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Current life prediction methods of Electromechanical equipment bearings have issues of low
accuracy and lack of stability. To address these problems, firstly, indicators based on life
degradation characteristics of bearings are selected. Then, a deep neural network-based life
prediction model is constructed. Finally, the K-nearest neighbor algorithm is introduced
to correct the deviation of the deep neural network prediction model, and a hybrid life
prediction model is designed. Results show that effectiveness of the designed model was
better, which was of great practical significance for detecting bearing failures in advance,
reducing equipment losses and improving equipment reliability.
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1. Introduction

In recent years, electromechanical equipment plays a vital role in the modern industrial produc-
tion. And one of the most common problems in equipment failure is life prediction of bearings.
As an important part of electromechanical equipment, accurate prediction of the state of bear-
ings is critical for normal operation and maintenance of the equipment. Traditional bearing
life prediction methods mainly rely on empirical models and mathematical statistical methods,
which can provide reliable prediction results in some cases, but have certain limitations in com-
plex working conditions and variable environments (Zhang et al., 2023). Deep Neural Network
(DNN) is a multi-layer neuron based artificial intelligence model that can automatically extract
features and perform complex pattern recognition by learning a large amount of data. It has
powerful nonlinear modeling capability and high adaptivity, and is proper for processing high
dimensional, nonlinear and large-scale data (Abdou, 2022). The K-Nearest Neighbors (KNN) al-
gorithm, on the other hand, is a machine learning method that makes predictions by calculating
the distances between samples and using information from the nearest neighbor samples. The
algorithm is simple and effective, and has a good ability to handle small samples and nonlinear
problems (Hatem, 2022). In this context, DNN and KNN are fused to design a DNN-KNN-based
bearing life prediction model. Firstly, the indexes are selected with characteristics of bearing life
degradation, then the remaining life prediction model is constructed by DNN, and finally KNN
is introduced to correct the deviation of the model to improve the accuracy and stability of
the prediction. The research is composed of five parts. The first section is the background of
bearing life prediction. The second section is a review of the current research status of bearing
life prediction. The third section is the construction of a bearing life prediction model, which
includes three sections: index selection, model construction, and model optimization. The fourth
part is the experimental outcome of the model, in which the first and the second sections are
the performance and application effect analysis of the designed algorithm. The fifth section is
the summary of the whole paper and shortcomings of the study.
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2. Literature review

With the increasing importance of electromechanical equipment in the industrial production and
life, bearing, as a core component of electromechanical equipment, its life prediction is of great
significance for the operational stability and economic benefits of the equipment. In the field
of bearing life prediction of electromechanical equipment, many scholars and researchers have
proposed various methods and models to solve this problem. Nistane (2024) designed a rolling
bearing remaining life optimization prediction model based on integrated optimization health
indicators and hybrid machine learning algorithms to understand the degree of deterioration of
rolling element bearings at any time. The model preprocesses the original signal data through
wavelet transform and optimizes features using machine learning techniques. The results show
that the prediction error of the model is low. Li and Wang (2024) designed a method that inte-
grates time series window features and first prediction time recognition to predict the remaining
life of rolling bearings using limited data. The method uses a multi-step rolling prediction strat-
egy based on the first prediction time degradation factor to reveal the future degradation trend
of bearings, and the results show a prediction error as low as 8.06%. Fei et al. (2024) have
designed a life prediction method based on convolutional deep neural networks to improve the
accuracy of turbocharger bearing life prediction. The method uses convolutional neural networks
to extract feature convolutional layers and uses deep neural networks to regress and model the
bearing life. The results show that this method has high efficiency and accuracy. Mao et al.
(2019) designed a gated recurrent unit neural network for prediction of bearing life by providing
sufficient feature representation and adaptive extraction for the bearing life prediction, and the
findings indicated that the model had a high generalization ability and accuracy. To provide
sufficient feature representation and adaptive extraction for bearing life prediction, Mao et al.
(2019) designed a remaining life prediction method based on deep feature characterization and
migration learning, which was divided into two phases to characterize the faults and correct the
features to complete the prediction, and the outcomes expressed that the method had a better
numerical stability and prediction accuracy. Sun et al. (2021) designed a method with vibration
signal detection to predict the life of conventional low-voltage circuit breakers, which combined
the designed signal processing method to extract effective vibration segments that characterized
mechanical properties of the contact system to construct a model, and the findings illustrated
that the method had a high average fit. Rezamand and other scholars determined the effect of
operating conditions on the dynamics of bearing failure to achieve a hybrid prediction based on
real-time monitoring and data acquisition and a vibration signal prediction method which used
vibration signals to identify fault dynamics of the life of bearing prediction. A hybrid prediction
method based on real-time monitoring and data acquisition and a vibration signal prediction
was designed to identify the failure dynamics through vibration signals and Bayesian algorithm,
which was shown to have a high prediction accuracy (Rezamand et al., 2021).

To address the issue of non-existence of interpretability in bearing life prediction, Ding and
other researchers designed a dynamic structure and adaptive notation method, which modeled
the health indexes of multiple signals and tracked the real-time degradation of the machine by
using dynamic coupling terms. The findings denoted that the method had better generalization
ability and lower prediction error (Ding et al., 2021). To solve the uncertainty of a recurrent
neural network in predicting bearing life, Wang and other scholars designed a long and short-
term memory network model based on residual convolution, which quantified the inaccuracy of
prediction results by constructing an appropriate output layer obeying the normal distribution,
and the findings denoted that the model could effectively predict the bearing life (Wang et al.,
2022). Rezamand et al. (2020) to accurately estimate the prediction of bearing life, designed a
comprehensive prediction method based on the signal processing and adaptive Bayesian algo-
rithm, which was based on feature extraction and feature selection. It detected, dynamics of
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various faults through feature extraction, feature selection and signal denoising and predicted
them by using the adaptive Bayesian algorithm, and the results showed that the method had a
high prediction accuracy (Rezamand et al., 2020). In order to achieve accurate prediction of re-
maining lifespan, Wu et al. (2024) designed a residual lifespan prediction model based on wavelet
enhanced dual tree residual network. The model decomposed time series through wavelet trans-
form and predicted remaining lifespan by concatenating dual tree features. The results showed
that the prediction effect of that method was good (Wu et al., 2024). Li et al. (2023) researchers
designed a deep adversarial network-based residual service life prediction method for partial
sensor failure to achieve a good electromechanical health assessment, which extracted general-
ized sensor invariant features through adversarial learning to make a full use of the information
from different sensors, and the findings indicated that the method had a high robustness. Yang
et al. (2024) designed a dynamic spatiotemporal graph driven bearing remaining life predic-
tion method based on graph data expansion to maintain normal operation of the machine. The
method captured hidden information using short-time Fourier transform and predicted through
a graph embedding module based on an autoencoder. The results showed that the prediction
performance of that method was high (Yang et al., 2024).

In summary, many scholars have made significant contributions in the field of bearing life pre-
diction for electromechanical equipment, however, there are still some limitations of these meth-
ods, such as limited universality, missing comparative analysis and insufficient interpretability.
Therefore, the study is based on life degradation characteristics of bearings for indicator selec-
tion, followed by constructing a life prediction model using DNN. At the same time, to correct
the error of the DNN prediction model, the K nearest neighbor algorithm is introduced and a
hybrid life prediction model is designed to improve the model performance of measurement and
generalization ability.

3. Construction of the bearing life prediction model for electromechanical

equipment by integrating DNN and KNN

This Section focuses on the construction of the fusion bearing life prediction model. The first
section is selection of feature indicators, the second section is construction of the DNN-based
model, and the third section is introduction of KNN to optimize the model.

3.1. Selection of characteristic indicators for bearing life degradation of electromechanical

equipment

As a key component of electromechanical equipment, the performance degradation of bear-
ings will seriously affect the operation safety and stability of the whole equipment. In order to
effectively monitor the performance status of bearings during operation and predict their life, it
is crucial to extract characteristic quantities that can reflect the performance degradation indi-
cators of bearings (Cao et al., 2023). Therefore, one needs to select the life degradation index
of the bearing. In actual working conditions, there are many nonlinear factors that affect the
construction performance of health indicators for rolling bearings. Traditional indicator extrac-
tion methods are prone to losing the state information on rolling bearings, and therefore cannot
extract true and effective state features from complex signals. Research is being carried out on
introducing deep learning models to extract state indicators of bearings. The index extraction
process is shown in Fig. 1.

In the operation of electromechanical equipment, the rolling bearing as a key support com-
ponent. During its long time operation, due to the influence of various factors, there may be
faults or an abnormal operation state. At that time, the vibration signal will be manifested out
of the bearing running state corresponding to the characteristic quantity. These characteristics
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Fig. 1. Extraction process of bearing life degradation indicators

include time-domain features such as the mean value, peak value, RMS, craggyness, etc., as
well as frequency-domain features such as center frequency, average energy, spectral partition-
ing and summation. In the study, the peak value, RMS, magnitude and spectral partition sum
are selected as degradation characteristics of the bearing. Among them, the peak value is the
maximum magnitude of the vibration signal, which can reflect the vibration intensity of the
bearing, and its calculation method is expressed as

XP = max |xi| (3.1)

In Eq. (3.1), XP represents the peak value, and xi represents the input eigenvector, where
i = 1, 2, . . . , N . The RMS value of the vibration signal can reflect the vibration energy of the
bearing, and is calculated as

XR =

√

√

√

√

1

N

n
∑

i=1

x2i (3.2)

In Eq. (3.2), XR indicates the RMS of the vibration signal, and N indicates the total amount of
data in the sample. Sharpness of the vibration signal reflects the vibration frequency distribution
of the bearing, and its calculation method is

XK =
1

N

1

X4R

N
∑

i=1

(|xi − x|)
4 (3.3)

In Eq. (3.3), XK represents the craggy index, and x represents the average value of the input
eigenvectors. Spectral partitioning and summation is to divide the vibration signal spectrum
into several intervals and calculate the sum of spectral energy in each interval, which can reflect
the spectral distribution of the bearing vibration signal, and its calculation method is

XF =

Nηv/V
∑

k=[V+Nη(r−1)]/V

S(r) (3.4)
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In Eq. (3.4), XF denotes the value of the sum of spectral partitions, which is a one-dimensional
vector containing M elements, Nη denotes length of the signal spectrum, r means the amount
of spectral lines in each spectrum, and m = 1, 2, . . . ,M . In the next step, data preprocessing is
performed on the acquired feature parameters to raise the learning efficiency of the network and
to prevent the occurrence of the gradient vanishing problem. That is, the data are standardized
and normalized, and the calculation method is indicated by

o′ =
o− u

σ
o′′ = round

( o′ − omin
omax − omin

)

(3.5)

In Eq. (3.5), o denotes the collected data, o′ denotes the normalized data, umeans the mean value
of all the data, σ refers to the standard deviation of all the data, o′′ denotes the normalized data,
which is dimensionless with the range of [0, 1], omin denotes the rounding function, omin means
the minimum value of the data, and omax expresses the maximum value of the data. In summary,
the peak value, RMS, craggyness and spectral partition summation can effectively reflect the
performance degradation state, so they are selected as the degradation characterization indexes
of the bearings.

3.2. DNN-based bearing life prediction model construction

With continuous growth of artificial intelligence technology, deep learning algorithms, as
powerful tools, they have shown great potential in the field of bearing life prediction for elec-
tromechanical equipment (Bhosle and Musande, 2023). The study chooses DNN model to per-
form bearings life prediction based on the characteristic indicators of bearing life degradation.
DNN consists of multiple layers of neurons, each with connections to adjacent layers, and can
be used to handle complex nonlinear problems. It has been widely used in fields such as image
and speech recognition, natural language processing, and recommendation systems. The DNN
model architecture is shown in Fig. 2.

Fig. 2. DNN model architecture

The network structure of DNN is a typical deep learning model, which is composed of an
inputting layer, multiple hidden layers and an outputting layer. The inputting layer is responsible
for receiving m-dimensional input data and passing it to the next layer by linear transformation
through an activation function. Repeating this process until the outputting layer is reached,
the final outputting is obtained. The number of network layers of a DNN can vary depending
on the application scenario, and some complex models can even reach 20 layers or more. This
multi-layer structure can better capture complex features of the data and thus predict results
more accurately. When training bearings using DNNs, the study first initializes all parameters
by a random normal distribution, then uses the ReLu function in the middle layer of the network



726 Y. Ma

and the Sigmoid function in the last layer to better match the normalized data. In terms of the
loss function, an expression is shown as

FM =
1

N

N
∑

i=1

(yie − y
i
p)
2 (3.6)

In Eq. (3.6), FM represents the loss function, y
i
e represents the experimental value, and y

i
p rep-

resents the predicted value. The next step is to use the Adam function for optimization and
train the DNN using the learning rate decay mechanism. The Adam optimizer is an optimiza-
tion algorithm with an adaptive learning rate, which combines the advantages of momentum
gradient descent and adaptive learning rate, and can adjust the learning rate of each parameter
with the first-order and second-order moment estimation of the gradient, so as to optimize the
model parameters effectively. When training the DNN, due to complexity of the network struc-
ture and uncertainty of the data, one needs to optimize the model performance by adjusting the
learning rate, and the learning rate decay mechanism is able to raise the generalization ability
and stability of the DNN model by gradually decreasing the learning rate, which is computed as

lr = lr(min) + [lr(max)− lr(min)]e
−
itr
d (3.7)

In Eq. (3.7), lr represents the learning rate. lr(max) and lr(min) mean the maximum and the
minimum values of the learning rate, respectively. itr refers to the amount of iterations, and
d represents the decay rate of the learning rate. After setting the parameters, the degradation
characteristics are used as inputs to obtain the degradation trend of the bearing, and finally
the remaining life of the bearing can be calculated by obtaining the moment of bearing failure
according to the failure threshold, which is shown as

tr = {t
′ − t|t′ > t,Z(t)} (3.8)

Fig. 3. DNN based bearing life prediction process

In Eq. (3.8), tr represents the remaining life of bearing, t
′ represents the moment of failure,

t represents the current operating moment of the bearing, and Z(t) represents all historical
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operating conditions of the bearing up to the current moment. The bearing life prediction process
based on the DNN is shown in Fig. 3.
Firstly, the data preprocessing is performed to normalize life vibration signals of the original

bearings and label them with health indicators, as well as the ash content training and testing
sets. Then a DNN model is built, hyperparameters initialized, and the processed data input
into the DNN model. Finally, based on the loss value, the weights, biases, and other parameters
of each convolutional layer in the network are updated and optimized to achieve the optimal
model, thereby obtaining the bearing health index construction model.

3.3. An improved bearing life prediction model based on DNN-KNN

Although the bearing life prediction model for electromechanical equipment has been built
on the basis of DNN, the DNN cannot accurately describe all structural details of the complex
mapping function, which leads to a certain deviation of the prediction output from the real data
and is prone to local optimal solutions. And the KNN is a local model, which is good at dealing
with nonlinear decision boundary and multi-classification problems (Althubaiti et al., 2022).
Therefore, it is studied to combine the DNN and KNN into a DNN-KNN model to correct the
deviation value in prediction and raise the effectiveness of the model. The bearing life prediction
process based on the DNN-KNN model is shown in Fig. 4.

Fig. 4. Bearing life prediction based on DNN-KNN model

For bearing life prediction, the original vibration signals need to be input, and the feature
parameters of the signals are extracted from them, which include frequency-domain features,
time-domain features, and time-frequency-domain features. For any bearing, it is difficult for a
single DNN model to describe the relationship between all feature parameters and bearing life.
Therefore, the study first clusters multiple DNN models expressioned in a vector form

DNNm =













DNN1
DNN2
...

DNNm













(3.9)

In Eq. (3.9), DNNm represents the set of m DNN models. Multiplying the input feature vectors
with the clustering results of multiple DNN models, ome is able to obtain a set of vectors of the
output predicted values, which is calculated as



728 Y. Ma

xi ×DNNm =



















P i1
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P ij
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P im



















(3.10)

In Eq. (3.10), P iM represents the first i m predicted value. At this point, the average of predicted
values is generally calculated as the final result, and the calculation is denoted by

P =
1

m

∑

j=1,m

P ij (3.11)

In Eq. (3.11), P denotes the average prediction value. But the results calculated in this way ignore
the prediction bias of each DNN model. Therefore, the study introduces a KNN algorithm by
which the test data are predicted, which usually predicts the values of new input samples by
analyzing the training samples. Specifically, the KNN algorithm selects a number of training
samples to generate the nearest-neighbor dataset, and the KNN algorithm clusters the scatter
points as shown in Fig. 5.

Fig. 5. KNN algorithm clustering a scatter plot

In Fig. 5, the KNN algorithm is able to find the nearest neighbors by calculating the distance
between sample points and using the information from these neighbors to classify or regressively
predict new data points. The algorithm has advantages of simplicity, being easy to understand
and implement, and is suitable for small datasets and sample imbalance. The training dataset is
first set to be T = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where each sample contains an input feature
vector x and a corresponding output prediction y. The set expression is shown as

YK = {yi : i = 1, 2, . . . , k} (3.12)

In Eq. (3.12), YK denotes the nearest-neighbor dataset, and i expresses the i-th sample. In the
next step, the predicted values of test samples can be calculated from these similar training
samples with the fokkowing expression

YPV =

∑k
i=1 wixi
∑k
i=1 wi

i = 1, 2, . . . , k (3.13)

In Eq. (3.13), YPV means the test value of the test sample, and wi indicates the weights of
the approximation sample. These weights can be determined based on the similarity with the
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test sample, and the inverse of the distance is usually used as the weight. The next step is to
calculate the input prediction value from the test value of the test sample, which is worked out
and expressed by

P (x) =
1

k

∑

j∈Nk(x)

y(xj) (3.14)

In Eq. (3.14), P (x) denotes the predicted value of the input feature vector x, Nk(x) denotes the
set of k data similar to the feature vector x, and y(xj) denotes the true value corresponding to
the data xj. The next step is to calculate the similarity between the predicted values of the test
and training samples by using Pearson’s correlation coefficient to correct the bias between the
two, and the expression of Pearson’s correlation coefficient is shown as

R(α, β) =

∑

i(αi − α)(βi − β)
√

∑

i(αi − α)
2
√

∑

i(βi − β)
2

(3.15)

In Eq. (3.15), R denotes the Pearson correlation coefficient, and α and β denote the two eigen-
vectors. The correction for bias is calculated from the equation

P ′(x) = P (x) +
1

k

∑

j∈Nk(xi)

[y(xj)− P (x)] (3.16)

In Eq. (2.16), P ′(x) denotes the real value, and y(xj) − P (x) denotes the deviation of the
predicted value. At this point, the improvement of bearing life prediction on the basis of DNN
is completed.

4. Analysis of the results of the DNN-KNN-based bearing life prediction model

for electromechanical equipment

This Section focuses on the research findings of the designed fusion bearing life prediction model,
with the first section analyzing the performance of the designed model and the second section
analyzing the effectiveness of the designed model in practical applications.

4.1. Performance analysis of the bearing life prediction model based on DNN-KNN

To verify the performance of the designed DNN-KNN-based bearing life prediction model
for electromechanical equipment, the study sets the size of convolution kernel to 5× 5, sets the
learning rate to 0.0001, and the iteration times to 200. At the same time, let the number of
hidden layers in the network be 8, with the number of neurons in each layer being 300, 2001,
150, 100, 80, 50, 30, 1, and the last layer being the output layer. Since each input data outputs
a predicted lifespan value, the output layer contains 1 neuron. Firstly, the accuracy and loss of
the designed model are calculated and compared with the DNN, Support Vector Machines, and
Decision Tree algorithms. The results are shown in Fig. 6.

From Fig. 6a, the accuracy of all four algorithms tended to increase as the amount of itera-
tions increased. Among them, the accuracy of the designed DNN-KNN algorithm is 0.96 when
it tends to level off, the accuracy of the DNN algorithm is 0.90 when it tends to stabilize, the
accuracy of the SVM algorithm is 0.87 when it reaches stability, and the accuracy of the DT
algorithm is 0.81 when it tends to stabilize. From Fig. 6b, the loss value of the four algorithms
had a tendency to decrease gradually, and the four algorithms reached the maximum amount of
iterations. The loss values when the four algorithms reached the max amount of iterations are
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Fig. 6. Accuracy and loss of different models

0.23, 0.29, 0.32, and 0.35, respectively. The above outcomes denoted that the designed DNN-
KNN algorithm has a high prediction accuracy and good convergence performance. In the next
step, the acquired dataset is divided into six types of test sets, and the errors of different models
are calculated separately. The outcomes are expressed in Table 1.

Table 1. Errors of different models

DNN-KNN DNN SVM DT

Test set 1 14.16 12.56 27.51 17.55

Test set 2 21.69 29.54 22.32 23.47

Test set 3 16.33 20.21 18.18 20.06

Test set 4 0.93 10.43 6.09 15.49

Test set 5 24.25 10.59 18.02 26.87

Test set 6 14.62 21.12 26.13 28.32

Average error 15.33 17.41 19.71 21.96

From Table 1, the average error of the designed DNN-KNN based life prediction model is
15.33%, the average error of the DNN-based model is 17.41%, and the average errors of the
two prediction models, SVM and DT, are 19.71% and 21.96%, respectively. The error of the
research-designed life prediction model based on the DNN-KNN is significantly lower than that
of the other algorithms. The findings further demonstrated the high prediction accuracy of the
designed model and also prove its reliability. Finally, the recall and F1 value are introduced to
assess the comprehensive effectiveness of the designed algorithm and compared with the other
four algorithms. The results are shown in Fig. 7.

In Fig. 7a, the recall of all four models tends to increase and level off as the iteration times
increased. Among them, the recall of the designed DNN-KNN model is 97% when it reaches
plateau, and the recall of the three models, DNN, SVM, and DT, are 93%, 88%, and 85% when
they plateau, respectively. From Fig. 7b, the F1-score of all four models gradually increased
as the iteration times increased. When the maximum amount of iterations was reached, the
F1-score of DNN-KNN, DNN, SVM, and DT were 0.93, 0.80, 0.78, and 0.72, respectively. It can
be found that the recall and F1-score of the designed DNN-KNN model are significantly higher
than those of the other models, indicating that it possesses a better comprehensive performance,
and meanwhile, proving that it has a good generalization ability.
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Fig. 7. Recall rates and F1-score of different algorithms

4.2. Analysis of the effect of practical application of the life prediction model based

on DNN-KNN

To assess the performance of the designed DNN-KNN-based life prediction model for bear-
ings in electromechanical equipment in practical applications, the study firstly selects the test
bearings, and then calculates the residual life of the bearings using the DNN-KNN-based and
DNN-based life prediction model, respectively. The scatter plots of the predicted life are shown
in Fig. 8.

Fig. 8. Scatter plots of the residual life of test bearings based on different algorithms

In Fig. 8, among the two bearing residual life prediction models, the remaining life prediction
value of the DNN-KNN-based model is obviously closer to the real life value, indicating that
the prediction accuracy of the designed model is higher. In the next step of the study, six test
bearings are selected, and the feature indexes are selected by different methods. The curves of
the average value of degradation feature indexes obtained by each algorithm are compared with
the cycle, and the findings are indicated in Fig. 9.

In Fig. 9, the values of degradation feature indicators extracted by both algorithms are
between 0 and 1, which is conducive to determining the range of the indicator failure threshold.
However, the curve of the mean feature data extracted by the DNN-KNN-based residual life
prediction model is obviously smoother and less fluctuating, which proves that it has better
stability and reliability in extracting feature indicators. This implies that the DNN-KNN-based
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Fig. 9. The curve of the average value of degradation characteristic indicators changing with the cycle

model can more accurately capture the bearing degradation trend and provides more reliable life
prediction results. The next step of the study introduces robustness and correlation to further
evidence the effectiveness of the designed remaining life prediction model, and, at the same time,
compares the results with those of the DNN-based residual life prediction model, which are given
in Table 2.

Table 2. Comparison of robustness and correlation between different models

Testing bearings
DNN-KNN DNN

Robustness Correlation Robustness Correlation

Bearing 1 0.98 0.98 0.97 0.95

Bearing 2 0.98 0.99 0.98 0.96

Bearing 3 0.99 0.98 0.96 0.97

Bearing 4 0.98 0.98 0.98 0.98

Bearing 5 0.99 0.99 0.97 0.90

Bearing 6 0.99 0.99 0.92 0.94

From Table 2, among the six test bearings, the average robustness and average correlation
of the DNN-KNN-based remaining life prediction model are 0.985 and 0.985, respectively, and
the mean values of the robustness and correlation of the DNN-based remaining life prediction
model are 0.963 and 0.95, respectively. The above findings indicated that the DNN-KNN-based
remaining life prediction model performs better in terms of robustness and correlation. Finally,
the study introduces the mean absolute error (MAE), mean square error (MSE), and RMS
error to evaluate the prediction results, and compares the results with those of the DNN-based
prediction model and the SVM-based prediction model. The results are shown in Fig. 10.

In Fig. 10, the MAE, MSE and RMS error of the SVM-based remaining life prediction model
are 0.036, 0.071 and 0.039, respectively, and the values of the three indicators of the DNN-based
remaining life prediction model are 0.024, 0.073 and 0.043, respectively, whereas the values of
the three indicators of the designed DNN-KNN-based remaining life prediction model are 0.019,
0.066 and 0.025, respectively. It can be found that the three indicators of the designed model
are significantly lower than the other models, which further proves that the prediction accuracy
of the designed model is higher. The indicator values are 0.019, 0.066, and 0.025, respectively.
To further verify the superiority of the DNN-KNN based electromechanical equipment bearing
life prediction model, the average absolute percentage error and maximum absolute error were
introduced to calculate the two indicator values of the design method and compared with the
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Fig. 10. Indicator values for different models

two indicator values of the latest methods in (Nistane, 2024; Li and Wang, 2024; Fei et al., 2024;
Yang et al., 2024). The results are shown in Table 3.

Table 3. Comparison of average absolute percentage error and maximum absolute error of five
methods

Model
Maximum absolute Maximum absolute

error percent error

Nistane (2024) 0.0967 0.1223

Li and Wang (2024) 0.1046 0.0955

Fei et al. (2024) 0.0953 0.0837

Yang et al. (2024) 0.0988 0.0846

DNN-KNN 0.0920 0.0732

From Table 3, it can be seen that the maximum absolute error and average absolute percent-
age error of the designed DNN-KNN model are 0.0920 and 0.0732, respectively. Their maximum
absolute errors are 0.0047, 0.0079, 0.0033, and 0.0068 lower than those in (Nistane, 2024; Li and
Wang, 2024; Fei et al., 2024; Yang et al., 2024), respectively. Its average absolute percentage
errors are 0.0491, 0.0223, 0.0105, and 0.0114 lower than the other four methods, respectively. It
can be found that the prediction error of DNN-KNN is smaller than in other methods, which
proves that it can effectively improve the accuracy of predicting the remaining life of bearings.

5. Conclusion

In the field of engineering, accurate remaining life prediction of bearings in electromechanical
equipment is of crucial significance for the reliability analysis and maintenance of the equip-
ment. The traditional prediction methods are often difficult to meet the accuracy and real-time
demands in the complex engineering environment. Therefore, the study firstly carries out se-
lection of indicators of bearing degradation, then introduces DNN, constructs a remaining life
prediction model based on these indicators, and finally introduces KNN to correct the deviation
of the DNN model, and designs a DNN-KNN residual life prediction model. The results show
that in the accuracy and loss calculation, the accuracy of the four algorithms when reaching
the maximum number of iterations is 0.96, 0.90, 0.97, and 0.81, respectively, which means that
the prediction accuracy of the designed algorithms is high. In the error calculation of different
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models, the average errors of the four models are 15.33%, 17.41%, 19.71% and 21.96%, respec-
tively, which further proves that the prediction accuracy of the proposed models is high and
demonstrates their reliability. In the recall and F1 value calculations of different models, the
designed DNN-KNN-based lifetime prediction model has a recall and F1 value of 97% and 0.93,
respectively, which are significantly higher than in the other models, proving that it has a better
overall performance, and also proving that it has a better generalization ability. The above find-
ings prove the effectiveness of the designed life prediction model based on DNN-KNN, but the
study still has some shortcomings when making predictions. A large number of historical data
of bearings are used, which may have a certain impact in terms of computational efficiency, and
the subsequent will continue to be improved in this aspect.
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