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Underwater gliders are autonomous underwater vehicles that are widely used in oceanogra-
phy and coastal surveillance due to their low manufacturing costs and long operation time.
This paper addresses the development of a dynamical model of such vehicles which are iner-
tia propelled. The dynamical model is based upon the Boltzmann-Hamel equations modified
to variable mass and inertia systems. It yields dynamics in a body-fixed frame using non-
-inertial coordinates. The theoretical development of the vehicle dynamics based upon the
modified Boltzmann-Hamel equations is validated by the longitudinal dynamics model of
the underwater glider and its performance resulted from the mass change.
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1. Introduction

An underwater glider is a type of autonomous underwater vehicle (AUV) that is characterized
by its specific way of propulsion. It changes its depth in water using different volume of the
liquid in ballast tanks or an external blader. The net buoyancy or mass change is the factor
that propels the glider forward. The greater the change from the equilibrium, the faster the
vehicle traverses the given distance. Additionally, it is equipped with a moveable internal mass
whose change of positions is used to enable vehicle turning. The vehicle thus characterizes
by low manufacturing costs and exhibits long operation time. It can traverse thousands of
kilometers during its mission as opposed to the range of a few kilometers by a typical vehicle with
thrusters. Due to its characteristics, this class of underwater vehicles excels in oceanographic
research (Rudnick, 2016), mostly in observation of oceanic fronts and water-mass properties,
e.g. salinity or temperature (Wagawa et al., 2020). It is also capable of long coastal surveillance
missions, where its excels other underwater vehicles. The inertia based propelled underwater
glider concept dates back to 1989, when Henry Stommel came up with an idea of a machine
that operates without any external propulsion drives (Stommel, 1989). Then, many solutions
came to life – starting from ALBAC (Kawaguchi et al., 1995), the first prototype of a glider
which could perform only one glide cycle. Next, three AUV’s that share a very similar design:
Slocum (Schofield et al., 2007), Seaglider (Eriksen, 2001) and Spray (Rudnick et al., 2016),
were designed and built. There are also hybrid gliders which combine the attributes of the
inertia based propelled glider and a non-inertially propelled one like Petrel (Wang et al., 2011),
Fölaga (Alvarez et al., 2009) or blended body vehicle Zray (Brodsky and Luby, 2013). A different
approach to the inertia based propelled system was adopted by Liquid Robotics, which developed
a two-part system – a wave glider made of a surface float and an underwater glider (Hine et al.,
2009).
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An inertia based propelled glider is a variable mass or buoyancy system that modifies its
depth using different volume of the liquid in ballast tanks or in the external blader. The net
buoyancy or mass change is the factor that propels the glider forward. The greater the change
from the equilibrium, the faster the vehicle traverses the given distance. Moveable mass that
may change its location inside the glider, is used to enable turning motions (Mahmoudian et
al., 2007). Hydrodynamic forces acting upon the glider are often calculated using the CFD
approach (Sun et al., 2021). They include lift, drag and the added mass calculations. However,
the underwater gliders move slowly, and the classical hydrodynamics is enough to determine
the forces and the Magnus effect is usually omitted due to its insignificance for slowly moving
objects.

The most popular method to model underwater vehicle dynamics is the one based on Euler-
-Newton, which was used by Graver (2005) and Sun et al. (2023) or the Lagrange equations (Cruz,
2011) or fluid-multibody coupling (Wang et al., 2023). Usually, the Lagrange based dynamics
models use the Euler angles and they are equations in the body fixed frames identical to the flight
dynamics models (Fossen, 1994). The dynamics model derivation based upon the Boltzmann-
-Hamel equations, which we present in the paper, is one of the most recent approaches that can
be used to handle the variable mass system and be convenient for the controller design for the
glider. The Boltzmann-Hamel equations were originally formulated for constant mass systems
in non-inertial coordinates, often referred to as quasi-velocities, see e.g. (Neimark and Fufaev,
1972). Contrary to popular approaches like the Lagrange equations method, they are free of
multipliers for constraints, which are incorporated into the equations of motion instead of being
an additional algebraic relation (Müller, 2021). They enable handling nonholonomic systems
due to arbitrary selection of quasi-velocities that may satisfy the nonholonomic constraints.
There are a few examples of using the Boltzmann-Hamel equations approach to modelling and
control of multibody systems, see e.g. (Jarzębowska, 2012). However, in the paper (Jarzębowska
and Cichowski, 2018) the underwater vehicle dynamics is developed under some design and
performance constraints that limit its usability, i.e. centers of masses are assumed to be in one
axis and the change of position of the center of masses of ballast tanks are not taken into
consideration.

In this paper, the concentricity of the centers of masses of the vehicle components and
the center of buoyancy requirement was removed, and an additional parameter describing the
position of the mass center of the ballast tank was added. To confirm the improvement of
performance of the glider model with respect to performance of real gliders, simulation studies
are presented. A longitudinal model of the glider has been derived and tested. The glider motion
in the longitudinal plane is its typical motion, so it was selected for testing. A test that validates
the propelling efficiency was performed using an open-loop control algorithm. The glider moved
the so-called saw-tooth motion pattern, a traversal motion method that is typical for it in real-life
motion scenarios. The control inputs and outputs were inspected and proposals for upgrading
the performance through a targeted control strategy have been made. The contribution of this
paper is the development of the modified Boltzmann-Hamel equations that account for the
change of mass and inertia in the underwater vehicle. The model can have the constraints put
upon the mass change. Assumptions about specific locations of CB and CG were removed,
thus the dynamic model yields results closer to the reality. Based upon this framework, the
longitudinal glider model is developed and validated.

The paper is organized as follows. After Introduction, Section 2 reports the Boltzmann-Hamel
equations development for a constant mass system and presents their modification for variable
mass systems. Section 3 details the underwater glider physical and dynamical models. Section 4
validates the glider dynamics and demonstrates its performance in longitudinal motion. The
paper closes with conclusions, future research prospects and the list of references.



Dynamics modeling of variable mass systems... 753

2. Boltzmann-Hamel equations for constant and variable mass systems

Boltzmann-Hamel equations originally developed for constant mass systems proved to be more
efficient method of dynamics derivation for both holonomic and nonholonomic system models,
the ones like underwater gliders, than the most widely used approaches like Newton-Euler or
Lagrange equations. They are derived in quasi-velocities that represent velocities in a non-
inertial, usually body fixed, reference frame. Due to the derivation method of the Boltzmann-
-Hamel equations and arbitrary selection of the quasi-velocities, the constraint equations can be
taken as the quasi-velocities and, as such, incorporated into the system dynamics and reduce
the size of the resulting system dynamics. In this Section we briefly report the derivation of
the Boltzmann-Hamel equations. The detailed derivation and discussion of the equations can be
found in e.g. (Neimark and Fufaev, 1972). Herein, we recall the development of the form of the
equations as they were originally developed and we recall the concepts of quasi-velocities. These
are needed to develop dynamics of the underwater vehicle.
The main motivation to reach for the Boltzmann-Hammel modeling method is that it proved

to be effective in control applications for both unconstrained and constrained system models
(Jarzębowska, 2012).

2.1. Quasi-velocities and generalized coordinates

Quasi-velocities ωσ with σ equal to the number of states can be selected arbitrarily as a linear
or also as nonlinear combination of the generalized velocities q̇i as in (2.1). Usually, they are the
parameters associated with velocities in the body fixed frame, therefore they are referenced as
non-inertial velocities

ωσ = aσ,0(q) +
n
∑

i=1

aσ,i(q)q̇i (2.1)

Quasi-coordinates are defined by their differentials as in (2.2). These terms are not integrable,
therefore the parameters πσ do not exist physically. If relations (2.2) can be integrated, then
they are generalized velocities, whose derivatives can also serve as quasi-velocities.

dπσ = aσ,0(q)dt +
n
∑

i=1

aσ,i(q)dqi (2.2)

Usually, for selection of quasi-velocities we assume that aσ,0(q) = 0, so expression (2.1) can
be rewritten as (2.3)1. Assuming that relations (2.3)1 are invertible, the generalized velocities
can be presented as linear combinations of quasi-velocities (2.3)2. Based upon (2.2) and (2.3)2,
relation (2.3)3 can be written. Combining expressions (2.3)1,2, we can determine relations (2.4)
between the coefficients al,σ and bσ,j

ωσ =
n
∑

i=1

aσ,i(q)q̇i q̇σ =
n
∑

j=1

bσ,j(q)ωj δqσ =
n
∑

j−1

bσ,j(q)δπj (2.3)

and

n
∑

σ=1

al,σbσ,j = δl,j =

{

1 for l = j
0 for l 6= j

(2.4)

In the case of the m nonholonomic constraint equations imposed upon a system, relations (2.3)
consist of m quasi-velocities identically satisfying the constraint equations, and the rest (n−m)
of quasi-velocities are selected arbitrarily, which is practically suitable to the considered system
modling.
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2.2. The Boltzmann-Hamel equations for constant mass systems

The Boltzmann-Hamel equations can be derived, roughly speaking, from Lagrange equa-
tions (2.5)1, where the generalized coordinates are replaced by quasi-velocities (2.1) and quasi-
-coordinates (2.2). The Lagrange equations, assuming independent δqσ (2.5)1 can be presented
as in (2.5)2

n
∑

σ=1

[ d

dt

( ∂T

∂q̇σ

)

−
∂T

∂qσ
−Qσ

]

δqσ = 0

n
∑

σ=1

d

dt

( ∂T

∂q̇σ

)

bσ,j −
n
∑

σ=1

∂T

∂qσ
bσ,j =

n
∑

σ=1

Qσbσ,j

(2.5)

After denoting the kinetic energy written in quasi-velocities as T ∗ and taking into account (2.3)2,
a relation between T ∗(ω, q, t) and T (q̇, q, t) can be derived as in (2.6)1. Relation (2.6)1 is then
used in transformations of the first term of (2.5)2. It yields (2.6)2

∂T ∗

∂ωj
=
n
∑

σ=1

∂T

∂q̇σ

∂q̇σ
∂ωj
=
n
∑

σ=1

∂T

∂q̇σ
bσ,j

n
∑

σ=1

d

dt

( ∂T

∂q̇σ

)

bσ,j =
d

dt

n
∑

σ=1

∂T

∂q̇σ
bσ,j −

n
∑

σ=1

∂T

∂q̇σ

∂bσ,j
∂t
=
d

dt

(∂T ∗

∂ωj

)

+
n
∑

σ=1

n
∑

l=1

n
∑

λ=1

n
∑

α=1

∂T ∗

∂ωl
ωα
∂al,σ
∂qλ
bσ,jbλ,α

(2.6)

The derivative of T with respect to generalized coordinates can be expanded as in (2.7)1. It is
then used for transformation of the second term of (2.5)2 and it results in (2.7)2

∂T

∂qσ
=
∂T ∗

∂qσ
+
n
∑

l=1

∂T ∗

∂ωl

∂ωl
∂qσ
=
∂T ∗

∂qσ
+
n
∑

l=1

n
∑

λ=1

n
∑

α=1

∂T ∗

∂ωl

∂al,λ
∂qσ
bλ,αωα

n
∑

σ=1

∂T

∂qσ
bσ,j =

∂T ∗

∂πj
+
n
∑

σ=1

n
∑

l=1

n
∑

λ=1

n
∑

α=1

∂T ∗

∂ωl

∂al,λ)

∂qσ
bλ,αωαbσ,j

(2.7)

The right hand side term in (2.5)2 is rewritten as (2.8)1, and Q
∗

j is the generalized force related to
quasi-velocity ωj . Relations (2.6)1, (2.7)1 and (2.8)1 when inserted into (2.5)2 result in equation
(2.8)2

Q∗j =
n
∑

σ=1

Qσbσ,j

d

dt

(∂T ∗

∂ωj

)

−
∂T ∗

∂πj
+
n
∑

α=1

n
∑

l=1

∂T ∗

∂ωl
ωα

n
∑

σ=1

n
∑

λ=1

(∂al,σ
∂qλ
−
∂al,λ
∂qσ

)

bσ,jbλ,α = Q
∗

j

(2.8)

After introducing the so called Boltzmann-Hamel coefficients (2.9)1, equation (2.8)2 can be
presented as (2.9)2

γljα =
n
∑

σ=1

n
∑

λ=1

(∂al,σ
∂qλ
−
∂al,λ
∂qσ

)

bσ,jbλ,α

d

dt

(∂T ∗

∂ωj

)

−
∂T ∗

∂πj
+
n
∑

α=1

n
∑

l=1

γljα
∂T ∗

∂ωl
ωα = Q

∗

j

(2.9)

The third term of equation (2.9)2 can be further simplified, i.e. writing the Boltzmann-Hammel
coefficients into a matrix form (2.10)1 we can obtain a single sum as (2.10)2. Recalling that the
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quasi-velocity vector is (n × 1) dimensional, the final form of equation (2.9)2 can be presented
as n equations (2.10)3 referred to as the Boltzmann-Hamel equations

Γα =













γ11α γ
2
1α · · · γ

n
1α

γ12α γ
2
2α · · · γ

n
2α

...
...

...
. . .

γ1nα γ
2
nα · · · γ

n
nα













G(ω) =
n
∑

α=1

Γαωα

d

dt

(∂T ∗

∂ω

)

−
∂T ∗

∂π
+G(ω)

∂T ∗

∂ω
= Q∗

(2.10)

2.3. Boltzmann-Hamel equations for variable-mass systems

The original Boltzmann-Hamel equations cannot be directly applied to derive dynamical
models of variable mass and variable inertia systems. Therefore, some modifications are needed.
The kinetic energy of the system written in quasi-velocities depends on the form of the inertia
matrixM (2.11). It is time dependent or may also depend upon other parameters, e.g. velocity,
if mass or inertia are prescribed to change according to some constraint equations. It impacts
the form of equations (2.10)3.

In this Section, we present a modification of the Boltzmann-Hamel equations to encompass
the mass and inertia changes. The main idea is to explicitly account for the change of mass
of water in the vehicle water tanks and motion the movable mass. The need of doing so is to
obtain an explicit exposition of these terms in the system dynamical equations. This in turn is
essential for a design of the control system. In this paper, we design a feedforward controller
only to regulate mass of water in the water tank, however, the future work aims at the design of
feedback control for both the regulation of water amount and for movable mass motion. Control
of the movable mass is essential for performing maneuvers by the vehicle. Concluding then, the
dynamic underwater vehicle model which we present herein will be transformed into a dynamic
control model with the control inputs being the change of mass of water in the water tank and
the positions of the movable mass.

To develop the variable inertia dynamics, we assume a modified form of the inertia matrix
that includes explicitly a time derivative of the M in (2.11)

d

dt

(∂T ∗

∂ω

)

=M(ω̇) + Ṁω (2.11)

Thus the variable mass and inertia Boltzmann-Hamel equations can be written in a compact
form

M(ω̇) + Ṁω −
∂T ∗

∂π
+G(ω)

∂T ∗

∂ω
= Q∗ (2.12)

Equation (2.12) is applied to develop dynamical equations of the longitudinal motion for the
underwater vehicle model.

3. Dynamics model of the underwater glider

To validate dynamics of the variable inertia system (2.13), this Section presents development of
a longitudinal model of the underwater glider to confirm its saw-tooth motion pattern and tests
through simulations the inertia based propelling efficiency using an open-loop controller. The
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longitudinal motion is a dominant one in real gliders so it can be taken for model validation.
The glider saw-tooth motion pattern is a traversal method which is typical in real-life scenarios.
The control inputs and outputs were inspected and propositions for upgrading the performance
through a targeted control strategy have been made.

In this paper, we adopt the assumption about the design of a typical underwater glider. In
contrary to (Jarzębowska and Cichowski, 2018), an assumption about concentricity of centers of
masses of the vehicle components and the center of buoyancy were removed, and an additional
parameter describing the position of the mass center of the ballast tank was added. The under-
water glider is assumed to be composed of two main components: a hull and a ballast tank. The
buoyancy center (CB) of the hull is the same as the CB of the whole system, but its mass center
(CM) does not coincide with the center of mass of the vehicle. The other mentioned components
are treated as point masses

M = mh +mtank (3.1)

The movable mass is not present in our model, since it is installed for the space maneuvers of the
glider. Also, the second general assumption is that we do not assume that all vehicle components
are located along the vehicle longitudinal axis, i.e. they can be displaced from x axis; see Fig. 1.
Additionally, the location of the CM of the ballast tank changes according to the change of
mass of the liquid rested in it. One more assumption enables positioning the CM of the vehicle
below its CB, thus increasing its stability. All these assumptions make our glider model close to
real designs of such kind of vehicles.

Fig. 1. A glider model and its components

Calculations which we present are performed in two reference frames: inertial and the body
frame. The z and e3 axes point downward instead of upward, as it is traditionally assumed in
many works. The change was done to emphasize that the glider moves below the water surface.
The glider model is presented in Fig. 1 and the data representing its parameters are shown in
Table 1.

To describe the glider longitudinal motion, a state vector consists of 3 quasi-velocities and
2 generalized velocities (3.2)3 and (3.2)4. The quasi-velocities are the linear velocities along the
body axis e1, e3, and Q refers for the pitch angle. Notice, that Q is the generalized velocity
adopted as the quasi-velocity. The generalized velocities are derivatives of the position coor-
dinates along inertia axes x and z (3.2)2. Equations (3.2)5 and (3.2)6 present transformations
between the quasi-velocities and generalized velocities
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Table 1. Glider data

Parameter Significance

mh = 26.9 kg mass of the hull

zCB,tank = 0m z position of CM of ballast tank with respect to
CB of the glider

xCB,h = 0m x position of CM of hull with respect to
CB of the glider

zCB,h = 0.1m z position of CM of hull with respect to
CB of the glider

g = 9.81m/s2 acceleration due to gravity

v = 0.0274m3 volume of glider

ρ = 1023.6 kg/m3 density of seawater

KD0 = 7.19 kg/m hydrodynamic constant impacting linear velocity U

KD = 386.29 kg/(m·rad
2) hydrodynamic constant associated with square of α
impacting linear velocity U

Kα = 440.99 kg/(m·rad) hydrodynamic constant associated with α
impacting linear velocity W

KM = 65.84 kg/rad hydrodynamic constant associated with α impacting
angular velocity Q

KQ = 205.64 kg·s/rad
2 hydrodynamic constant associated with angular

velocity Q impacting Q

ICM,h = 5.919 kg·m
2 moment of inertia of hull

ωv =

[

U
W

]

q̇v =

[

ẋCB
żCB

]

ω
T =
[

ωTv Q ẋTCB,tank

]

q̇Tv =
[

q̇Tv θ̇ ẋ
T
CB,tank

]

ωv =

[

U
W

]

=

[

cos θ − sin θ
sin θ cos θ

] [

ẋCB
żCB

]

= Λvq̇v Q = θ̇

(3.2)

The model of the glider was created with the use of the Boltzmann-Hamel equations for variable
inertia (2.12). Due to the change of mass in the ballast tank, the mass M and the position of
the CM of the whole glider with respect to its CB rCB,CM is depicted by (3.3)1 and the inertia
matrix M of the system are both time-dependent. The moment of inertia (3.3)2 includes the
moment of inertia of the hull ICM,h, masses of the ballast tank mtank and hull mh as well as
the positions of the CM of the hull rCB,h and of the ballast tank rCB,tank (3.3)3 with respect to
the CB of the glider. They are all time-dependent. Therefore, inertia matrix of the glider (3.3)4
depends not only on the position changes of the mass centers, but also on the change of mass
in the ballast tank

rCB,CM =

[

xCB,CM
zCB,CM

]

I = ICM,h + ntankr
T
CB,tankrCB,tank +mhr

T
CB,hrCB,h

rCB,tank =

[

xCB,tank
zCB,tank

]

T =
1

2
ω
T











M 0 MzCB,CM mtank
0 M −MxCB,CM 0

MzCB,CM −MxCB,CM I mtankzCB,tank
mtank 0 mtankzCB,tank mtank











ω =
1

2
ω
TMω

(3.3)



758 Z. Kostka, E. Jarzębowska

Three external forces act upon the glider model (3.4)1. They are gravity (3.4)2, buoyancy (3.4)3
and hydrodynamic forces (3.4)4. The hydrodynamic forces account only for a normalized drag
and lift. The added mass effect and the Magnus effect are excluded from the calculations. The
Magnus effect is irrelevant due to small velocity of the glider. The added mass effect is assumed
to be constant for a specific pitch angle. The hydrodynamic forces are transformed to the body-
fixed frame from the non-inertial wind frame using the attack angle α (3.5)1 and the total
velocity of the vehicle V0 (3.5)2

Fext = FG,CB + FB,CB + FH,CB

FG,CB =











cos θ − sin θ
sin θ cos θ

zCB,CM cos θ xCB,CM sin θ
0 0











[

0
Mg

]

FB,CB =

[

12×2 02×2
02×2 02×2

] [

Λ

02×2

] [

0
−ρvg

]

FH,CB =











cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 0





















−KD0 −KD(α
2)

−Kαα
−KMα−KQQ

0











V 20

(3.4)

and

α = arctan 2(W,U) V0 =
√

U2 +W 2 (3.5)

4. Simulation of the saw-tooth motion of the underwater glider

The so called saw-tooth motion is a typical motion of an inertia-propelled underwater vehicle.
In this Section we develop the longitudinal dynamics model of the vehicle and validate its
performance. Specifically, the model validates the self-propelling capabilities of the vehicle due
to the change of its mass and inertia. The underwater vehicle increases its net weight when it is
close to the surface and reduces it at the maximum desired depth. The cycle repeats throughout
the entire operation. The bigger the net weight change, the faster the vehicle moves. The mass
change is achieved through changes of the mass or volume of the liquid in the ballast tank. The
process occurs near the surface or at the maximum depth only, therefore the inertia propelled
glider is much more energy efficient than the one equipped with other propulsion means like
thrusters, which need a constant influx of energy to keep floating and moving forward.

During the simulation studies, an open-loop control algorithm was used to execute forward
motion by the saw-tooth pattern. Using the open-loop control, we get an insight into the glider
dynamics with respect to the future feedback control design. In the simulation study, there was
one control input, i.e. the mass change in the ballast tank. The mass of water in the tank changes
between 0.56 kg and 2.2 kg as seen in Fig. 2a. The resulting saw-tooth motion is shown in Fig. 2b.
The kind of periodicity of the saw-tooth motion pattern depends on how fast is the change of
water amount in the water tanks. Initial values for quasi-velocities were set to U0 = 0.5m/s and
W0 = 0.25m/s.

The underwater glider controlled by the control input function shown in Fig. 2a is able to
achieve approximately constant velocity. The small velocity deviations came from the net weight
change process at the surface or the maximum depth and a slight difference of the absolute value
of the net weight during sinking and surfacing. The traversal distance in the x direction in time
is shown in Fig. 3a, while depth in time is in Fig. 3b.
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Fig. 2. (a) Control input time history for saw-tooth motion – mass change in the front ballast tank.
(b) Saw-tooth trajectory pattern of the underwater glider

Fig. 3. (a) The traversal distance in the x direction in time covered by the glider. (b) The vertical
distance in the z direction in time covered by the glider

The angle in the longitudinal motion that changed in time was the pitch angle. The changes
of the pitch angle in time are presented in Fig. 4. The pitch angle initial value is set to be equal
to π/8.

Fig. 4. The changes of the underwater glider pitch angle in time
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5. Conclusion and perspective

The problem of modeling of the underwater glider dynamics is addressed in the paper with the
aid of the Boltzmann-Hamel equations modified to encompass variable mass and inertia of the
system. The modified Boltzmann-Hamel equations can serve for modeling of a system with any
desired change of mass in water tanks and any motion of a movable mass that enables vehicle
turning maneuvers.

In our modeling approach, the constraints that are assumed as in many references, i.e.
concentricity of mass centers of the glider body components and the buoyancy center, and
no influence of the change of mass on the location of the mass center of the ballast tank were
relaxed.

The advantages of the modified modeling approach may serve both for modeling of con-
strained variable mass underwater vehicles, including constraints on the mass change, and for
simplifing control applications like moving along desired trajectories or controling the mass
change required for some maneuvers.

The presented dynamics model still requires some extensions, specifically as it is intended
to be used for control applications. For example, it would need more precise calculation of
hydrodynamic forces acting upon the vehicle. Future research aims at calculating the forces
using the CFD method to get results closer to real ones than simplified outcomes in form of
constant values for a specific attack angle what is often assumed in many references.
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