine wave pattern, influenced by moving
average parameters after the first p− q lags (Brahimi, 1989).
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2.4. AIC criteria

One major challenge in this study was estimating both the number and values of model pa-
rameters to minimize the discrepancy between the simulated model and the actual time series.
The model order was determined using the Akaike information criterion (AIC), while the pa-
rameters were estimated through a nonlinear least squares approach. AIC focuses on maximum
information criteria, considering entropy and Kullback–Liebler information for independent ob-
servations. For stationary time series, the optimal model minimizes this criterion:

AIC(p, q) = N ln(σ2a) + 2(p+ q), (2.6)

where N is the sample size, and σ2a is the maximum likelihood estimate of the residual variance.
In this analysis, the ARMA(1,1), ARMA(1,2), ARMA(2,1), and ARMA(2,2) models were

used for each seismic event. The final model selection for each earthquake was made based on
a comparative AIC evaluation across the proposed models.

2.5. Modulating function

Another challenge in the simulation was estimating the variance or the envelope function.
Variance regulates the non-stationarity of the process and considers statistical parameters, in-
cluding structural responses or extreme acceleration values. The variance for the acceleration
time series data, zt, considered as random variables, is expressed as

σ2a = E(zt − µt). (2.7)

The common assumption E(zt) = 0 is used in acceleration time series simulations, employing
equally weighted two-second windows with 0.02-second intervals, estimating variance as

f2Z(t) =
1

100

t+50∑
T−50

z2T . (2.8)

Here, f(t) approximates the modulating function, although it lacks criteria to differentiate be-
tween stationary and non-stationary data. Practically, a variance function with few parameters
is ideal (Brahimi, 1989). This study uses a moving window with 0.5-second intervals to deter-
mine the variance across three acceleration time series, with MATLAB performing all necessary
calculations.

2.6. Parametric envelope function

To simplify practical applications, a variance function with limited parameters is desirable.
A smoothed function with limited parameters is used here (Brahimi, 1989):

s(t) = α exp

(
− t− β

γ

)2

, (2.9)

where α, β, γ are constants found by fitting the function to the estimated variance using the least
squares method. This function is effective in fitting modulating functions with narrow peaks.

3. Procedure for modeling

To model ground motion acceleration as the ARMA process, the data is first transformed
for stationarity by isolating the period of significant shaking. The ARMA modeling follows this
procedure (Menasri et al., 2012):
– calculate the experimental modulating function and normalize the data;
– assume an analytical form for s(t) and estimate its parameters;
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– calculate autocorrelation functions;
– choose model order (p, q) based on autocorrelation;
– estimate model coefficients using maximum likelihood, applying the Kalman filter for time-
varying coefficients;
– select the model with the lowest AIC.

The three recorded accelerograms framed below were selected for our case.

Table 1. Characteristics of real earthquakes (Menasri, 2012).

Event Affroun EW Affroun NS Affroun V

Magnitude 6.8 6.8 6.8

Duration [s] 80 80 80

Acceleration max× g 0.1644 0.09 0.03

Number of points 16001 16001 16001

4. Application of ARMA models

4.1. Models adopted

For this study, the ARMA model with a parametric envelope function was chosen to simplify
parameter estimation for design purposes. Modeling begins with a modulating function to stabi-
lize the series, which is then fitted to a smoothed parametric envelope function (e.g., Eq. (2.9))
effective for narrow peaks (Brahimi, 1989). Parameters are estimated from the stabilized series.

4.2. Acceleration time series

Three acceleration time series, including Affroun with 16000 data points (0.005 second dig-
itization increment), were consistently used. The main difference between the series was the
number of data points required for estimation, with the plots shown in Fig. 1.

Fig. 1. Time series of acceleration measurements at the Affroun station in the East-West direction.

As the first step in model identification, the modulating function f(t) was computed for each
measured acceleration record using Eq. (2.2).
Figure 2 shows the appearance and envelope functions for Affroun EW, NS, and V earth-

quakes. It is evident that non-stationarity is significant across events.
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Fig. 2. Modulating and envelope functions extracted from the Affroun East-West acceleration data.

The single-peak envelope function in Eq. (2.9) is fitted to each measured modulating function
using the least squares method, with results shown for four acceleration series in Fig. 2.
The original acceleration record and the obtained modulating function allow the estimation

of the stabilized acceleration series, as shown for the El Affroun EW event in Fig. 3. The resulting
series has an approximate variance of one and a mean near zero, with the frequency content
incorporated into ARMA model parameters.

Fig. 3. Stabilized acceleration time series for the Affroun East-West component.

5. Results

Estimated autocorrelations for the three stabilized time series from measured records are
shown in Fig. 4. The rapid decay of autocorrelations indicates that no roots of the characteristic
equation are near the unit circle boundary, confirming stationarity.

Fig. 4. Estimated and partial autocorrelation functions for the Affroun East-West acceleration data.
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Partial autocorrelation functions are estimated for each record by fitting successive autore-
gressive processes of the order k in MATLAB, with results for Affroun EW in Fig. 4.
The partial autocorrelation function for the Affroun series indicates that after the lag q = 2

or q = 3, correlations decline, suggesting an ARMA model order with p − q = 2 or 3. Models
based on AR and partial AR functions were tested for three events, using maximum likelihood
estimates approximated by the least squares method. The model order selection was guided
by the AIC criteria, and ARMA simulations with one or two MA terms were found optimal.
Table 2 presents AIC values for ARMA models, showing ARMA(2,1) as the best fit for Affroun
series.

Table 2. Application of AIC criteria to different ARMA models (Menasri, 2012).

Model AIC (Affroun EW) AIC (Affroun NS) AIC (Affroun V)

ARMA(1,1) −4.21635 −4.21958 −3.64068
ARMA(1,2) −5.11995 −5.29379 −4.78432
ARMA(2,1) −5.84522∗ −5.73424∗ −5.09023
ARMA(2,2) −5.71991 −5.61231 −5.26325∗
∗Optimal set by AIC criterion. [Source: Menasri (2012)].

Table 3 lists the AR parameters φ1, φ2, the moving average θ1, θ2, while Table 4 provides
envelope function parameters α, β, γ, with 95% confidence limits. Stability and invisibility
conditions are verified by the coefficients.

Table 3. Parameters of the selected models (Menasri, 2012).

Parameters Affroun EW Affroun NS Affroun V

AR (1) 1.82986 1.85144 1.80244

AR (2) −0.879019 −0.900216 −0.888599
MA (1) −0.7313 −0.634745 −0.754022
σa 0.0543099 0.0571895 0.0785381

Table 4. Parameters of the envelope function.

Event
Parameters envelope function

α β γ

Affroun EW 3.475e-8 10.78 0.59

Affroun NS 8.48e-8 9.958 0.5285

Affroun V 9.61e-9 10.91 0.6055

6. Acceleration time series

Simulated ARMA process systems, using a time-based approach, yield good results with
a limited number of parameters. The method involved generating stationary time series via the
ARMA model, then applying the envelope function. The ARMA model was treated as a lin-
ear combination of Gaussian random variables (at) and existing values (zt), enabling recursive
simulation of the time series. A simulation of the acceleration time series shown in Fig. 5.
The comparison of the main characteristics of real and simulated earthquakes is shown in

Table 5.
The results show that the ARMA(2,1) process, combined with the envelope function param-

eters, better represents the Affroun EW, NS, and V events.
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Fig. 5. Simulated acceleration time series for the Affroun East-West component.

Table 5. Characteristics of real and simulated earthquakes.

Earthquake Affroun EW Affroun NS Affroun V

Real Maximum acceleration × g 0.1644 0.09 0.03

Simulated Maximum acceleration × g 0.115 0.08 0.022

Duration [s] 80 80 80

7. Response spectra

7.1. Measures of damage

Various methods have been developed to assess the impact of earthquakes on both lin-
ear and non-linear structures, with significant contributions from researchers such as Lin, Mahin,
and Grigorio. The pursuit of precision plays a pivotal role in structural analysis, making the
utilization of highly sensitive predictive models a matter of significant importance. More specif-
ically, ARMA models are recognized as effective analytical tools for both qualitatively and
quantitatively describing the non-stationary nature of input data in structural analysis. Con-
sequently, each acceleration time series under examination is regarded as an outcome arising
from a sequence of multiple stochastic processes.
As a result, each acceleration time series being analyzed is considered the outcome of a series

of multiple stochastic processes.
Simultaneously, the characterization of ground acceleration time series can be achieved

through structural response spectra where a measure of the response damage is graphically
represented, where a measure of response damage is plotted as a function of time period.
Single degree of freedom and viscous damping systems are used to calculate these spectra as

shown schematically in Fig. 6. It is worth noting that these systems can exhibit either bilinear
or degenerate stiffness. This implies that for successful modeling, an integration method must

Fig. 6. One-degree-of-freedom system.
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be employed that takes linear acceleration into account at each computational step. This ap-
proach enables the derivation of spectral responses for the series, as represented by the equation:

MÜ(t) + cU̇(t) +R(u, t) = −MÜg(t), (7.1)

where M is the mass, u is the relative displacement of mass, c is the damping coefficient, Üg is
the ground acceleration, R is the restoring force.

7.2. Peak displacement ductility

For design, it suffices to consider the maximum response value:

Umax = |Umax(t)| , (7.2)

where Umax(t) represents the maximum displacement during an earthquake, and Umax denotes
ultimate deformation capacity under monotonic loading.
Responses Umax(t) are obtained by assuming a linear acceleration at each time step, we make

a numerical integration of the general equation.
This function enables us to relate the system’s maximum value to its natural oscillation

period, facilitating the creation of a spectrum for systems where damping values and the periodic
range are the same.

7.3. Hysteretic energy in a normalized form

The hysteretic energy is derived by dividing the dissipation energy by twice the absorbed
energy. For structures with hysteretic load-deformation, the dissipation energy is:

Eh(t) =

t�

0

R(u, t)u̇(t)dt− Es(t), (7.3)

where Es(t) is elastic deformation energy:

Es =
1

2
KyU

2
y , (7.4)

where Ky the stiffness after elasticity, Uy is the initial elastic displacement.
The bilinear model, often used in this context, is defined by three primary parameters: Uy the

initial yield displacement; K1 the initial elastic stiffness; and Ky the post-yielding stiffness. As
displacement increases, this model provides the corresponding restoring force:

R(u, t) =

{
R(u, t) = K1u(t) if Uy ≥ u(t),

R(u, t) = Ky(u(t)− uz) if Uy < u(t).
(7.5)

The value uz represents at the yield envelope intersects the displacement axis. During unloading,
stiffness remains at the initial level until the yield envelope is reached.
The normalized hysteric energy is given as follows:

ENH = 1 +
EH

RyUy
, (7.6)

where Ry = KyUy represents the force at yield, EH the hysteretic energy resulting from inelastic
deformation.
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7.4. Application and numerical results

Several ARMA models proved highly suitable for analyzing three distinct time series with
varying data points. For the response analysis, damping coefficients (ε) were set to 0.05, and
the yield coefficient (Y ) was calculated as Y = Ry/Mg, ranging from 0.05 to 0.3. The hysteretic
energy was computed using alternative output coefficients, and mean displacement ductility was
used to establish demand spectra for the hysteretic energy (Brahimi, 2021). Confidence intervals
were estimated using standard deviations, and spectral values decreased as the period increased.

Fig. 7. Displacement ductility in a bilinear system as a function of period for a given damping ratio.

Fig. 8. System for modeling stiffness degradation with respect to displacement ductility.

Fig. 9. Impact of the elasticity ratio on hysteretic energy in a bilinear system.
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The results, shown in Figs. 7 and 8, reveal a consistent decrease in spectral values with longer
periods and similar trends between systems with reduced and bilinear stiffness.
The yield coefficient has been recognized as one of the foremost factors in the structural

analysis of nonlinear systems (Brahimi & Smain, 2021), because the initial yield displacement
is a prerequisite for the inelastic reaction. Thus, Fig. 9 illustrates classical descriptions of mean
displacement ductility for varying yield coefficients, assuming a system with bilinear stiffness
and 5% damping.

8. Conclusions

It has been demonstrated that by applying simulated ARMA processes within a time-domain
approach, satisfactory results can be achieved with fewer parameters. The response spectra of
simulated earthquakes closely resemble those of real earthquakes, except for long-period events.
Studies have revealed a linear relationship between the logarithms of the mean nonlinear response
spectrum and the system’s natural period, indicating that an increase in the period results
in a decrease in the average displacement ductility and hysteretic energy. Specifically, as the
logarithm of the system’s period increases, the response spectra for displacement, ductility, and
hysteretic energy decrease for a given period and damping. The findings in this study, shown in
time series form, converge with theoretical results and can be generalized. This could represent
a significant advancement in the measurement and monitoring of stability in construction zones.
We believe that these results can provide valuable insights for construction companies and society
at large.
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