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This paper presents a new method for determining the S-N curve for a low probability of
failure, e.g., 5%. To apply this method, only eight fatigue tests are needed, which is fewer
than standard methods require. This could be achieved because the standard deviation,
which is necessary for estimating the normal distribution of fatigue life, was derived from
the distribution of logarithm of the yield strength. The tensile tests necessary to get the yield
strength are relatively simple and cost-effective. Verification of the method was performed
for fatigue tests on S355J2+C structural steel, 1.4301 and 1.4404 stainless steels, medium
carbon steel C45 and AW 6063 & AW 2017A aluminium alloys. The results showed that the
proposed method gave fatigue strength for 5% failure probability with a more reliable fatigue
life than the S-N curve estimated according to ASTM E-739-10, 2015. Considering that the
proposed method is conservative and low-cost, it can be used in engineering practice.
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Nomenclature

Fp – F -distribution value with desired confidence interval p for n1 = 2 and n2 = k − 2

N – number of cycles

KASTM – confidence band acc. ASTM standard

Sa, Su, Sy – stress amplitude, ultimate tensile stress, yield stress, respectively

b, binv – intercept coefficient of S-N curve for relationship log(Sa)∼ log(N) and log(N)∼ log(Sa),
respectively

fX , fY – normal distribution of base and inverted function

g(x), h(x) – base and inverted function

k – number of observed data

m,minv – slope coefficient of S-N curve for relationship log(Sa) ∼ log(N) and log(N) ∼ log(Sa),
respectively

σ – standard deviation of fatigue life for small number of specimens

σN , σR, σS – standard deviation of fatigue life, yield stress and fatigue strength, respectively

Indexes: i – i-th number of sample, (·) – mean value, (̂·) – estimated value.

1. Introduction

In the design of a new machine the fatigue strength of the entire service life must be known.
For this purpose, the stress-number of cycles curve (S-N curve), referring to a maximum 5%
probability of failure, can be used (PN-EN 13749, 2011). Fatigue tests necessary for getting
S-N curves are time-consuming, need specialised equipment and skilled personnel. For example,
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to obtain 105 cycles at a load frequency of 30Hz, a test takes 56 minutes. However, to obtain
106 cycles, the test will take over 9 hours. The time of sample preparation, installation in the
machine holder, setting of research parameters, etc. is not included. The costs of performing
fatigue testing were calculated by Shen, 1994 to be from 500 up to 1000 dollars per specimen.
Therefore, developing fatigue characteristics is very costly. For this reason, normative documents
specify a minimum number of specimens necessary to determine reliable fatigue characteristics
ASTM E-739-10, 2015. Unfortunately, still a significant number of samples is required. According
to the standard ASTM E-739-10, 2015, 12-24 samples for reliability and design purposes and
6-12 for preliminary and exploratory tests are required.

Several analytical methods for determining S-N curves, based on tensile testing, have been
developed to reduce the number of specimens needed while maintaining the reliability of the char-
acteristics. These methods assume that S-N curves can be achieved by correlation with tensile
test parameters, such as yield strength, tensile strength, or hardness (Lee et al., 2005). Verifica-
tion of these methods can be found in papers by Strzelecki and Sempruch (2016). According to
the verification results, the fatigue life prediction error can be as high as 263%. This is because
the estimation of the “fatigue limit” is done by multiplying the tensile strength or hardness
by a factor appropriate for the material and assuming a constant slope factor of the regression
line. “Fatigue limit” derived from tensile tests can exhibit a large scatter, as shown in Pang et
al. (2014). Also, the slope coefficient has a large variation according to Goedel et al. (2018).
Analytical-experimental methods have been developed, e.g., Goedel et al. (2018), Strzelecki and
Sempruch (2016) to improve the accuracy of S-N curves. In these methods, some parameters
must be additionally determined experimentally, e.g., “fatigue limit” can be determined by the
Locati method. However, these methods still give a large error of up to 50% (Strzelecki et al.,
2015).

Another approach to the formulation of S-N curves is represented by methods based on
statistical analysis of fatigue life test results. These methods utilise the relationship between the
number of samples used to create an S-N curve and the level of failure probability predicted by
the curve. Gope (1999) considering the number of specimens at each stress level, determined
the failure probability level and confidence level of the S-N curve. He estimated that for a 10%
probability of failure and a 90% confidence level, 10 samples are required. Lewis and Sadhasivini
(2004) proposed 7 samples for a two-parameter Weibull distribution for 5% probability and a
95% confidence level at each stress level. Later, Gope (2012) estimated the minimum number of
samples for S-N curve estimation as 13 samples. Soh Fotsing et al. (2010) suggested 7 samples
for a 50% failure probability. As seen, there is no consensus on a guideline specifying the number
of samples for a given level of damage probability. For this reason, many methods have been
proposed to improve the estimation of the S-N curve from the reliability point of view.

One of these propositions is the backward statistical inference method presented in Xie et al.
(2014). The method assumes that the standard deviation is constant for each stress amplitude
and that the curves of the probability density function of fatigue life at each i-th stress level are
the same. An improvement of the backward statistical inference method has been proposed by Li
et al. (2020) using the modified distribution coefficients. Both methods, original and improved,
require as many as 15 specimens to establish a fatigue curve. Bai et al. (2019) presented a
new method with the similar assumption that the curves of the fatigue life probability density
function at each i-th stress level were the same. An additional assumption was that the coefficient
of variation had to be also the same for each stress level. This method gives similar results to the
backward statistical inference method, and the improved backward statistical inference method.
Liu and Sun (2020) assumed that a linear regression distribution could be obtained using non-
-invasive polynomial chaos. Their study plan required 16 specimens. Zu et al. (2020) proposed a
α-S-N method based on uncertainty theory. This method gives better results than the standard
ISO-12107 (2012) but still requires at least 15 specimens. In many research studies, at least three
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S-N curves must be estimated for the tested material, like in multiaxial fatigue, which gives over
45 specimens.

All P-S-N methods presented above use statistical methods to improve probability calcula-
tions. In this respect, the work by Strzelecki (2021) stands out, which describes a method of
increasing the accuracy of fatigue characteristics by using tensile test data. In that study, the S-
N curve for the relationship log(Sa) ∼ log(N) was estimated. However, in normative documents
(e.g. ASTM E-739-10, 2015) the inverse relation log(N) ∼ log(Sa) is required, as the number
of cycles N varies depending on the stress amplitude Sa. Therefore, the use of the relationship
log(Sa) ∼ log(N) should be considered formally incorrect.

The goal of this work is to create a new method for determining P-S-N fatigue characteristics
with a low failure probability (e.g. 5%). This was done using a small number of fatigue tests
and an additional series of monotonic tensile tests. The deficiency of the earlier proposal by
Strzelecki (2021) was corrected in such a way that the S-N median curve was determined based
on fatigue tests of a limited number of samples, and the standard deviation of fatigue life was
replaced by the value from the tensile test σR. A value of fatigue life standard deviation σN was
obtained by the inverse of the yield stress distribution.

2. Proposed method

The S-N curve can be described using the Basquin equation, as proposed by ASTM E-739-10
(2015)

log(Sai) = m log(Ni) + b (2.1)

The least squares method is recommended for estimating the S-N curve parameters ASTM E-
739-10 (2015). The resulting estimated curve follows a normal distribution and is expressed
as

f(log(Sai)) =
1√
2πσ2S

exp
( [log(Sai)− (m log(Ni) + b)]2

σ2S

)
(2.2)

The experimental results of the yield stress determination can also be expressed by the normal
distribution function (Fig. 1)

f(log(Sy)) =
1√
2πσ2R

exp
( [log(Syi)− log(Sy)]2

σ2R

)
(2.3)

The proposed method assumes that the S-N curve for 50% probability of failure is estimated for
a small number of specimens, e.g. 8 (Eq. (2.2)), and the standard deviation is taken from the
distribution of yield strength (Eq. (2.3)). Such a distribution was written below and was named
P-S-N (Fig. 1)

f(log(Sai)) =
1√
2πσ2R

exp
( [log(Sai)− (m log(Ni) + b)]2

σ2R

)
(2.4)

Because, the number of cycles N is a dependent variable, so Eq. (2.1) must be given by an
inverse function. The inverse of function (2.1) is as follows

log(Ni) =
1

m
[log(Sai)− b] log(Ni) = minv log(Sai) + binv (2.5)
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Let us assume that the base function is g(x) and the inverted function can be denoted as h(y).
If g(x) is monotonic and differentiable, one can get a distribution for the inverted function. It
must be calculated distribution acc. to the following equation, Walpole et al. (2012)

fY (y) = fX(h(y))
∣∣∣dx(y)
dy

∣∣∣ (2.6)

Calculating the inverse distribution according to Eq. (2.6) and assuming linear regression ac-
cording to Eq. (2.1), the following equation is obtained

fY (y) = −
1

m
fX
(y − b
m

)
(2.7)

where: fY – normal distribution of the inverted function, fX – normal distribution of the base
function.

After substituting Eq. (2.7) into Eq. (2.4), the resulting equation is as follows

f(log(Ni)) =
1

minv
√
2πσ2R

exp
( [log(Ni)− (minv log(Sai) + binv)]2

m2invσ
2
R

)
(2.8)

The following substitution can be made in Eq. (2.8)

σN = minvσR (2.9)

Then, Eq. (2.8) has the following form (Fig. 1)

f(log(Ni)) =
1√
2πσ2N

exp
( [log(Ni)− (minv log(Sai) + binv)]2

σ2N

)
(2.10)

Fig. 1. Scheme of an S-N curve obtained by the proposed method
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3. Method proposed in ASTM standard

According to standard ASTM E-739-10 (2015), the confidence band of median S-N curve can be
estimated for desired probability. It is assumed that the logarithm of cycles N is a dependent
variable and the logarithm of stress amplitude Sa is independent. For this statement, Eq. (2.5)
is valid. The following equation is proposed for estimating the P-S-N curve

log(N) = m̂inv log(Sa) + b̂inv ±KASTM (3.1)

where

KASTM =
√
2Fpσ

√√√√1
k
+

[log(Sa)− log(Sa)]2∑k
i=1[log(Sai)− log(Sa)]

2
(3.2)

where: Fp – F -distribution value with the desired confidence interval p for n1 = 2 and n2 = k−2,
k – number of observed data, σ – standard deviation for a small number of specimens.

The positive value of KASTM in Eq. (3.1) is for the upper confidence band, and the negative
value is for the lower confidence band. Because the value of stress amplitude Sa in Eq. (3.2) is
substituted for each level of the load, KASTM must be calculated for each stress level separately,
Lee et al. (2005). A line regression is provided through the estimated values of KASTM. Scheme
of the ASTM method was presented in Fig. 2.

Fig. 2. Scheme of an S-N curve obtained by the ASTM method

4. Verification of the proposed method

The use of the proposed method requires knowledge of histograms and distributions of the
yield strength. The tensile tests were performed by Instron 8874 testing machine for S355J2+C
(Strzelecki, 2018), 1.4301 (Strzelecki, 2021), 1.4404 (Skibicki et al., 2014) amd AW 6063 T6
(Strzelecki and Wachowski, 2022). The histograms and distributions of yield strength were pre-
sented in Figs. 3c-6c and Table 1. The Shapiro-Wilk test of normality was performed for those
data. The hypothesis of normality of the data can be rejected if p-value is higher than 0.1 acc.
to R Core Team (2023). Whereas the tensile test for C45 and AW 2017A T4 was performed by
Instron 8501. Unfortunately, the histograms of yield strength for C45 and AW 2017A T4 are
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Fig. 3. S-N curves for S355J2+C steel for (a) 9 specimens and (b) 32 specimens, (c) histogram of the
yield strength with normal distribution and (d) S-N curves on one diagram for 32 specimens and

9 specimens with standard deviation from the tensile test

Fig. 4. S-N curves for 1.4301 steel for (a) 9 specimens and (b) 32 specimens, (c) histogram of the yield
strength with normal distribution and (d) S-N curves on one diagram for 32 specimens and 9 specimens

with standard deviation from the tensile test
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Fig. 5. S-N curves for 1.4404 steel for (a) 8 specimens and (b) 18 specimens, (c) histogram of the yield
strength with normal distribution and (d) S-N curves on one diagram for 18 specimens and 8 specimens

with standard deviation from the tensile test

Fig. 6. S-S-N curves for AW 6063 T6 steel for (a) 9 specimens and (b) 32 specimens, (c) histogram of
the yield strength with normal distribution and (d) S-N curves on one diagram for 32 specimens and

9 specimens with standard deviation from the tensile test
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Table 1. Value of parameters for the distribution acc. to Eq. (2.3)

Material
Speci-

log(Sy) σR
Shapiro-Wilk Shapiro-Wilk

mens No. statistic W p-value

1 2 3 4 5 6

S355J2+C (Strzelecki, 2018) 15 2.871 0.030 0.977 0.08

1.4301 (Strzelecki, 2021) 20 2.748 0.023 0.886 0.02

1.4404 (Skibicki et al., 2014) 21 2.603 0.014 0.915 0.07

C45 (Ligaj and Szala, 2013) – 2.633 0.045 – –

AW 6063 (Strzelecki
20 2.302 0.021 0.884 0.02

and Wachowski, 2022)

AW 2017A (Ligaj and
– 2.499 0.028 – –

Szala, 2013)

Fig. 7. S-N curves for C45 steel for (a) 8 specimens and (b) 15 specimens, (c) and (d) S-N curves on one
diagram for 15 specimens and 8 specimens with standard deviation from the tensile test

not presented, because only the value of standard deviation is known from the literature. All
calculations were made in R software ver. 4.3.1 (R Core Team, 2023).

The proposed method was verified for six structural materials, four steels: S355J2+C
(Strzelecki, 2018), 1.4301 (Strzelecki, 2021), 1.4404 (Skibicki et al., 2014), C45 (Ligaj and
Szala, 2013), and two aluminium alloys: AW 6063 T6 (Strzelecki and Wachowski, 2022) and
AW 2017A T4 (Ligaj and Szala, 2013). Fatigue tests were performed by rotating the bending
machine for S355J2+C, 1.4301 and AW 6063 T6. Loads were applied with 28.5 Hz frequencies
for S355J2+C and 50Hz frequency for 1.4301 and AW 6063. The fatigue test of stainless steel
1.4404 was performed by fatigue machine Instron 8874. Instron 8501 was used to test the rest
two materials: C45, AW 2017A T4. Axial loading was applied with a stress ratio R = 1. Test
results are presented in Figs. 3b-8b.
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Fig. 8. S-N curves for AW 2017A T4 for (a) 9 specimens and (b) 16 specimens, (c) and (d) S-N curves
on one diagram for 16 specimens and 9 specimens with standard deviation from the tensile test

Table 2. Value of parameters for the estimated S-N curves

Material
Type
of load

Para-
meter

Standard
method

Method with
Proposed
method

A Bsmall no.
of specimens

1 2 3 4 5 6 7 8

S355J2+C
(Strzelecki,
2018)

Rotating
bending

minv −9.917 −9.922 −9.922
binv 31.325 31.300 31.300 36.32% 48.18%
σN 0.1748 0.2745 0.3373

1.4301
(Strzelecki,
2021)

Rotating
bending

minv −9.190 −10.041 −10.041
binv 29.595 31.795 31.795 −83.42% 15.04%
σN 0.2135 0.1164 0.2513

1.4404
(Skibicki et
al., 2014)

Axial
minv −20.952 −22.890 −22.890
binv 57.594 62.501 62.501 8.79% 59.19%
σN 0.1587 0.1740 0.3889

C45 (Ligaj
and Szala,
2013)

Axial
minv −9.526 −9.256 −9.256
binv 28.326 27.595 27.595 −41.88% 58.58%
σN 0.1738 0.1225 0.4196

AW 6063∗
Rotating
bending

minv −7.108 −7.176 −7.176
binv 20.664 20.735 20.735 −33.70% −30.89%
σN 0.2051 0.1534 0.1567

AW 2017A
(Ligaj and
Szala, 2013)

Axial
minv −8.288 −7.691 −7.691
binv 24.375 22.918 22.918 −50.72% 10.63%
σN 0.1985 0.1317 0.2221

A – Difference standard method – small no. of specimens E = (σN5 − σN4)/σN5
B – Difference standard method – proposed method E = (σN6 − σN4)/σN6
∗ (Strzelecki and Wachowski, 2022)
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The estimated parameters for Eq. (2.5) are shown in Table 2. The least squares method
was used to determine the parameters for median S-N curves. The S-N curves obtained acc.
to ASTM E-739-10 (2015) were named “standard method”. In column 4, the parameters for
“standard method” for reliability and design purposes were placed. That case involved testing
at least 15 specimens for each material. In column 5, the parameters for preliminary tests were
placed. In that case a small number, namely 8-9 specimens, were tested. Such values were chosen,
because they are in the middle range of preliminary tests according to ASTM E-739-10 (2015).
Additionally, standard ISO-12107 (2003) requires a minimum of eight specimens for exploratory
testing.

As seen, there are little differences between the “standard method” for reliability and design
purposes versus preliminary tests. The biggest differences are for standard deviation σN . The
parameters for the proposed method, where the standard deviation was calculated according to
Eq. (2.9), are shown in the 6th column of Table 2. In the 7th and 8th columns, differences between
the standard method, method with a small number of specimens and the proposed method are
presented. In all cases, the proposed method gets higher values of standard deviation than the
small number of specimens method. This means that the method is conservative, except for
material AW6063. However, the proposed method got higher values of standard deviation than
the method with a small number of specimens.

5. Discussion

It can be seen in Figs. 3d-6d and Figs. 7c-8c that the S-N found by the proposed method is
shifted and has a different angle compared to the S-N curve acc. to the standard method for all
materials. This is expressed in different values of parameters minv and binv, as shown in Table 2.
However, these differences are little and are expected according to widely scattered fatigue tests
results. Dispersion of the fatigue test results is caused by microstructural inhomogeneity in
material properties, geometry of specimen, differences in the surface roughness, test conditions,
environment, and personal aspects (skill of laboratory technicians).

The influence of surface roughness was investigated by Nanninga and White (2009). They
found a little difference in the fatigue life for roughness line in the transverse and longitudi-
nal direction. However, they stated that “while it is probably not statistically significant, some
polished transverse specimens exhibited fatigue lives that were higher than those of the lon-
gitudinal specimens”. Additionally, Kurek et al. (2017) found that the type of load causes a
different value of standard deviation. They stated that the lower scatter of the fatigue test is for
tension-compression than for repeated bending. Another factor of the scatter of test results is
an error of the applied load, which was analysed in the paper by Strzelecki (2018). It was found
that the applied load could cause up to 46% of standard deviation. Gope (2012) found that the
error of estimation fatigue life for salt solution was around half smaller than that for air condi-
tion. Standard deviation for different types of materials was tested by Wormsen et al. (2015).
Standard deviation for the same type of material AISI 8630 M, but from different suppliers, have
values 0.133, 0.188, 0.126, 0.186 and 0.106 for the axial load with asymmetry of cycles R = −1.

Taking these factors into account, it is impossible to estimate the exact value of standard
deviation of the fatigue life. It can only be stated that it is from 0.1 to 0.25, see Wormsen et al.
(2015). Values in this range, namely 0.159 to 0.214, were estimated while analysing materials,
Table 2. So, the scatter of fatigue tests can be estimated only from experimental results.

It is worth the notice, that the relation of hardness, tensile strength or yield strength has
been used to develop analytical methods for many years (e.g. presented in Pang et al. (2014)).
However, the authors have not found such correlations for the scatter of fatigue life. The test
results presented above show good correlations of standard deviation for the yield strength
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with fatigue life. Despite of different damage mechanisms in these tests, in both cases, they are
dominated by the elastic strain. So, it can be assumed that the standard deviation can be the
same, which has been proven for the presented materials.

6. Conclusion

Upon analysing the obtained results for standard deviation using the standard method, it be-
comes clear that the standard deviation for rotary bending was higher than that for axial loading.
For stainless steels (1.4301 and 1.4404) differences of the standard deviations were significant and
equaled 26%. However, those differences for aluminium alloy (AW 6063 T6 and AW 2017A T4)
were little and equaled 3%. For most cases, the standard deviation for a small number of speci-
mens was smaller than the standard deviation σN from the standard method. An exception was
S355J2+C steel.

The proposed method of determination of the P-S-N curve has a lower value fatigue life than
the ASTM method. An overestimated fatigue life was obtained by the ASTM method (except for
S355J2+C). The proposed method gives underestimated values (except for aluminium alloys).
Thus, the proposed method can be used by engineers.
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