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The article presents a fast algorithm for target hit probability calculation in real time for the
use in modern fire control systems (FCS). The idea behind this algorithm is to calculate the
hit probability using the information about the projectile motion and the estimated motion
of the tracked target. The first part of the article describes the analytical solution to the
problem of hit probability calculation. The results obtained from the analytical method are
then compared with a simulation method developed specifically for the analytical method
verification. This comparison led to the conclusion that the presented analytical method is
suitable for the use in modern FCS.
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1. Introduction

The analysis of requirements posed by modern fire control systems showed the need to design
and implement an algorithm that enables the target hit probability calculation in real time. This
is a big challenge considering the complexity of algorithms required to calculate such probabil-
ity. Those will include: processing of data coming from sensors (radars, cameras, lidars etc.),
estimating motion parameters of the target, calculating the trajectory of the projectile. In the
literature, one can find different approaches to hit probability definitions and calculation meth-
ods. In (Kang et al., 2016), the hit probability prediction for the anti-aircraft artillery is based
on errors of muzzle velocity and the cant error related to the fire power. Liu and Shi (2022) pre-
sented a method that extended the notion of hit probability to calculstion of different damage
levels by incorporating the Bayesian inference method. Different approaches to artillery effec-
tiveness are discussed in Katsev (2018), where authors defined it as a function of dependent
and independent errors related to weapon-target interaction and how much would be artillery
shell lethality. They showed an “offline” method to estimate effectiveness based on number of
rounds, variations of random errors, dispersion errors, target lethal area. A similar approach
was presented in (Obradović et al., 2023), where authors also included errors in meteorological
conditions preparation. Our innovative method proposes an analytical solution for real time
calculation of hit probabilities based on both the projectile motion model and estimated param-
eters of the tracked motion. In order to verify the correctness of the algorithm, we also prepared
an application that enabled simulation of the projectile flight and target movement, taking into
account possible disturbances that might occur, such as: dispersion of the initial velocity of the
projectile, deviations of projectile parameters from nominal values, cannon barrel jerk, etc.
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2. Analytical method for target hit probability calculation

The analytical method for target hit probability calculations essentially boils down to four main
steps (assuming that coordinates of the hit point and time to hit thit are already calculated):

1. Calculate how the perturbations of initial conditions of differential equations describing
projectile motion propagate along its trajectory. In order to do that, one needs to solve
variational equation (2.15) which is presented in Subsection 2.1. The system of equations
describing projectile motion, Jacobi matrix for the system (which is necessary to solve the
variational equation) and a numerical method (Runge-Kutta) for solving the system of
differential equations is presented in Subsection 2.2.

2. Having the solution for the variational equation and the covariance matrix with initial
variances for the system of equations, one can apply a rule of error propagation in order
to find the covariance matrix at a specified time – Eq. (2.23).

3. The last element needed for hit probability calculation is the covariance matrix related to
the target motion parameters. The initial covariance matrix is based on the Kalman filter
output for the chosen motion model of the target. The value of the covariance matrix at
time thit is calculated, as in the previous point, by applying the rule of error propagation
– Eq. (2.24).

4. Having covariance matrices for the projectile and the target, calculate the hit probability
using the Monte Carlo method described in Subsection 2.3.

The steps briefly listed above are described in more details in the following subsections.

2.1. Variational equation and error propagation

The variational equation describes how the disturbances of the initial conditions of the system
will evolve along its trajectory1. There are several mathematical models commonly used to
describe the motion of a projectile: the point-mass trajectory model (McCoy, 1999, the rigid body
trajectory model (Baranowski, 2013a), the modified point mass trajectory model (Baranowski,
2013a).
Given any system of equations ẏ(t) = F(y(t), t) with the initial conditions y(t0), one can

easily generate a trajectory using numerical methods for iterative solution of ordinary differential
equations (e.g. Runge-Kutta method). Te main goal in this part will be to determine how the
solution of a system of equations behaves when a small disturbance δ is introduced into the
vector of initial conditions y(t0).
Let

d

dt
y(t) = F(y(t), t) (2.1)

be a system of n-th order differential equations with an initial condition y(t0) = y0 and a
solution Φt(y0, t0), i.e. (Parker and Chua, 1989)

Φ̇t(t0,y0) = F(Φt(t0,y0), t) Φt0(t0,y0) = y0 (2.2)

Moreover, let

δ = Φt0(t0,y0)−Φt0(t0,y0 + δ) (2.3)

be a disturbance of the initial conditions of the system and

∆Φt(t0,y0) = Φt(t0,y0)−Φt(t0,y0 + δ) (2.4)

1A problem often used when studying the stability of dynamical systems (Jordan and Smith, 2007)
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be a result of the disturbance propagation after time t. Using the Taylor series expansion with
the simultaneous omission of terms of higher orders (thus only the linear terms of the expansion
are taken into account), one can write (2.4) as a function of the original disturbance

Φt(t0,y0 + δ) = Φt(t0,y0) +
∂Φt(t0,y0)

∂y0
δ (2.5)

and thus

Φt(t0,y0 + δ)−Φt(t0,y0) =
∂Φt(t0,y0)

∂y0
δ. (2.6)

Using definitions (2.3) and (2.4)

∆Φt(t0,y0) =
∂Φt(t0,y0)

∂y0
∆Φt0(t0,y0) (2.7)

Resulting equation (2.7) is called the variational equation. In order to investigate the propagation
of disturbances, it is necessary to find a part of the equation

∂Φt(t0,y0)

∂y0
≡ ∇y0Φt(t0,y0) (2.8)

By integrating equation (??) an integral equation will be obtained

Φt(t0,y0) = Φt0(t0,y0) +

t∫

t0

F(Φτ (τ0,y0), τ) dτ (2.9)

Differentiating with respect to initial values y0, we obtained

∇y0Φt(t0,y0) =
∂Φt0(t0,y0)

∂ y0
+

t∫

t0

∂F(Φτ (τ0,y0), τ)

∂ y0
dτ (2.10)

Using the chain rule, and bearing in mind that

∂Φt0(t0,y0)

∂y0
= In (2.11)

we obtained

∇y0 Φt(t0,y0) = In +

t∫

t0

∂F(Φτ (τ0,y0), τ)

∂Φτ (t0,y0)

∂Φτ (t0,y0)

∂ y0
dτ (2.12)

By introducing the following notation

K(t) = ∇y0 Φt(t0,y0) J(t) =
∂F(Φt(t0,y0), t)

∂Φt(t0,y0)
(2.13)

and then returning to the differential form of Eq. (2.12), we finally got

d

dt
(∇y0Φt(t0,y0)) =

∂F(Φt(t0,y0), t)

∂Φt(t0,y0)

∂Φt(t0,y0)

∂ y0
(2.14)

then

K̇(t) = J(t)K(t) K(t0) = In (2.15)

here J(t) is a Jacobi matrix for the system of differential equations (2.3) at time t.
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2.2. Error propagation for the M-model

The considerations presented in the previous subsection will be used to investigate the prop-
agation of disturbances in the initial conditions for the explicit form of the modified point
mass trajectory model, in (Baranowski, 2016b) called the M-model. This model is equivalent to
the MPMTM model presented in (McCoy, 1999) and (STANG 4355, 2009) as demonstrated in
(Baranowski et al., 2016b)

ẋ = vx + wx ẏ = vy + wy ḣ = vh + wh

ṗ =
ρv2

2Ix
SdCspinp̂ S =

πd2

4

v̇ = −
ρv2

2m
S

(

CD0 + ĈD2α

( 2mg
ρv2S

)2 Î2x p̂
2 cos2 γa

(1− Îxp̂2Ĉmag−f )2 + (Îxp̂ĈLα)2

)

− g sin γa

[
γ̇a

χ̇a cos γa

]

= −
g

v

cos γa

(1− Îxp̂2Ĉmag−f )2 + (Îxp̂ĈLα)2

[
1− Îxp̂

2Ĉmag−f
Îxp̂ĈLα

]

(2.16)

where: x = [x, y, h] – 3-dimensional position vector, v = [vx, vy, vh] – velocity of the projectile
with respect to the air, w = [wx, wy, wh] – wind velocity vector, p – angular velocity of the
spinning motion, ρ – air density, m – mass of the projectile, p̂ = pd/v - dimensionless coefficient,
S – cross-section area of the projectile, Cspin – spinning drag coefficient, Ix – moment of inertia
along the x axis, d – caliber, CD0 – zero-yaw drag coefficient, g – gravitational acceleration,
γa – the elevation angle of v measured from the horizontal direction, i.e. the air-path inclination
angle, χa – the azimuth angle of v, i.e. the air-path azimuth angle, Ĉmag−f – dimensionless

Magnus force coefficient, ĈLα – dimensionless linear lift force coefficient, ĈD2α – dimensionless
yaw drag coefficient. The dimensionless coefficients are defined as

ĈD2α =
CD2α
CMα

ĈLα =
CLα
CMα

Ĉmag−f =
Cmag−f
CMα

(2.17)

where CMα – overturning moment coefficient, CD2α – yaw drag coefficient, CLα – lift force coef-
ficient, Cmag−f – Magnus force coefficient.
In order to solve variational equation (2.15), it will be necessary to compute the Jacobi

matrix for the explicit form of the modified point mass trajectory model presented above

J =





∂F1
∂y1

. . .
∂F1
∂y7

...
. . .

...
∂F7
∂y1

. . .
∂F7
∂y7




. (2.18)

Using the Runge-Kutta method of the 4th order, one can find a solution Φt(y0, t0) of the system
of equations (2.16), which will then enable us to calculate the value of Jacobi matrix (2.18) at
each of the nodal points. The Runge-Kutta method is applied again to linear non-stationary
system (2.15) in order to propagate the Jacobi matrix along the solution Φt(y0, t0) (Randez,
1992)

kn1 = J
n−1 kn2 = JH

(
I+
h

2
kn1

)
kn3 = JH

(
I+
h

2
kn2

)
kn4 = J

n(I+ hkn3 )

Kn =
(
I+
h

6
[kn1 + 2(k

n
2 + k

3
3) + k

n
4 ]
)
Kn−1

(2.19)

where JH is the Jacobi matrix obtained as a result of interpolation between the nodal points
n− 1 and n, while the letter h is the integration step in the Runge-Kutta method.
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2.3. Probability of hitting the target with an artillery projectile

Let the initial condition of equations (2.16) be described by a normal distribution

y0 ∼ N (µy0,Σy0) (2.20)

where

µy0 = [µx0, µy0 , µh0, µp0 , µv0 , µγa,0 , µχa,0]
T (2.21)

is a vector of averages of the initial values of the system, and

Σy0 =





σ2x 0 0 0 0 0 0
0 σ2y 0 0 0 0 0

0 0 σ2h 0 0 0 0
0 0 0 σ2v 0 0 0
0 0 0 0 σ2χa 0 0

0 0 0 0 0 σ2γa 0

0 0 0 0 0 0 σ2p





(2.22)

is a matrix containing the variances of the initial position of the system. By using the rule of error
propagation (Ochoa and Belongie, 2006), covariance matrix for the position of the considered
system after time t will be

Σy(thit) = K(thit)Σyt0K
T(thit) (2.23)

where thit is the time in which the projectile travels to the point where it meets the target.
The respective variances in (2.22) refer to: projectile position in three dimensional space, its

velocity, elevation and azimuth angles, rotational speed. At this point, it is necessary to discuss
some assumptions that were adopted when solving the problem for the selected model of the
projectile flight:

1. The physical parameters of the projectile, such as mass and caliber, are treated as constant
values.

2. The quantities used in Eq. (2.22) are described with the normal distribution where:

• the initial position will depend on the measuring device used to establish the initial
position;

• parameters of speed distribution and dispersion of the gun in the elevation and az-
imuth angle planes are provided by the manufacturer;

• the parameters of the distribution of the rotational speed of the projectile result
directly from the parameters of the distribution of its muzzle velocity.

The covariance matrix related to the position of the tracked target at the meeting point has yet
to be found. The value of this matrix will be calculated using the error propagation law

Σc(thit) = A(thit)Σc(t)A
T(thit) (2.24)

where A is the matrix of motion dynamics of the tracked target depending on the assumed
target motion hypothesis (constant velocity motion, constant acceleration motion, constant turn
motion etc.), Σc(t) is the covariance matrix related to the estimated (e.g. by the use of Kalman
filtering) target motion parameters at the current moment t for the selected motion hypothesis,
Σc(thit) is the covariance matrix after the time thit for the selected motion hypothesis. Having
the information about the target and projectile position in the area around the meeting point,
the next step will be to calculate the probability of projectile and target collision. To solve this
problem, the Monte Carlo method can be used, and the calculations are as follows:
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1. Finding vectors and eigenvalues for the covariance matrices Σy(thit) and Σc(thit) such that

Σy(thit) = VpDpV
T
p Σc(thit) = VcDcV

T
c (2.25)

where Dp and Dc are diagonal matrices containing eigenvalues of the covariance matrix
for the calculated projectile and target position respectively, Vp and Vc – matrices whose
columns contain the matrix eigenvectors for the calculated projectile position and target,
respectively.

2. Drawing two sets of points in the three-dimensional Cartesian space

Xc = [xc,yc,hc]Dc Xp = [xp,yp,hp]DpR R = VcVp (2.26)

where xc,yc,hc,xp,yp,hp are N -element column vectors drawn from a standardized nor-
mal distribution.

3. Calculate probability by summing the number of elements in both sets (Xc and Xp) that
are simultaneously in the target surrogate area, and then divide the result by N .

The probability of hitting the target, calculated according to the above algorithm, is determined
with a certain accuracy and strictly depends on the selection of the surrogate area referred to
in point 3 of the algorithm description.

3. Simulation method for finding the probability of hitting the target

The method of calculating the probability that will be presented in this s Section has been
prepared as a reference tool. The main reasons why this method cannot be used in a real time
calculations of the hit probability are:

• basing the algorithm on the assumption that the ideal trajectory of the tracked object is
known;

• very long simulation time, the performance of which is necessary to determine the target
hit probability.

This algorithm can be divided into two main parts, the first of which will be responsible for
simulating the projectile flight in the atmosphere, while the second will focus on simulating the
movement of the tracked target.
Projectile motion in the atmosphere will be described by a system of differential equations

(2.16)

d

dt
y(t) = Fp(t,y(t)) (3.1)

with rhe initial condition

y(t0) = y0 (3.2)

In real conditions, each quantity in vector (3.2) is burdened with a certain error, which will
be described for the purposes of simulation tests with a normal distribution. In the conducted
simulations, the vector of initial conditions will have the form

y(t0) = y0 +∆y0 (3.3)

where the respective elements of the vector ∆y0 are described with the use of normal distribution

∆y0
i
∼ N (µi, σ

2
i ) (3.4)
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It should also be remembered that not only the initial conditions affect the projectile trajectory.
The equations also use the projectile physical parameters (mass, diameter) denoted as q, which
are also burdened with a normally distributed error

qn = q+∆q ∆qj ∼ N (µj , σ
2
j ) (3.5)

The values of distribution parameters for each quantity depend on the type of ammunition
and are specified by the manufacturer. The flight trajectory simulations will be carried out in a
standard atmosphere – uncertainties related to determination of the meteorological situation will
be ignored. The reason for this approach is primarily the problem of obtaining appropriate data
that can be used to define the aforementioned uncertainties. However, it should be emphasized
that the prepared application allows one to take them into account as much as possible. The
second essential part of the probability calculation algorithm is related to the simulation of the
target movement being fought by the anti-aircraft system. In order to carry out simulation tests,
sets of test trajectories were prepared with the use of the route generator.

Each of the sets included two types of routes: ideal trajectory with successive target
positions generated with a selected frequency, treated at a later stage as a reference trajectory,
noisy trajectory with subsequent measurements of angular coordinates and distance to the
target – measurement errors and the frequency of measurements depends on the sensors used
in the anti-aircraft set (radar, optoelectronic head, etc.). After each simulation, it is checked
whether the projectile hits the tracked object with the given perturbations for the parameters
and the initial conditions of the differential equations describing the projectile motion. The
so-called standard NATO objectives being cuboids with dimensions:

• 12× 2.3 × 2.3m represents fighter-type targets;

• 2× 0.5× 0.5m represents drone targets.

The application developed in the Matlab environment has the ability to simulate the de-
scribed situation for various types of targets and ammunition together with visualization of the
entire situation. This approach to calculating the probability is a very good verification tool,
but requires a lot of time and computing power.

4. Comparison of the results for algorithms calculating the target hit probability

In order to verify the correctness of the algorithm of the analytical method for calculating the
probability of hitting a tracked object with a single bullet, appropriate simulation tests were
carried out. The research included calculating the hit probability using the analytical and sim-
ulation method (considered as the reference method) for the following variants of air target
movement: stationary target, target approaching the artillery, moving with constant velocity
motion, target moving away from the artillery with constant velocity motion. During the simu-
lation tests, only uncomplicated types of target dynamics were considered – which are sufficient
to evaluate the probability calculation method, which does not depend on the type of target
movement. For all the cases described above, the centre of the coordinate system was assumed
at the point where the artillery is standing. The generated ideal trajectory of the target was
disturbed, for the purposes of research, with the following measurement errors:

• white noise has been added to the azimuth and elevation angles N ∼ (0, σa,e), where
σa,e = 0.3mrad;

• quantization error was added to the distance measurement ∆r = 2m.

The trajectory of the projectile fired towards the meeting point will be calculated using
the equations of the modified point mass trajectory model in its explicit form (see equations
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(2.16)). Propagation of disturbances of the initial conditions of differential equations around the
solution is performed according to the algorithm presented in Subsection 2.2, using Jacobian for
the explicit form of the modified point mass trajectory model. The initial conditions disturbances
used in the simulations have the following values:

• ∆x0,∆y0,∆h0 ∼ N (0, σx), where σx = 0.5m;

• ∆v0 ∼ N (0, σv), where σv = 1.5m/s;

• ∆χa,0 ∼ N (0, σχa), where σχa = 0.32mrad;

• ∆γa,0 ∼ N (0, σγa), where σgammaa = 0.32mrad;

• ∆p0 ∼ N (0, σp), where σp = 0 rad/s.

The above values of the initial conditions disturbance are used both in the analytical and refer-
ence methods for calculating the target hit probability.

4.1. Stationary target

The tests were carried out for different distances of the target from the firing position.
The paper presents exemplary calculation results for the target located on the border of the
effective range. In this case, it was assumed that the target is at point C = (xc, yc, hc) =
(−4000, 300, 700) relative to the starting point of the projectile, which is also the center of the
coordinate system. The target tracking process took 25 s, and the hit probability was calculated
at tp = 1, 3, 5, . . . , 19, 21 s. The results of simulation tests for the discussed case are included in
Table 1.

Table 1. The probability of hitting a stationary target calculated in subsequent moments of
simulation. PH1 – probability calculated using the reference method, PH2 – probability calculated
using the analytical method

t1 [s]
1 3 5 7 9 11 13 15 17 19 21

PH1 0.570 0.568 0.550 0.564 0.556 0.574 0.534 0.594 0.570 0.550 0.572

PH2 0.002 0.030 0.481 0.481 0.408 0.477 0.481 0.481 0.483 0.480 0.482

At this point, it is necessary to discuss the differences that occurred when calculating the
probability of an artillery projectile hitting the tracked target. The most distinct difference
occurred in the first second of the tracking process (probability values are highlighted in orange).
In Fig. 1a, one can see how the trace of the covariance matrix resulting from the operation of the
Ballistic Computing Module and related to the calculated future target position has changed.
Only after 3 s, the filter went into a steady state – the appropriate target dynamics was adjusted,
which increased the accuracy with which the target position was determined.

A stationary target close to the limit of the effective range of the tested type of artillery
ammunition is, contrary to intuition, a case for which the determination of the motion parameters
(and thus the prediction of the future location) is relatively difficult. From the point of view of
the FCS, the target moves completely randomly depending on the measurement errors of sensors
(in real conditions, often also on atmospheric conditions) - an examplary trajectory is shown in
Fig. 1.

4.2. Constant velocity motion – incoming target

The starting point of the trajectory of the tracked target is C0 = (x0, y0, h0) =
(−4500, 300, 700) m; the target is moving with a constant velocity Vc = [vx, vy, vh] =
[100, 0, 0] m/s. The movement of the target is simulated over the time ts = 22 s (the target
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Fig. 1. (a) Trace of the covariance matrix resulting from the operation of BCM and related to the
location of the tracked target (point C = (−4000, 300, 700)). The figure shows trace values for the

covariance matrix at selected moments in the tracking process. (b) The trajectory of a stationary point
recorded by the system after taking into account sensor measurement errors

trajectory is shown in Fig. 2b). The probabilities of hitting the target, calculated in the mo-
ments tp = 1, 3, 5, . . . , 19, 21 s are presented in Table 2. In the case of the analytical method,
the values of target hit probability increase over time. This is understandable given the trace
of the covariance matrix (Fig. 2a) related to the determination of the target location by the
chosen filtering method. Compared to the stationary target, the target dynamics was selected
by the system very quickly (less than 1 s), and because it was selected in accordance with the
actual target movement, errors in determining target motion parameters decreased shortly after
starting the tracking process.

Fig. 2. (a) Trace of the covariance matrix resulting from the operation of FCS and related to the
location of the tracked target (the target approaching the artillery gun with constant velocity motion).
The figure shows the trace values of the covariance matrix at selected moments in the tracking process.
(b) The trajectory of the target moving with the constant velocity motion model (the target is
approaching) recorded by the system after taking into account sensor measurement errors

The analytical method is sensitive to the information coming from the FCS, and more pre-
cisely, to the values of the covariance matrix related to the parameters of the target movement.
The stabilization of the tracking process with the Kalman filter causes that the set of random
points representing the position of the target around the meeting point, Eq. (2.25)2, is very
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Table 2. The probability of hitting a target moving with a constant velocity, calculated in
successive moments of the simulation. PH1 – probability calculated using the reference method,
PH2 – probability calculated using the analytical method

t1 [s]
1 3 5 7 9 11 13 15 17 19 21

PH1 0.418 0.628 0.670 0.686 0.706 0.768 0.798 0.862 0.912 0.910 0.894

PH2 0.638 0.682 0.737 0.710 0.775 0.842 0.881 0.914 0.948 0.989 0.996

concentrated around that point. Moreover, in the case of an approaching target, the projectile
trajectory to the meeting point, calculated in each subsequent iteration of the FCS, is shorter
than the previous one. Therefore, it can be expected that as a result of the propagation of
disturbances around the solution of the projectile motion equations, the obtained values of the
variance of the projectile motion parameters decrease with each subsequent iteration of the FCS.
This naturally translates into an increase in the value of the calculated probability.

Also in the case of the reference method, the values of the probability of hitting the target
increase in the following moments. The reasons are similar to those given for the analytical
method – approaching the target to the center of fire reduces the dispersion of projectiles around
the meeting point and, at the same time, the gun settings used in the simulation of the projectile
flight are determined by the FCS with a smaller error (resulting directly from the accuracy of
determining the movement parameters of the tracked target).

In the case under consideration, the discrepancies between both methods of calculating the
probabilities are greater. This indicates a slightly greater sensitivity of the analytical method
to the information on accuracy of determining the target location coming from the FCS. One
should also remember about a certain assumption that affects the probabilities between the two
methods - the reference method is based on the assumption that the real trajectory of the target
is known. On the other hand, in the analytical method, the location of the target is determined
only on the basis of the estimated parameters of the target movement from the FCS.

4.3. Constant velocity motion – receding target

The initial position of the trajectory of the tracked target is C0 = (x0, y0, h0) =
(500, 300, 700) m; the target moves with a constant velocity Vc = [vx, vy, vh] = [100, 0, 0] m/s
(Fig. 3b). The target movement is simulated for ts = 22 s. The probability of hitting the target,
calculated at times tp = 1, 3, 5, . . . , 19, 21 s, is presented in Table 3.

Table 3. The probability of hitting a target moving with a constant velocity, calculated in
successive moments of the simulation. PH1 – probability calculated using the reference method,
PH2 – probability calculated using the analytical method

t1 [s]
1 3 5 7 9 11 13 15 17 19 21

PH1 0.851 0.754 0.946 0.878 0.858 0.890 0.8680 0.830 0.798 0.816 0.824

PH2 1.000 1.000 1.000 0.998 0.982 0.966 0.9170 0.852 0.795 0.731 0.679

In this case, the probability calculated by the analytical method decreases as the target
moves away. As onr can see in Fig. 3a, the errors in determining the target motion parameters
in the first moments of the tracking process are very small (especially compared to the errors
occurring in the case of an approaching or stationary target). It is understandable, taking into
account the fact that measurement errors of the azimuth and elevation angles propagate with the
distance from the sensor. Fluctuations in the values of the probability determined with the use
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Fig. 3. (a) Trace of the covariance matrix resulting from the operation of FCS and related to the
location of the tracked target (the target moving away from the fire center with a constant velocity).
The figure shows the trace values of the covariance matrix at selected moments in the tracking process.
(b) The trajectory of the target moving with a constant velocity (the target moves away) recorded by

the system after taking into account sensor measurement error

of the reference method are caused by the sensitivity of the method to incorrectly determined
gun settings at a given moment.

5. Conclusions

The algorithm for analytical calculation of the probability was verified using a simulation tool
prepared in the Matlab environment based on the assumption that the real target trajectory
is known. Significant discrepancies between the results obtained from both methods are a di-
rect outcome of the filter bank implemented in the Fire Control System. As has been shown,
the algorithms produce very similar results when the Kalman filter matched to a given target
dynamics enters a steady state. Until this moment, the uncertainties in determining the target
location around the meeting point are too high. It should be emphasized, however, that the time
needed by the filter to reach the steady state is very short, up to 2 s.

The time of the filter transition to the steady state, unfortunately, cannot be predicted with
an efficient method – it depends on many factors: measurement errors of sensors used for detect-
ing objects, dynamics and motion parameters of the tracked target. An important factor in the
tracking process are maneuvers performed by the tracked target, weather conditions that may
have a negative impact on the correct operation of the sensors, e.g. the influence of rain on the
operation of the laser rangefinder, the influence of clouds on the operation of the videotracker.
The main advantage of the developed analytical method (apart from the aforementioned com-
patibility with the simulation tool) is its runtime. The time of one FCS iteration is 20ms. The
time allocated to the Ballistic Calculation Module is 14ms. In the case of using 6 anti-aircraft
guns, the maximum execution time of the probability calculation algorithm is 1ms.

The algorithm operation time was tested on a ballistic computer used in the Fire Control
System. Runtime of the algorithm is mainly influenced by three factors: chosen mathematical
model for projectile motion, number of steps in the integration method of differential equations
describing motion of a projectile, number of samples in the Monte Carlo simulation. It is obvious
that reducing the number of steps and samples will shorten the algorithm runtime, but will
negatively affect its accuracy. These values should be selected depending on the specification of
the hardware by which the calculations will be performed. The analytical method for calculating
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the hit probability can be used as a tool to support the operator decision making. Firing a shot
after reaching the appropriate hit probability level should reduce the amount of ammunition
needed to neutralize the target being tracked. Fewer projectiles will translate into increased
service life of both the barrel and the gas chamber of the anti-aircraft gun.
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