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Vehicle suspension systems are fundamental components designed to mitigate the adverse
effects of road surface irregularities. These systems are typically categorized as passive,
semi-active, or active suspensions. This study focuses on a quarter car suspension model to
explore the application of two control methods, the Linear Quadratic Regulator (LQR) and
the Model Predictive Control (MPC). Experimental data are collected using the Quanser
active suspension experiment setup. Initially, the LQR controller is employed to optimize
performance criteria related to the system state and input signals. Subsequently, the widely
recognized MPC approach is used as an alternative control method. A comprehensive com-
parative analysis is conducted, taking into account various load conditions and parameter
variations. Additionally, the study investigates system responses under varying road condi-
tions, changes in plant characteristics, and the introduction of disturbances, to provide an
exhaustive comparison of the two control methods. The results obtained with the MPC and
the comparison with the findings of various authors to date allow us to emphasize that the
presented results in this study significantly outperform the previous work. These outcomes
have undergone rigorous validation on the physical model available in our mechatronics
laboratory.
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1. Introduction

In the realm of engineering and vehicle dynamics, the quest for optimal ride comfort and vehicle
stability has driven the development of advanced suspension systems. Traditional passive sus-
pensions have limitations in adapting to varying road conditions and vehicle dynamics. Active
suspension systems, incorporating springs, dampers, and plate masses, have emerged as inno-
vative solutions to overcome these limitations. These systems aim to dynamically adjust the
suspension parameters in real time, offering the potential to enhance ride quality, handling, and
overall vehicle performance.

This mathematical modelling study examines the intricacies of active suspension hard-
ware, focusing on the integration of springs, dampers, and plate masses, to provide insights
into the underlying principles and dynamics governing their behavior. In this paper, the fo-
cus is on advancing vehicle suspension systems to elevate ride quality, steering stability, pas-
senger comfort, and mitigate concerns by Gandhi et al., (2017). The study employs a Four
Degrees of Freedom (4-DOF) half car active suspension model as the testing ground for
a range of controllers (Likaj, 2005), including PID, LQR, Fuzzy Logic (Sahin, and Akalin,
2020). This paper explores the application of control strategies in the context of vehicle sus-
pensions (Durmaz et al., 2017). It examines three categories of suspensions (passive, semi-
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-active, and active), with a specific focus on the quarter car suspension model. The study
employs two prominent control methods, namely the Linear Quadratic Regulator (LQR) and
Model Predictive Control (MPC), using the Quanser AS experiment set to gather experimental
data.

Initially, the LQR is employed to optimize system performance based on predefined criteria
related to the state and input signals. Subsequently, an MPC, a widely recognized industry-
standard controller (Durmaz et al., 2017), is utilized as a secondary control approach. Thus, we
systematically investigate and compare the performance of LQR and MPC under various load
conditions and parameter variations. Furthermore, this paper presents a straightforward yet
effective control methodology for stabilizing the position of the sprung mass within the quarter
car system by (Ovalle et al., 2021).

These robust controllers guarantee exponential stability in the presence of non-vanishing
disturbances, as substantiated by the Lyapunov function and stability analysis (Likaj et al.,
2016). Simulation and experimental Saha and Amrr (2020) results demonstrate the superiority
of these control schemes over traditional linear methods, particularly within the Quanser ASS
(Deshpande et al., 2012; Fei et al., 2022). Experimental results demonstrate that AIWPSO-
-tuned LQR significantly reduces vehicle body acceleration on uneven road surfaces, thereby
ensuring passenger safety and enhanced ride comfort, as validated against ISO 2361-1 standards
by (Reddipogu and Elumalai, 2020).

The system, requiring only the sprung mass position sensor, estimates states, uncertain-
ties, and disturbances while ensuring overall stability (Wang and Zhou, 2019). A delay-
dependent stability criterion is derived using the Lyapunov theory and the linear ma-
trix inequality (LMI) method; this offers superior performance compared to traditional
H-inf controllers by (Abdellahi et al., 2000) as confirmed through simulation and experi-
mental results. A novel Static Output Feedback (SOF) control approach is introduced for
linear parameter-varying (LPV) systems, to ensure asymptotic stability and improved per-
formance through gain-scheduled static output feedback (GS-SOF) controllers (Sereni et al.,
2020).

The design strategy incorporates a two-stage method, employing linear matrix inequalities
(LMI) and Finsler’s Lemma, and is demonstrated in practical applications for ASS control,
showcasing its effectiveness (Pedro et al., 2024). In this work, control objectives for nonlinear
ASS with uncertain, time-varying constraints are addressed. The study demonstrates uniform
boundedness and ultimate boundedness via Lyapunov analysis, supported by experimental and
numerical simulations on a 2-DOF nonlinear ASS with uncertainties (Qin et al., 2021; Zhang
and Jing, 2021).

Experimental results demonstrate remarkable improvements in transient performance and
energy efficiency, offering a fresh perspective on “robust and green” AS control for vehicles
(Pusadkar et al., 2019). In this paper, the focus is on addressing car body vibrations caused by
track irregularities, to enhance ride quality (Eris et al., 2015). In this work, a novel approach is
introduced to enhance the performance of semi-active vehicle suspension systems (Ahmed and
Svaricek, 2014; Deshpande et al., 2017).

To minimize online computational requirements, control laws for various frequency ranges
are derived from optimal controller data based on detected measured variable frequencies. Simu-
lation and experimental results demonstrate improved ride comfort and road handling (Basturk,
2016). The study innovatively applies deep reinforcement learning to vehicle suspension control,
emphasizing the adaptability and improved ride comfort. It introduces an enhanced DDPG al-
gorithm, showcasing its efficiency with empirical samples, and establishes a physical model for
comprehensive analysis (Liu et al., 2020).
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2. Mathematical modelling of active suspension hardware with springs, dampers,

and plate masses

In this analysis, we will derive generalized dynamic equations of an active suspension system. The
Free Body Diagram method is employed to capture the system dynamics as a dual-mass damper-
-spring model (Fig. 1). Within this approach, the two inputs to the system are considered to be
commands of the AS control Fc, and the road surface position zr (Apkarian and Abdossalami,
2013).

Fig. 1. System diagram of the active suspension system

Furthermore, the reference frames in Fig. 1 are utilized to define generalized coordinates,
such as z1 and z2. The generalized coordinate z1 represents the displacement of the suspension
springs, while z2 represents the displacement of the vehicle body.

Table 1. The numerical values linked with the system to be utilized for real and simulation
conditions (Apkarian and Abdossalami, 2013)

Parameters Name of parameters Parameters values

Ms Sprung mass 2.45 kg

Mus Unsprung mass 1.0 kg

Ks Suspension stiffness 900N/m

Kus Tire stiffness 1250N/m

Bs Suspension inherent damping coefficient 7.5 Ns/m

Bus Tire inherent damping coefficient 5.0 Ns/m
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2.1. Active suspension system EOMs

Within its operational range, we presume that the Active Suspension System can be accu-
rately characterized as a linear system. The mathematical analysis is simplified by this linear
approximation. We assume that the suspension displacements and vehicle body motions from
their equilibrium positions are of small amplitude. Because of this assumption, we can linearize
the system behavior and apply small-angle approximations. We consider a quasistatic analysis,
which assumes that the dynamics of the Active Suspension System evolve at a slower timescale
than the overall motion of the laboratory setup. Next, we individually analyze the masses of
components to derive the equations of motion for accelerations, z̈1 and z̈2

z̈2 = −g +
Fc

Ms
+
Bs

Ms
(ż1 − ż2) +

Ks

Ms
(z1 − z2) (2.1)

The mass of the vehicle bodyMs is presented below. The first system is described by its equations
of motion (EOM). Likewise, the body diagram associated with the massMus is depicted in Fig. 2.

Fig. 2. System diagram of the upper plate and central plate, extracted from Fig. 1

The equations of motion (EOM) corresponding to this diagram are

z̈1 = −g −
Fc

Mus
−
Bs −Bus
Mus

ż1 −
Bus

Mus
żr +

Bs

Mus
z̈2 −

Kus

Mus
zr +

Ks

Mus
z2 −
Ks −Kus
Mus

z1 (2.2)

We aim to demonstrate that the gravitational force solely alters the equilibrium points without
influencing the system dynamics. When in the state of equilibrium, denoted by z1 = zq1 and
z2 = zq2, the derivatives of z1 and z2 of any degree are all zero.
Additionally, the road surface zr and all its derivatives, along with the control force Fc, are

also zero in this equilibrium state. Substituting these conditions into Eqs. (2.1) and (2.2), we
obtain

Kszq1 +Kuszq1 −Kszq2 +Musg = 0 Kszq2 −Kszq1 +Msg = 0 (2.3)

Subsequently, the equilibrium positions resulting from the influence of gravity are as follows

zq1 = −
Mus +Ms
Kus

g zq2 =
KsMs +MusKs +MusMs

KsKus
g (2.4)

We implement the subsequent variable transformation to effectively eliminate the impact of
gravitational forces from the equations

ż1 = żus ż2 = żs

z̈1 = z̈us z̈2 = z̈s
(2.5)

By introducing the expression from Eq. (2.5) into Eqs. (2.1) and (2.2), we obtain

Musz̈us = −Fc +Bus(żr − żus) +Bs(żs − żus) +Ks(zs − zus) +Kus(zr − zus)

Msz̈s = Fc −Bs(żus − z̈s) +Ks(zus − zs)
(2.6)
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Herein, the equations have been purged of gravitational influence, leaving only a shift in the
system equilibrium point due to gravity. The state variables, coupled with the pair of inputs
and the dual outputs, can be articulated as follows

z =




zs − zus
żs

zus − zr
żus


 u =

[
żr
Fc

]
y =

[
zs − zus
z̈s

]
(2.7)

By utilizing Eq. (2.6), it is possible to define A, B, C, and D in the subsequent manner

A =




0 1 0 −1
−Ks
Ms

− Bs
Ms

0 Bs
Ms

0 0 0 1
Ks
Mus

Bs
Mus

−Kus
Mus

−Bs−Bus
Mus


 D =

[
0 0
0 1
Ms

]

C =

[
1 0 0 0
−Ks
Ms

−Bs
Ms

0 Bs
Ms

]
B =




0 0
0 1

Ms

−1 0
Bus
Mus

− 1
Mus




(2.8)

3. Active suspension system using LQR

The Linear Quadratic Regulator (LQR) represents an unconstrained model-based control tech-
nique that discerns the optimal input c(ki) = Fc through solution of an infinite horizon opti-
mization problem

minJ =

∞∫

0

(zT(ki)Qz(ki) +R
2
c(ki)
)
dt

dz
subject to z(ki) = Az(ki) +Bc(ki)

Fc = −K[ki]z(ki)

(3.1)

In this context, the gain K[ki] is derived as follows

K[ki] = [R +B
TSB]−1BTSA

ATSA− S(ATSB)(R+BTSB)−1(BTSA) +Qz(ki) = 0
(3.2)

Given the assumption of linearity and time-invariance governing the two equations of motion
(EOMs) associated with the ASS, their expression can be rendered in the state-space represen-
tation below

Z(ki+1) = Az(ki) +Bc(ki)

c(ki) = −K[ki]z(ki)

Z(ki+1) = [A−BK[ki]]z(ki) = Φz(ki))

(3.3)

The performance index J imposes penalties on the system state variables, namely the sus-
pension displacement and tire deflection (both regarded as performance measures), as well as
the velocities of the vehicle body and the tire. This is accomplished using the weighting ma-
trix Qz(ki) . The weighting matrix Qz(ki) is characterized by its symmetric, positive semidefinite
nature, and it is essential for it to exhibit full rank. The performance index additionally en-
capsulates the constraints on control by subjecting the control input to penalties using the
weighting coefficient R. The weighting matrices significantly influence the manner in which the
LQR accomplishes its minimization objective, by essentially operating as tuning variables.
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Algorithm 1 Parameters and description of calculation of K[k] based on LQR.

∀ parameters:
A → System dynamics matrix, B → Control input matrix, C → Output matrix,
Q → State cost matrix, R → Control cost matrix, & N → Time horizon
→ Initialization:

P[N−1] = Qf → Final state cost matrix.

K[N ])→ Feedback control gain matrix.

Backward pass:
for k = Ndown to 1 do.

K[k] = −
{
(R+BT ∗ P[k+1] ∗B)

−1 ∗BTP[k+1] ∗ A
}

P[k] = Qz +A
T ∗ P[k+1] ∗A−A

T ∗ P[k+1] ∗B ∗K[k]
end for

Forward pass:
for k = 1 to N do

Calculate control input:
u[k] = K[k] ∗ z[k], where z[k] is the current state.

→ Apply the control input u[k] to the system.

→ Measure the new state z[k+1].

end for

Fig. 3. Proposed system diagram of the LQR and MPC for the active suspension system

Devise this controller to effectively address a pulse road bump characterized by a 0.001m
amplitude and a frequency of 0.5 Hz. In Fig. 4, the transfer functions are extracted, representing
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all possible combinations of two inputs and two outputs from the ASS. This analysis provides a
holistic perspective on the system behavior, which offers insights into how various inputs influ-
ence corresponding suspension outputs and assist in optimizing control strategies for enhanced
performance.

Fig. 4. The transfer functions for all combinations of two inputs, and two active hang outputs are
extracted

Figure 5 shows the simulated active suspension using a road collision profile with a magnitude
of 0.02Hz and a phase of 5Hz and demonstrates the system response to these parameters.

Fig. 5. Simulated active suspension with a road collision profile of magnitude 0.02Hz and phase at 5Hz
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This graph offers insights into the dynamic behavior of the active suspension system, il-
lustrating how the system control influences the simulated position and plate position. Such
analyses are crucial for evaluating the efficacy of the active suspension system in maintaining
the desired plate positions.

Fig. 6. Simulation scheme of the active suspension system: the real model is on the left side, and the
simulation part on the right

Fig. 7. Simulated closed-loop response for: (a) x sim with the LQR, (b) plate position with the LQR

By observing the relationship between x sim and zr−zus−zs, engineers can optimize control
strategies for improved ride quality and stability. This visual representation guides the refine-
ment of active suspension algorithms and facilitates the creation of systems that effectively
manage vehicle dynamics to ensure a smoother, more controlled driving experience. In Fig. 7a,
a simulated closed-loop response is presented, depicting the correlation between x sim and the
plate position, represented as zr zus zs in Fig. 7b.

Fig. 8. (a) Simulated closed-loop response for control force with LQR. (b) Closed-loop response for
control force measurement with LQR

Figure 8a demonstrates the simulated closed-loop response for the control force Fc [N],
showcasing how the system control input correlates with the resulting force output. This offers
insights into the control system efficacy. Figure 8b shows the control force measurement. This
graph shows the correlation between the applied control force and the resulting measured control
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force, thus indicating the system responsiveness and accuracy in force regulation. The measured
force closely matches the simulated force, validating the accuracy and responsiveness of the
control system.

4. Active suspension system using MPC.

Model Predictive Control (MPC) is a control strategy that relies on the model of the system
to make predictions and optimize control actions while considering constraints. A discrete-time
representation of the plant is used to create an online optimization problem that incorporates
constraints and is computationally manageable.
Figure 9 illustrates the receding horizon strategy; this involves computing an optimal input to

ensure that the future evolution of outputs adheres to performance criteria and avoids constraint
violations. While the optimal control calculates a sequence for the entire control horizon at each
moment, only the initial component of this sequence is implemented in the plant, with the
remaining components being disregarded. Based on the state-space model using matrices A, B,
C and D in the future, the state variables are calculated sequentially using the set of future
control parameters.

Fig. 9. Receding horizon strategy

The control horizon Nc and predictive horizon Np for z(ki+N) is the predictive state variable
plan information z(ki) for i = 1, 2, . . .

z(ki+1) + z(ki+2) + . . .+ z(ki+Np) = Az(ki) +Bc(ki) +A
2z(ki+1) +ABc(ki+1) + . . .

+ANpz(ki) +A
Np−1Bc(ki) +A

Np−2Bc(ki+1) + . . .+A
Np−NcBc(ki+Nc−1)

(4.1)

From the predicted state variables, the predicted output variable we define the vector z(k+1)

z(k+1) = z(ki+1) + z(ki+2) + . . .+ z(ki+Np) = ACz(ki) +BCc(ki) +A
2Cz(ki)

+ABCc(ki) +ABCc(ki) +BCc(ki+1) +A
3Cz(ki) +A

2BCc(ki) +ABCc(ki+1)

+BCc(ki+2) + . . .+A
NpCz(ki) +A

Np−1CBc(ki) +A
Np−2CBc(ki+1) + . . .

+ CNp−NcCBc(ki+Nc−1) i = 1, 2, . . .

(4.2)

We collect equations x1 and x2 together in compact in the matrix form as

z(ki+1) =

{
Φz(ki) + Γc(ki) for ki ¬ Nc
Φz(ki) for ki > Nc

(4.3)
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and

~zki+1 =




AC

A2C

A3C
...

CANp




︸ ︷︷ ︸
Φ

+




BC 0 0 · · · 0
BAC CB 0 · · · 0
A2BC CAB CB · · · 0
...

...
...

. . .
...

ANp−1BC ANp−2BC ANp−3BC · · · ANp−NcBC




︸ ︷︷ ︸
Γ

(4.4)

The incoming sequence has the formula

c(k) =




Φ(ki|ki)
Φ(ki + 1|ki)

...
Φ(ki +Np − 1|ki)



=
[
c(ki|ki)) · · · c(ki+Np−1|ki)

]
∀i = 1, 2, . . . , Nc − 1 (4.5)

In our case, we have taken the parameters: N = 4, and the matrices Φ and Γ are given below

Γ(N=4) =
[
AN−1B AN−2B AN−3B AN−4B

]
=
[
̟1 ̟2 ̟3 ̟4

]
(4.6)

Calculations of the parameters for ̟i, i = 1, 2, 3, 4 yield

̟i =




a11(ni) a12(ni)
a21(ni) a22(ni)
a31(ni) a32(n1)
a41(ni) a42(ni)


 i = 1, 2, 3, 4 (4.7)

Calculation of the performance index J , assuming that the forecasts are based on perturbations
about the reaction cki = −K(ki)zki . The implemented MPC strategy involves using the initial
element of the control trajectory. Observe the distinction between the Linear Quadratic Regula-
tor (LQR) described in Eq. (3.1) and the MPC problem mentioned earlier. Initially, it is evident
that the performance metric is now aggregated over a limited time horizon

[cki , cki+1, . . . , cki+N ] = arg(cki , cki+1, . . . , cki+N )

minJ =
N∑

k=0

cT(k)Hc(k) + 2z
T
(k+1)F

TΦ(k) + z
T
(k+1)Gz(k)zki+1 = Aszki +Bsck

(4.8)

Taking into account

zmin ¬ zki+1 ¬ zmax cmin ¬ cki ¬ cmax k ∈ zTk k = 1, 2, . . . , N (4.9)

Furthermore, the presence of supplementary constraints, related to the performance, provides
bounds for both the system states and inputs. In summary, the performance index J becomes

J = cT(ki)Hc(ki) + 2z
T
(k+1)F

TΦ(k) + z
T
(k+1)Gz(k) (4.10)

where the matrices are defined by

H = ΓTQ̃Γ + R̃ F = ΓTQ̃Φ G = ΦTQ̂Φ+Q Q = CTC

∇c(ki)J = 2Hc(ki) + Fz(ki) =

[
∂J

∂c(ki|ki)

∂J

∂c(ki+1|ki)

∂J

∂c(ki+2|ki)

∂J

∂c(ki+3|ki)

]
(4.11)



Utilizing linear quadratic regulator and model predictive control... 85

Algorithm 2 Description of the calculation parameters for MPC.

∀ parameters:
A → System dynamics matrix, B → Control input matrix, C → Output matrix,
Q→ State cost matrix,
R→ Control cost matrix, N → Prediction horizon and x0 → Initial state.
→Initialization:

zk+1 = z0 → Current state.
for t = 0 to Tmax do
→ Solve the optimization problem to find the optimal control sequence {c0, c1, . . . , cN−1}.
minJ =

∑
i=0 to N−1{z

T
[i] ∗Q ∗ z[i] + u

T
[i] ∗R ∗ c[i]}

subject to: z[0] = zk+1
z[i+1] = A ∗ z[i] +B ∗ c[i], for i = 0 to N − 1

→ Constraints on states and inputs:
zmin ¬ zk+1 ¬ zmax
cmin ¬ ck ¬ cmax

� zmin and zmaxa are vectors representing the lower and upper bounds
for the state variables (zk+1).

� cmin and cmaxa are vectors representing the lower and upper bounds
for the input variables (ck).

→ Apply the first control input u0 to the systems:
zk+1 = A ∗ zk+1 +B ∗ ck

→ Update the control input sequence for next iteration:
{c0, c1, . . . , cN−2 = c1, c2, . . . , cN−1, cN(x−1), uN−x, . . .}

end for

Fig. 10. Simulation model showing the dynamic behavior of the body-tire system, including the vertical
displacement (zs − zus), body velocity żs, and tire velocity żus; all are effectively controlled and

regulated using Model Predictive Control techniques

5. Experimental set-up of hardware-in-the-loop

Hardware-in-the-loop (HIL) simulation is a crucial method applied during the development and
testing of intricate real-time embedded systems. This technique proves highly effective as it in-
tegrates the complexity of the process-actuator system, often referred to as the “plant”, into
the testing environment. To accomplish this, a mathematical model representing all relevant
dynamic systems, known as “plant simulation”, is incorporated. Consequently, the embedded
system under evaluation interacts with this plant simulation, facilitating comprehensive test-
ing and development (Hwang et al., 2006). In the automotive sector, the active suspension
technology plays a pivotal role in the ongoing management of the vertical wheel movement
by employing actively controlled actuators positioned along the suspension axis. Furthermore,
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comparable technologies have found application in train bogies, where they serve to enhance
the train handling during curves and reduce the perceived passenger discomfort resulting from
abrupt accelerations (ASS, available online: accessed on 15 January 2024).

Table 2. Device specifications of Active Suspension System

W × L×H [cm] 30.5× 30.5 × 61

Mass [kg] 15

Range [mm] [±22] (road), [±19] (tire), [±25.4] (car)

Position [mm/count] 0.002 (road), 0.005 (tire), 0.009 (body)

Stiffness [N/m] 0.4-2

Excitation frequency [Hz] Up to 15

Resonant [Hz] 2 and 6

5.1. Numerical and experimental analyses of ASS hardware-in-the-loop

In the Mechatronics Laboratory at the Faculty of Mechanical Engineering (FME), Univer-
sity of Prishtina, we harnessed the versatile Quanser active suspension platform for seamless
integration and exploration of both the LQR and MPC, Fig. 13. This encompassed a compre-
hensive process of system configuration, precise programming, rigorous testing, and meticulous
fine-tuning. Our objective was to enable in-depth research and experimentation in advanced
control strategies for suspension systems, to provide an enriched learning environment for our
students.

Fig. 11. Mechatronics laboratory: Physical representation of the ASS at the University of Prishtina

Fig. 12. (a) Closed-loop response for xsim [mm/s]. (b) Measurements closed-loop response
for xactual [mm/s]

Figures 12a and 12b display the closed-loop response between the two variables: xsim and
xactual, both measured in [mm/s]. These graphs visually portray the relationship between the
simulated position xsim and the actual position xactual within a closed-loop control system.
By observing the trends and correlations between these two positions, valuable insights can be
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derived regarding the accuracy and effectiveness of the control system. This graphical represen-
tation assists in the analysis and refinement of control strategies, offering a clear understanding
of how closely the simulated position matches the actual position. This information is essential
for evaluating the performance of control systems in scenarios where precise position tracking is
critical and allows for adjustments that enhance system accuracy and reliability.

Figure 13a presents the closed-loop response for the actual position, referred to as xactual,
in the context of an active suspension system. This graph elucidates the behavior of the system
position control under closed-loop conditions. The response illustrates how the ASS effectively
manages and adjusts the actual position in response to various inputs or disturbances. This
visual representation offers valuable insights into the system ability to maintain desired positions,
enhance ride comfort, and mitigate the effects of external forces or road irregularities. Engineers
and researchers can utilize these data to fine-tune the ASS, to ensure the optimal performance
and responsiveness for a smoother and more controlled ride experience. Figure 13b depicts
the closed-loop response of the plate position within an active suspension system. This graph
provides a visual representation of how the ASS dynamically manages and adjusts the position
of the plate in response to various inputs and external factors.

Fig. 13. (a) Closed-loop response for xactual [m/s] with MPC. (b) Closed-loop response for plate
position [m/s] using MPC

The response curve highlights the system ability to effectively control the plate position,
thus contributing to improved vehicle stability and ride quality. This information is valuable
for engineers and researchers working on active suspension systems, as it offers insights into
the system performance characteristics and its capability to maintain desired plate positions
even in the presence of disturbances or changing road conditions. By analyzing this response,
developers can enhance the design and control strategies of the ASS, leading to better overall
vehicle dynamics and passenger comfort.

Figure 14a illustrates the closed-loop response concerning the control force, denoted as Fc [N],
and the resulting body acceleration in Fig. 14b, represented as zr [m/s

2]. This response graph-
ically portrays the relationship between the control force applied to guide the system in the
rightward direction, and the consequent acceleration experienced by the body moving to the
left. The graph provides insight into the dynamic behavior of the system under closed-loop con-
trol, highlighting how changes in the control force lead to corresponding variations in the body
acceleration. This information is crucial for understanding and optimizing the performance of
control systems in scenarios where precise manipulation of acceleration is paramount.

Fig. 14. Closed-loop response for: (a) control force Fc [N], (b) body acceleration zr [m/s] using MPC
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6. Conclusion

In this experimental study, we look at how the LQR and MPC control methods can be used
in a quarter-car suspension model to optimize the system state and input signals performance.
Using the Quanser active suspension setup, our experimental analysis provided crucial insights
into these control strategies. The LQR controller demonstrated significant enhancements in the
system performance under stable and well-understood dynamics. On the other hand, the MPC
approach showed robustness in managing uncertain and time-varying parameters. The compar-
ative study under varying load conditions, parameter variations, and disturbances highlighted
individual strengths of the LQR and MPC. The LQR performs exceptionally well in certain
scenarios with stable system dynamics, while the MPC effectively handles uncertainties and dy-
namic changes. The selection between the LQR and MPC for active suspension control should be
based on specific system requirements and operational contexts. From the experimental results,
we conclude that the MPC outperforms LQR in terms of time to achieve stability and perfor-
mance. Ongoing research and development in these areas will surely contribute to the evolution
of active suspension technology and shape the future where vehicles provide higher performance,
comfort, and sustainability.
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