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This paper presents the shape deformation of a thin plate coupled to piezoelectric actuators
and sensors analyzed using the finite element method (FEM). The coupling effects between
electric and mechanical properties of the piezoelectric material draw attention to potential
applications, such as actuators, sensors, etc. The proposed method is analyzed and evalu-
ated, and its effectiveness is proven. Firstly, a rectangular piezoelectric actuator with three
symmetrically bonded sensors is used. Secondly, it is applied to control the swimming pool
diving board. Combination of FEM and LQR active control algorithms through numerical
simulation results shows changing shape and position of the piezoelectric patch which makes
premises for an experiment and production.
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1. Introduction

In recent years, many studies about the behavior of piezoelectric structures have been researched
and investigated. It is a key standout among them that piezo materials with some advantages
such as the quick response, low energy consumption, and high linearity, have been studied and
developed for a decade (Uchino, 2010; Lumentut and Howard, 2014; Bhalla et al., 2017; Wei
et al., 2018; Chen et al., 2020). The piezoelectric device is interesting in structure engineering,
applying shape control, reducing noise and controuing stability of structures (Uchino, 1986;
Wang and Shen, 1998; Adriaens et al., 2000; Chen etal, 2016; Chen et al., 2018; Reddy, 1999).
For example, Saravanos and Heyliger (1999) covered important information about theories, an-
alytical approaches, computational models, and numerical solutions for analyzing laminates and
structures in piezoelectric actuator or sensor systems. Jafferis et al. (2016) used multilayer lam-
inated piezoelectric bending actuators in the design and manufacturing to achieve optimum
efficiency and power density. Moreover, Bailey and Hubbard (1985) presented that vibration
of a cantilever beam was controlled by an adaptative law using a PFDV film as the actuator.
A two-dimensional piezoelectric material bonded on the surface with a simply supported plate
were revealed by Dimitriadis et al. (1991). Benjeddou et al. (2000) described the shear actua-
tion mechanism, which offerred several promising features for the use of piezoelectric ceramics.
Luo and Tong developed a finite element model to analyze and simulate twisting and bending
shape control using an orthotropic piezoelectric actuator (Luo and Tong, 2006). Huang and Sun
(2006) used piezoelectricity in an actuator to control dynamic adaption with an anisotropic elas-
tic structure. Additionally, the effect of piezoelectric arrays symmetrically attached to opposite



178 T.L. Vo et al.

plate surfaces in continuous operation of a composite structure was evaluated by Dimitriadis et
al. (1991), Crawley and Luis (1987). Phung-Van et al. (2013) proposed the cell-based smoothed
discrete shear gap approach (CS-FEM-DSG3) to improve static vibration of a fan and introduced
a dynamic control model for composite plates integrated into piezoelectric sensors and actuators.
Furthermore, Hoa et al. (2018) used the cell-based smoothed discrete shear gap method for evalu-
ating free and static vibration of laminated composite shells. Moretti and Silva (2019) presented
the use of the Topology optimization method (TOM) in designing a bi-material piezoelectric
actuator (BPEA), which was capable of eliminating vibration with the active velocity feedback
control (AVFC). By reading velocity state variables in the time domain, the AVFC shows its in-
fluence on the system structural damping. This study uses Newmark’s time-integration method
to yield dynamic response results for the rectangular four-noded finite element (FE) analysis
(this method uses physical and adjoint systems because the coupling formula is extremely im-
portant in sensitivity analysis). The authors use the gradient-based optimization method when
applying a mechanical load instantaneously to minimize the displacement energy output, which
is determined at a predefined BPA’s DOF (degree of freedom). Cao et al. (2020) used the classical
laminated plate theory and the Fourier transformation to analyze and control actively vibration
of thin-constrained composite plates and damping characteristics with dual piezoelectric layers.
The study results about natural frequencies and losses of a damped composite plate bound with
two piezoelectric layers were found through 3D electric potential equations. Trojanowski and
Wiciak (2020) presented numerical simulation results (using ANSYS software) of the influence
of sensor-actuator size on the plate performance. Two piezoelectric actuators were placed on a
steel plate: one to stimulate the plate and one (a standard actuator or a sensor-actuator with
different shapes and sizes) to reduce plate vibrations. The results of numerical analysis show
agreement with the objective function: the minimum value of the sum of the displacement vec-
tors of n nodes. Karegar et al. (2021) presented the dynamic analysis of a concrete frame with
a smart layer under earthquake load conditions. The article evaluated the influence of external
voltage, plate thickness, boundary conditions, geometric parameters of the frame, and damping
of the structure on the seismic displacement of the frame. The authors used the Grey Wolf (GW)
optimization algorithm and hyperbolic shear deformation (HSD) theory to model the flat frame
and Hamilton’s principle to derive the governing equation of the frame. Based on that relation-
ship, the numerical methods of differential quadrature and Newark’s one were used to study this
concrete frame response. Gohery et al. (2022) developed a Levi-type analytical solution proce-
dure to describe the static and dynamic deformation response of smart laminated rectangular
composite plates supported under the influence of inclined piezoelectric actuators with some ex-
citation frequency. Latrache and Menasri (2022) used piezoelectric actuators and sensor pads to
actively control vibration of the classical laminated plate with embedded piezoelectric patches.
The authors built a coupled finite element (FE) model with mechanical and electrical degrees of
freedom based on the first-order shear deformation (FSD) theory and Hamilton’s principle. At
the same time, based on the independent mode space control techniques, the authors designed
the Linear Quadratic Regulator (LQR) controller to limit the system vibration. Her and Chen
(2022) proposed a theoretical model predicting the vibration response of a laminate composite
(LC) plate to control the shape and suppress vibrations through piezoelectric actuators. The an-
alytical solution to that vibration response was derived using the composite mechanics and plate
theory. Numerical simulation results using the finite element method (FEM) through ANSYS
software were very well compared with the proposed model.

In this article, the shape deformation of the plate bonded to piezoelectric actuators and sen-
sors is investigated by the FEM. Based on the Kirchhoff plate model, a finite element analysis
has been evolved for the analysis of smart composite structures with a piezoelectric material.
Two cases are implemented to prove the effectiveness of the proposed method in improving the
reliability of the model algorithm. The tasks are done as follows. Firstly, a rectangular piezo-
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electric actuator with symmetrically bonded three sensors is considered. In the second case, the
piezoactuator of the injector is implemented and controlled by the diving board in diving sports.
The simulated results verify the behavior of plate drive modules with changes in the piezo patch
position and composite plate fiber direction. The article also analyzes and compares classical
control strategies (constant amplitude and constant velocity feedback). Classical techniques have
the advantages of avoiding the necessity of digital control, reducing time delays, and providing
stability. A major limitation of the LQR is that all states must be measured when generating
control.

2. Structure modeling

As mentioned in (Reddy, 1999), the assumptions are considered as follows: (1) the piezoelec-
tric layers are perfectly bonded to each other, (2) the behavior of linear elastic materials is
a disadvantage of the presented formula, (3) based on the Kirchhoff hypothesis (thin plate),
the horizontal normal remains straight after deforming and rotating, ensuring that it is always
perpendicular to the mid-surface.

Fig. 1. A laminated finite element coordinate system with the integrated piezoelectric material (left)
and the fiber direction in local and global coordinate systems (right)

Based on the Kirchhoff hypothesis, the displacement fields in u, v and w variables can be
obtained as follows (Reddy, 1999)

u = −z
∂w

∂x
v = −z

∂w

∂y
w = w(x, y) (2.1)

where Oxyz is the Descartes coordinate system, located at the mid-surface. Additionally, u and
v are displacements of the x and y-axes, while the transverse displacement w follows (or aka
deflection) in the z-axis

ε = [εx, εy, γxy] = −z

[

∂2w

∂x2
,
∂2w

∂y2
,
∂2w

∂x∂y

]T

(2.2)

The relation between the plane stress σ and strain ε of the isotropic material is denoted by

σ = Dε (2.3)

where

σ = [σx, σx, τxy]
T D =

Ep
1− v2







1 v 0
v 1 0
0 0 (1− v)/2






(2.4)

and σ, ε, ν, Ep are stress, strain field, Poisson’s ratio, and Young’s modulus, respectively.
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The composite material panels are made of many consecutive layers in which the direction of
the fiber or basic direction is different. The relationship between stress and strain in the global
system is as follows
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(2.5)

where

Q;11= Q11 cos
4 θ + 2(Q12 + 2Q66) sin

2 θ cos2 θ +Q22 sin
4 θ

Q′12 = (Q11 +Q22 − 4Q66) sin
2 θ cos2 θ +Q12 sin

4 θ cos4 θ

Q′22 = Q11 sin
4 θ + 2(Q12 + 2Q66) sin

2 θ cos2 θ +Q22 cos
4 θ

Q′16 = (Q11 −Q12 − 2Q66) sin θ cos
3 θ + (Q12 −Q22 + 2Q66) sin

3 θ cos θ

Q′26 = (Q11 −Q12 − 2Q66) sin
3 θ cos θ + (Q12 −Q22 + 2Q66) sin θ cos

3 θ

Q′66 = (Q11 +Q12 − 2Q12 − 2Q66) sin
2 θ cos2 θ +Q66(sin

4 θ + cos4 θ)

(2.6)

In fact, Q′ is a complete matrix indicating that the shear strain γxy in the (x, y) plane is
associated with the normal strain εx, εy. This behavior is called the shear strain and shear
strain long form.

Similarly
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(2.7)

Layer softness composition S′ = {S′ij} with i, j = 1, 2

S′ = T−1ε ST (2.8)

where

S′11 = S11 cos
4 θ + S22 sin

4 θ + 2(S12 + 2S66) cos
2 θ sin2 θ

S′12 = S12(cos
4 θ + sin4 θ) + (S11 + S22 − S66) cos

2 θ sin2 θ

S′16 = (S11 − S12 − 2S66) sin θ cos
3 θ + (S12 − S22 + 2S66) sin

3 θ cos θ

S′22 = S11 sin
4 θ + S22 cos

4 θ + (2S12 + S66) sin
2 θ cos2 θ

S′26 = (2S11 − 2S12 − S66) cos θ sin
3 θ + (2S12 + S66 − 2S22) cos

3 θ sin θ

S′66 = S66(cos
4 θ + sin4 θ) + 2(S11 + S22 − 4S12 − S66) sin

2 θ cos2 θ

(2.9)

with

S11 =
1

E1
S12 = −

ν12
E2

S21 = −
ν21
E2

S22 =
1

E2
S66 =

1

G12
S16 = S26 = S61 = S62 = 0

(2.10)

where E1, E2, ν12, ν21, G12 are Young’s elastic modulus, Poisson’s coefficients, and the corre-
sponding in-plane shear elastic modulus (Fig. 1, right).

Based on the original plate theory in the finite element analysis, considering a four-node
rectangular plate bending element is developed (Bailey and Hubbard, 1985). Figure 2 shows the
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Fig. 2. 3-DOF (degrees of freedom) of the rectangular element per node

DOF (degrees of freedom) number of each node of the element: w displacement in the z direction,
θx = ∂w/∂x rotation around the x-axis, and θy = ∂w/∂y rotation around the y-axis.

Based on the Pascal triangle law, the interpolation function is selected. The displacement w
at an arbitrary point in the element is as follows

w(xi, yi) = c1 + c2xi + c3yi + c4x
2
i + c5yixi + c6y

2
i + c7x

3
i

+ c8x
2
i yi + c8xiy

2
i + c10y

3
i + c11x

3
i yi + c12xiy

3
i

(2.11)

where (i = 1, 2, 3, 4)

x1 = x4 = −a x2 = x3 = a y1 = y2 = −b y3 = y4 = b (2.12)

The transverse displacement field w is expressed by w = PT c, where

P = [1, x, y, x2, xy, y2, x3, x2y, xy2, y3, x3y, xy3]T

c = [c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12]
(2.13)

In the rectangular element, the node displacement field vector di is expressed by

di = [w1, θx1, θy1, w2, θx2, θy2, w3, θx3, θy3, w4, θx4, θy4]
T (2.14)

where

wi = w
∣

∣

∣

xi,yi
θxi =

∂w

∂y

∣

∣

∣

∣

∣

xi,yi

θyi = −
∂w

∂x

∣

∣

∣

∣

∣

xi,yi

(2.15)

And the displacement field can be expressed as follows

d = HLTX−1di i = 1, . . . , n (2.16)

where
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3. Piezoelectric constitutive equations

The linear constitutive relations of piezoelectric materials are given as follows

σ = CEε− eTE D = eε+ ξsE (3.1)

In the matrix form
[

σ

D

]

=

[

CE −eT

e ςs

] [

ε

E

]

(3.2)

where σ, D, ε, E, CE, e, ςS are the stress field, electric flux vector, strain field, electric field
vector, elastic constant matrix, piezoelectric coupling constant matrix, and electric coefficient
matrix, respectively.
Applying voltage to the element seems similar to applying heat to a bimetallic strip. The

voltage Φa across the bender element forces the bottom layer to expand, as illustrated in Fig. 3a,
while the top layer is contracted.
As a result of these physical phenomena, there is a significant curvature, implying a substan-

tial deflection at the tip while the other end is clamped. Due to the reciprocity effect, the sensor
deformation generates a charge across the electrode, collected as a voltage Φs through another
sensor surface. The equation expresses the applied/perceived electric potential via the actuator
or sensor element (Lopes et al., 2000)

φz =
(z − 0.5hp

h

)

φ (3.3)

where h, φ and z(za, zs) are the thicknesses, maximum electric potentials at the external surfaces
of the corresponding piezoelectric elements. The variables z(za, zs) can be obtained as follows

hp
2
¬ za ¬

hp
2
+ ha −

hp
2
 zs  −

hp
2
− hs (3.4)

The assumption for the electric field E remains constant regardless of the thickness of actu-
ator and sensor parts, and the gradient operators are recast as follows

E = − gradφ = −
∂φz
dz
= −Bz ϕ = −

φ

h
(3.5)
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Fig. 3. (a) Curvature of the plate caused by mid-layer and contraction of both sides. (b) A control
diagram for the laminate plate with integrated piezoelectric sensors and actuators

However, for implementation of an experiment in this article, the electric field E is assumed

E =







0
0
E3






with Bz =







0
0
1
h






(3.6)

where h is the thickness of the piezoelectricity material.
With linear piezoelectric materials, the elastic coefficient matrix, piezoelectric stress coeffi-

cient matrix, and dielectric coefficient matrix are given by

CE =







C11 C12 0
C21 C22 0
0 0 C33






e =







0 0 0
0 0 0
e31 e31 0






ξs =







ξ11 0 0
0 ξ11 0
0 0 ξ11






(3.7)

4. The governing equations and finite element formulation

A two-dimensional piezoelectric problem in the domain Ω bounded by Γ is considered to be
carried out. The governing equations and boundary conditions for linear piezoelectric materials
are introduced as follows (Saravanos and Keyliger, 1999)

σij,i + fj = ρüj εij =
1

2
(ui,j + uj,i) Di,j = 0 Ei = −φ,i (4.1)

By integrating with the boundary conditions

σijnj = ti on Γσ ui = ui on Γu

φ = φ on Γφ Dini = −q on Γq
(4.2)

where σij and εij denote the stress and strain tensors, respectively. fj is the body force density,
uj is the mechanical displacement vector, and ρ is the mass density. The electric displacement
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vector is Di, the electric field vector is Ei, and the scalar electric potential field is ϕ. Summing
the kinetic energy, strain energy, dielectric energy, and potential energy of external fields yields
the general functional L. The disadvantage of the governing equations of piezoelectric structures
is to use the Hamilton principle, written as follows (Lopes etal, 2000; Phung-Van et al., 2013)

I =

t2
∫

t1

L dt =

t2
∫

t1

[δ(T − U +We −Wm) + δW ] dt (4.3)

where t1 and t2 are two random instants. L, T , U and We are the general energy functional,
kinetic energy, potential energy, and the work done by electrical forces, respectively. The vari-
able W is the mechanical force, being negligible for piezoelectric material. The total potential
energy U and kinetic energy T of the composite structure are described as follows

U =
1

2

∫

εTσ dV T =
1

2

∫

ρḋTḋ dV (4.4)

where ḋ is the differentiation of d with respect to time, d is the nodal displacement field, and
dV is defined by

dV = dVa + dVp + dVs (4.5)

Herein, the subscripts a, p and s denote the actuator, plate, and sensor parts, respectively, and
dVa, dVp and dVs are given by

dVp =

hp/2
∫

−hp/2

b
∫

−b

a
∫

−a

dx dy dz dVa =

hp/2+ha
∫

hp/2

b
∫

−b

a
∫

−a

dx dy dz

dVs =

−hp/2
∫

−hp/2−hs

b
∫

−b

a
∫

−a

dx dy dz

(4.6)

The We work of electrical forces and the variable W for mechanical forces is illustrated by

We =
1

2

∫

V

ETD dV W =

∫

V

qTfb dV +

∫

A

qTfA dA+

∫

A

φσq dA (4.7)

Substituting equation (3.1) into equation (4.4) and equation (4.7)1, we obtain the following

U =
1

2

∫

V

εTCEε dV −
1

2

∫

V

εTeTE dV We =
1

2

∫

V

ETeε dV +
1

2

∫

V

ETξSE dV (4.8)

From equations (4.7) substituted to equation (4.3) one arrives at

t2
∫

t1

δqTk [M
e
qqq̈k +K

e
qqqk +K

e
qϕϕ− f ] + δϕ[K

e
ϕqqk +K

e
ϕϕ]ϕ+Qa] dt = 0 (4.9)

where

Meqq = ρ

∫

V

X−TLMH
THLTMX

−1 dV Keqq = X
−T
∫

V

z2LTKDLKX
−1 dV

Keqϕ = [K
e
ϕq]
T = −X−T

∫

V

zLTKe
TBz dV Keϕϕ = −

∫

V

Bzξ
SBz dV

f =

∫

V

fb dV +

∫

A

fA dA Qa =

∫

A

σq dA

(4.10)
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Allowing arbitrary variations of dk and ϕ, from (4.9), we have two equilibrium equations for
k-th element in generalized coordinates that are now obtained as follows

Meddd̈k +K
e
dddk +K

e
φφφ− f = 0 Kedddk +K

e
φφφ+Q = 0 (4.11)

5. Dynamic control

From equation (4.11), the structure system can be rearranged as follows

Mddd̈+Kddd+Kdφφ− f = 0 Kφdd+Kφφφ+Q = 0

Mddd̈+ (Kdd +Kdφ +K
−1
φφ +Kφd)d+Kdφφ = f + (K

−1
φφ +Kφd)Q

(5.1)

The resultant control gain is

ϕa = Gdϕs +Gνϕ
′

s (5.2)

where Gv and Gd are the velocity and displacement feedback control gains.
The modeling equaton of the system is found as follows

Mḋ+ (C + CR)ḋ+K
∗d = F (5.3)

where

K∗ = Kuu +Gd[Kuφ]s[K
−1
φφ ]s[Kφu]s C = Gv[Kuφ]a[K

−1
φφ ]s[Kφu]s

CR = αM + βKuu
(5.4)

Fig. 4. The control structure of the composite plate by PZT

6. Numerical results

6.1. The first case

Using numerical techniques, the displacement comparison in the first case verifies the pro-
posed method effectiveness. To do this work, the characteristics of piezoelectric material and
simply supported (SSSS) of rectangular plates are presented in Table 1 and Fig. 5, respectively.
The SSSS boundary conditions are symmetrically bonded with the matching architecture of
the piezoelectric actuators and sensors. Furthermore, the effect of piezoelectric patches on the
structure static behavior has been investigated.
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6.1.1. With steel plate

Table 1. Properties of the steel plate and piezoelectric material

Properties
Piezoelectric material Steel
sensor actuator plate

Young’s modulus E [GPa] 2 69 207

Density ρ [kg/m3] 1780 7700 7870

Poisson ratio ν 0.3 0.3 0.29

Thickness h [m] 0.205 · 10−3 0.254 · 10−3 1 · 10−3

Piezodielectric ζs [F/m] 1.06 · 1010 1.6 · 108 –

Piezoelectric strain e [C/m2] 0.046 −12.5 –

Capacitance C [F] 5.2 · 109 6.3 · 107 –

Geometry Lx × Ly [m] 0.1× 0.1 0.1× 0.1 0.6 × 0.4

Fig. 5. Piezoelectric actuators and sensors test configuration

The mesh grid (24× 16) in the first test is shown in Fig. 6.

Table 2 presents the position of sensors and actuators.

Table 2. Piezoelectric element positions in the x and y dimensions

Properties
Actuators and sensors
1 2 3

x 0.25 0.15 0.35

y 0.05 0.25 0.25

Considering the first section, where the position is the plane y = 0.2, the displacement graph
is shown in Fig. 7.

The total plate displacement amplitude results using the proposed method when a static
voltage is applied to the actuator with the magnitude of Φa = [−1, 1, 1], are shown in Fig. 8.

Table 3 also compares the sensor-generated electric potential results obtained by Abreu et
al. (2004) and from the proposed method.
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Fig. 6. Mesh grid (24× 16) and position of actuators and sensors

Fig. 7. The displacement graph at the plane x = x/2 (left) and y = y/2 (right)

Fig. 8. The total displacement amplitude of the plate
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Table 3. The electric potential from sensors

Actuators Electric potential V
Err [V]and Exact solution

Present
Abreu et al.

sensors Abreu et al. (2004) (2004)

1 +0.0139 +0.0154 +0.0162 0.0015

2 −0.0139 −0.0154 −0.0162 0.0015

3 −0.0139 −0.0154 −0.0162 0.0015

Compared to the exact solution, the errors in Table 3 are small: Err = 0.0015 V, the relative
error is about 10% for actuators and sensors. It is declared that the proposed method can be
accurately applied to simulate the bending effect (displacement field) in the plate.

As mentioned above, the displacement of the plate is a result of supplying the static voltage
to the transmission system. The plate is controlled using the closed loop algorithm to reduce
the displacement. The results are illustrated in Fig. 9. The Z-direction displacement in the
noncontrollable sensor is bigger than in the controllable one.

Fig. 9. The total displacement amplitude of the plate: (a) without control, (b) with control

Let us continue to develop the problem with the above material parameters. Apply an evenly
distributed load P = −10N, place the piezoelectric plate at the center, and control with the
input voltages to 10V, 20V, 50V, 100V and 200V, and get the results shown in Fig. 10.

Fig. 10. The displacement graph at the plane y/2

The plate displacement decreases over time when other values are kept constant and the
voltage is gradually increased. Combined with active control of the plate, the amplitudes of
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vibrations decrease progressively over time, and the speed of extinguishing the vibrations is
faster than without control. The obtained results are shown in Figs. 11 and 12.

Fig. 11. The displacement graph at the plane y/2

Fig. 12. Comparison of the displacement of the composite plate with control and without control

6.1.2. Changing the composite layers for the plate

The material is a carbon/epoxy composite with a stacking sequence [0/90] s. The properties
are listed in Table 4. This composite laminate plate has length a = 0.38m, width b = 0.3m,
thickness tp = 1.5876mm. The PZT G-1195 piezoelectric actuator has Young’s modulus
Epe = 63GPa, Poisson’s ratio vpe = 0.3, density ρpe = 7600 kg/m

3, piezoelectric constant
ζs = 1.9 · 10−10 V/m, and thickness tpe = 0.15876mm (Dileep et al., 2017). Through parametric
research, the influence of the actuator size and position on the composite plate deflection and
deformation shape when activated by the surface-bonded piezoelectric actuator is evaluated.

As shown in Fig. 13, the plate displacement generated relative to PZT decreases linearly as
the number of layers increases.
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Table 4. Properties of carbon/epoxy material

Longitudinal Transverse Shear modulus Poisson’s ratio
module E1 [GPa] modulus E2 [GPa] G12 [GPa] ν12 ν21

108 10.3 7.13 0.28 0.28

Fig. 13. The total displacement amplitude of the plate with 2-layer (left), 4-layer (between), and
8-layer (right)

When changing the fiber direction of an 8-layer plate, in the case of the [75,−75] s plate
arrangement, the best ability to resist displacement caused by the PZT plates is shown in
Fig. 14.

Fig. 14. The total displacement amplitude of the 8-layer composite plate with the fiber direction
[30, 60] s (left) and [75,−75] s (right)

Fig. 15. Mesh model of the composite plate and the positions of 3 PZT patches

The actuators are placed at various locations to study their capability of controlling the plate
deflection shape. In this case, the piezoelectric actuators are surface bonded at the plate central,
right, and top regions, respectively, as shown in Fig. 15. Those are three typical positions chosen
arbitrarily to demonstrate the effect of actuator position on the deflection.
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Table 5. Piezoelectric element central positions in x and y dimensions

Properties
Actuators and sensors
1 2 3

x 0.2 0.35 0.2

y 0.3 0.3 0.55

Fig. 16. Displacement of the composite plate with the PZT patch positioned at the center (left),
x-axis (between), and y-axis (right)

Table 6. Comparison of the maximum displacement of the composite plate induced by PZT
patches at three different positions

Positions W [mm]

1 −0.2358

2 −0.0849

3 −0.0691

Fig. 17. The displacement graph at the plane x/2

When the position of the PZT piece on the composite plate changes, the displacement also
changes. The PZT pieces placed closer to the boundary edges will gradually decrease the dis-
placements.

If the composite panel is rectangular, PZT panels placed near the edge along the width
direction will have smaller displacements than PZT panels placed at the edge along the length
of the panel.

Based on Fig. 17, the torque generated deforms the composite panel where the PZT panel
is placed and in the opposite direction in the surrounding area.
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6.2. The second case

In this simulation, the proposed algorithm is investigated to control the diving board in
diving sports. This article aims to show that the diving board can be safe in the case of overload
and help improve athletes’ performance before touching the swimming pool surface. The physical
parameters of the diving board are 2.5m×0.4×0.01m for the composite 4-layers [75◦/ − 75◦/
−75◦/75◦] and [30◦/60◦/60◦/30◦] (shown as Fig. 18). The control diagram is shown in Fig. 3b.

Fig. 18. The model of the diving board (desired scenario)

With diving board composite 4-layers [75◦/ − 75◦/ − 75◦/75◦] and [30◦/60◦/60◦/30◦], the
piezoelectric ceramic (PZT 1V) is stuck in the diving board, as seen in Fig. 19.

Fig. 19. The position of PZT: scenario 1 (left) and scenario 2 (right)

Fig. 20. The displacement (with m unit) of the diving board in non-controllable
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The simulation results are found from two scenarios displayed in Figs. 21 and 22 with the
composite 4-layers [75◦/− 75◦/− 75◦/75◦] and [30◦/60◦/60◦/30◦].

Fig. 21. The displacement of a controlled diving board for scenario 1: fiber direction [75,−75] s (left),
fiber direction [30, 60] s (right)

Fig. 22. The displacement of a controlled diving board in scenario 2: fiber direction [75,−75] s (left),
fiber direction [30, 60] s (right)

Table 7. Piezoelectric element positions in x and y dimensions

Direction of Maximum displacement [m]
fibers Non-controllable Scenario 1 Scenario 2

[75◦/− 75◦/− 75◦/75◦] 0.8 0.0606 0.0223

[30◦/60◦/60◦/30◦] 0.8 0.0424 0.0424

The control method backs the diving board approximately to the initial position. Therefore,
the displacement of the z-axis of the diving board is narrowed down. Although the displacement
of scenario 2 is less than that of scenario 1, the shape of the diving board after controlling
scenario 1 is nearly close to the desired scenario. The input voltage controls the desired displace-
ment; therefore, an athlete performs well when turning on the thrust assist bar.

7. Conclusion

• In this article, the deformed shape of the plate bonded to piezoelectric actuators and
sensors is investigated by the finite element method (FEM). Based on the Kirchhoff plate
model, the FE (finite element) formula was developed for smart composite structures with
piezoelectric materials. The modeling technique combining FEM and LQR algorithms
was proposed. By analyzing and evaluating the results obtained from the two cases, the
effectiveness of computation and application was presented.
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• In the first case, a rectangular piezoelectric actuator with symmetrically bonded three
sensors is considered. The results are analyzed, errors estimated and compared with other
methods and reliable analytical solutions.

• In the second case, the piezoactuator of the injector is considered. From the obtained re-
sults, it can be said that the deformed shape of piezoactuators can be computed accurately
by FEM. Furthermore, the obtained results also showed that the displacement at the cen-
ter of the piezoactuator in the injector has a linear relation with the voltage level. These
results help the understanding the coupling effects of mechanical and electric properties of
piezoelectric actuators and sensors for applications. Besides, the results present the per-
formance of active control LQR and behavior of the actuator modules of the injector in a
common system. The convergence rate of the energy norm versus the degree of freedom is
reliable.
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