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This paper is devoted to the study of the influence of random variation of model parameters
of a beam with viscoelastic layers on probabilistic characteristics of its natural frequencies
and dimensionless damping coefficients. The relationships between the model parameters
and the dynamic characteristics of the beam were approximated by quartic polynomials
based on the results of calculations using FEM, where beam finite elements were used,
taking into account lamination of the beam. The nonlinear eigenproblem was solved using
the continuation method. The calculation results for an examplary laminated beam are
presented.
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1. Introduction

Correct determination of basic dynamic characteristics of structures is one of the important
engineering problems. However, uncertainties or variability of model parameters may have a
significant impact on obtained results. Therefore, research on the influence of random variability
of model parameters on probabilistic characteristics of natural vibration frequencies and dimen-
sionless damping coefficients seems justified. This paper presents results of research conducted
for a beam with layers of a viscoelastic material described by the fractional Zener model. The
basic numerical tool used in this type of analysis is the Stochastic Finite Element Method –
SFEM (Arregui-Mena et al., 2016; Kamiński, 2013; Stefanou, 2009). To determine the proba-
bilistic characteristics, it was necessary to perform a number of deterministic calculations for
variable parameters of the beam model. The Finite Element Method was applied to these calcu-
lations, using the layered beam finite element proposed by Lewandowski and Baum (2015). This
type of finite element was also used in the studies by Łasecka-Plura (2023). The dynamic char-
acteristics of the beam were obtained by solving a nonlinear generalized eigenproblem, for which
the continuation method described by Pawlak and Lewandowski (2013) was used. Research on
the influence of variability of model parameters on the dynamic characteristics of plates resting
on viscoelastic supports was carried out by Kamiński et al. (2023).

2. Finite element formulation

The dynamic analysis of the beam with viscoelastic layers was performed based on the Finite El-
ement Method (FEM), using beam finite elements, but taking into account the layered structure
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of the beam. The finite element of the layered beam was formulated in the frequency domain.
The following assumptions were made in this formulation: each viscoelastic layer is located be-
tween two elastic layers, all layers are perfectly glued to each other, the material of each layer
is isotropic and homogeneous, the Euler-Bernoulli beam theory was used for elastic layers and
the Timoshenko beam theory for viscoelastic layers. The corresponding layers of adjacent finite
elements must have the same thickness, and damping in elastic layers is neglected. The assump-
tions made in this way lead to the formulation of kinematic relations for the finite element of a
laminated beam, which are described in detail in the paper by Lewandowski and Baum (2015).
The fractional Zener model was chosen to describe the viscoelastic material. This model

describes the actual behavior of a viscoelastic material very well, requiring only four material
parameters. The constitutive equation of this model is as follows

σ(x, t) + ταDαt σ(x, t) = E0ε(x, t) + E∞τ
αDαt ε(x, t) (2.1)

This equation employs commonly used notations, namely σ(x, t) and ε(x, t) are functions of
stress and strain, respectively, and τ is the relaxation time. The symbols E0 and E∞ indicate
the relaxed and non-relaxed elastic modules, respectively. The fractional derivative of order α is
marked with the symbol Dαt (·). In the presented research, the definition of the Riemann-Louville
fractional derivative was used.
After some mathematical operations, the following matrix equation of beam motion in the

frequency domain can be written (Lewandowski and Baum, 2015)

[s2M+K+Kv(s)]q(s) = p(s) (2.2)

where s is the Laplace variable, wherein q(s) and p(s) are the Laplace transforms of the nodal
displacement vector and the external force vector, respectively. The symbols M, K and Kv(s)
denote, respectively, the mass matrix, the stiffness matrix and the so-called viscoelastic matrix,
the elements of which are functions of the variable s.

3. Dynamic characteristics of the beam with viscoelastic layers

The natural frequencies and dimensionless damping coefficients of the beam with viscoelastic
layers are calculated based on the solution of the nonlinear eigenproblem, which is obtained by
assuming a zero vector of the external forces in Eq. (2.2)

[s2M+K+Kv(s)]q(s) = 0 (3.1)

This eigenproblem can be solved by the continuation method (Pawlak and Lewandowski, 2013).
Since the obtained eigenvalues are complex numbers, they can be written as

si = µi + iηi (3.2)

The natural frequencies and dimensionless damping coefficients can be calculated accordingly

ω2i = µ
2
i + η

2
i γi = −

µi

ωi
(3.3)

4. Influence of model parameters variation on dynamic characteristics of

a layered beam

The main goal of the analyzes was to examine the impact of variability of specific parameters of
the beam model on its dynamic characteristics. The analyzed characteristics are natural frequen-
cies of the beam and dimensionless damping coefficients. In order to determine the relationship
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between a specific model parameter and the appropriate dynamic characteristic of the beam, a
polynomial approximation using the least squares method was used based on the results of FEM
calculations, i.e. a finite number of deterministic results. Quartic polynomials were adopted as
approximating functions.
Inference on the influence of variability of model parameters on the natural frequencies and

dimensionless damping coefficients of the laminated beam was made on the basis of the following
probabilistic characteristics: expected value, standard deviation, coefficient of variation, skewness
and kurtosis.
Calculations of probabilistic characteristics are, by their nature, complex tasks, which is

why approximate methods are generally used in these tasks. In the conducted research, the
calculation of probabilistic characteristics was carried out using three computational methods,
and consistency of the obtained results was compared. The methods used were semi-analytical
method – SAM (based on symbolic calculation procedures in the Maple program), stochastic
perturbation technique – SPT (tenth order) and Monte-Carlo simulation – MCS (number of
trials is 105).

5. Numerical example

This paper presents results of sample calculations performed for a beam consisting of five layers:
three elastic and two viscoelastic. The model of such a beam is shown in Fig. 1.

Fig. 1. Model of an examplary layered beam

The total length of the beam is 20 cm. The lower and upper elastic layers have the same
thickness, which is he1 = he3 = 0.001m, while the thickness of the middle elastic layer is
he3 = 0.004m. The remaining parameters of the elastic layers are as follows: Young’s modulus
Ee = 70.3GPa, Poisson’s ratio νe = 0.3, density ρe = 2690 kg/m

3. The parameters of both
viscoelastic layers are the same and their values are as follows: layer thickness hv1 = hv2 =
0.002m, density ρe = 1600 kg/m

3, relaxed elastic modulus E0 = 1.5MPa, non-relaxed elastic
modulus E∞ = 70MPa, Poisson’s ratio – νv = 0.5, relaxation time τ = 1.4 · 10

−5 s, parameter
describing the order of derivative fractional α = 0.8. The viscoelastic material parameters were
taken from the literature (Galucio et al., 2004) and describe the polymer 3M ISD112.
The analysis of the influence of variability of the parameters of the layered beam model on

the probabilistic characteristics of its natural vibration frequency and dimensionless damping
coefficients was performed for four parameters: thickness of the elastic layer he3, thickness of the
viscoelastic layer hv2, relaxation time τ and the parameter describing the order of the fractional
derivative α. These parameters were treated as random variables with a Gaussian probability
distribution, for which the coefficient of variation was assumed to have values ranging from 0.025
to 0.25.
As previously mentioned, the calculations were performed using three different methods:

semi-analytical, perturbation technique and Monte-Carlo simulation. Figure 2 shows the results
obtained using these methods. As can be seen, the graphs of the expected value, coefficient
of variation, skewness and kurtosis of the first natural vibration frequency depending on the
coefficient of variation of the parameter α obtained by these three methods show high agreement.
As a part of the research, a summary of the probabilistic characteristics obtained for the

model parameters was made for the coefficient of variation varying within the assumed range
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Fig. 2. Validation of methods for calculating probabilistic characteristics: expected value E(ω1),
coefficient of variation CoV (ω1), skewness β(ω1), kurtosis κ(ω1) (SAM – semi-analytical method,

SPT – stochastic perturbation technique, MCS – Monte Carlo simulation)

and is shown in Fig. 3. The main observation is that in the case of the first natural frequency, an
increase in the variability of the parameter α has by far the greatest impact on the probabilistic
characteristics. However, it should be emphasized that even in this case, the coefficient of vari-
ation of the first natural frequency ω1 is significantly smaller than the corresponding coefficient
of variation of this parameter. The impact of the variability of the remaining parameters on the
probabilistic characteristics of ω1 is significantly smaller.

Fig. 3. Comparison of probabilistic characteristics of ω1: expected value E(ω1), coefficient of
variation CoV (ω1), skewness β(ω1), kurtosis κ(ω1) for variable coefficient of variation (CoV) of beam

model parameters (results obtained by a semi-analytical method)

6. Conclusions

The calculation results presented in the previous Section allow the following conclusions to be
formulated:

• Analogous analyzes as in the case of natural frequencies were performed for dimensionless
damping coefficients. The results of these studies will be presented in the extended version
of the article.
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• Comparison of the results obtained from the semi-analytical method, stochastic pertur-
bation technique and Monte-Carlo simulation shows that all these methods generally give
similar results, but in some cases they may differ, so to be sure of the correctness of the
solution, it is worth using at least two of them in parallel.

• An increase in the variability of the viscoelastic material model parameter α has by far
the greatest impact on the probabilistic characteristics of natural vibration.

• Only selected research results are presented, the scope of which was much wider. In the
remaining analyses, the conclusions presented above were confirmed.
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