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The nonlinear hysteresis characteristics of magnetorheological dampers lead to low fitting
accuracy and poor practicality of their inverse models. Hence, to improve the accuracy of
an inverse model generated with BP neural network, this research presents a novel opti-
mization approach called Beluga Whale Optimization. The prediction accuracy of current
is enhanced by the optimized inverse model. Under the enhanced inverse model, a variable
universe fuzzy PID control is created. Based on the research outcomes, it has been shown
that the introduction of control contributes to noteworthy improvements in the suspension
performance metrics, both in terms of time and frequency domains.
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1. Introduction

The suspension of a vehicle plays a crucial role in minimizing the effects of road vibrations and
ensuring stability of the vehicle body (Tseng and Hrovat, 2015). The passive suspension cannot
satisfy the needs for complex operating conditions due to its simple structure and fixed param-
eters, so the intelligent suspension (active suspension, semi-active suspension) has emerged as a
hot topic of research (Na et al., 2022; Krzyzynski and Maciejewski, 2019). The active suspen-
sion mostly uses the target forces generated by the actuator to cut down vibration. Semi-active
suspension has gained considerable attention as an alternative to address the challenges of com-
plexity, exorbitant costs, and excessive energy consumption associated with active suspensions
(Liu et al., 2022).
Magnetorheological dampers (MRD) are widely employed intelligent devices for damping

vibrations in various fields. They were first introduced into the suspension system by Lou et al.
(1994), which has aroused the attention of researchers. MRD is a device that uses the magne-
torheological effect to control the damping force. MRD offers fast responsiveness, wide control
range and low energy consumption, but it also has a powerful hysteresis and nonlinearity. Design-
ing a semi-active suspension control has made it crucial to develop a highly precise MRD model.
Consequently, establishing this model has emerged as one of the utmost essential objectives
(Mai et al., 2020; Dong et al., 2010). The range of mechanical models has been presented by the
researchers (Chen, 2022), including the Bingham model, the Bouc-wen model, and others. The
frequent utilization of the Bouc-Wen model (Tang et al., 2020; Gong and Hen, 2020) has been
observed to describe the properties of MRD. Boada et al. (2018) and Maciejewski et al. (2019)
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developed an inverse model to output the control current. Zhang and Zhao (2017) has built the
inverse model with the BP neural network (BPNN), which output a fairly accurate predicted
currents but still had some defects. Ma et al. (2021) obtained a higher accurate system with
the Elman neural network compared to BPNN. BWO, a bio-inspired optimization technique
created by Zhong et al. (2022), is applied to tackle challenging engineering and optimization
issues. In this paper, the BPNN is optimized to provide a more accurate inverse model thanks
to the benefit that the BWO can ensure the algorithm converge globally.

Effective and reasonable control algorithm is another crucial role of the intelligent suspension
system for vibration reduction. Successful implementations have been carried out for vibration
control of vehicles using control methods such as skyhook control and PID control (Papaioannou
et al., 2021; Shin et al., 2016), but semi-active control still faces a huge challenge for the nonlinear
characteristics of MRD. The issue at hand has garnered heightened interest in the implementa-
tion of nonlinear control techniques, namely fuzzy control, sliding model control, H∞ control,
and neural network control in MRD semi-active suspension systems. This approach aims to
address and mitigate the aforementioned challenge (Al Aela et al., 2022). Morales et al. (2018)
proposed a variable damping control strategy for a semi-active suspension system to improve
smoothness of the vehicle ride. As well as compared to other control methods, fuzzy control
as an intelligent control can handle many problems that cannot be accurately mathematically
modeled in complex systems. Trikande et al. (2018) set up a quarter suspension system with
fuzzy acceleration and velocity of the suspension. According to the experimental results, it has
been shown that the incorporation of fuzzy control significantly improves the stability and ride
comfort of the suspension system. In this study, in the realm of active suspension systems, Na
et al. (2020) introduced an innovative and dynamic approach to regulate control strategies. This
scheme effectively ensures vehicle stability in the presence of suspension parameter uncertainties
and time delays. Despite the fuzzy control has small overshoot, good robustness and strong
adaptability, there is inevitable steady-state control error. Henceforth, merging the concept of
fuzzy control with other control approaches becomes imperative in order to obtain optimal con-
trol with utmost stability and precision. A fuzzy control strategy for the active suspension in
vehicles was introduced by Wang et al. (2015). The proposal garnered significant attention as it
addresses the issue of balancing control precision and speed, while also confronting the impact
of uncertain control parameters. According to the work of Muthalif et al. (2017), a semi-active
suspension system model was created with integrating fuzzy PID control, where the objective
was to enhance control performance by applying fuzzy logic to manipulate the input variables,
including body speed and acceleration. Fuzzy PID control not only tackles the issue of steady-
state error in control systems, but also provides adaptive adjustment of PID control parameters.
Although these aforementioned techniques greatly enhance the precision and adaptability of sus-
pension control, they primarily focus on addressing the uncertainty inherent within their own
parameters. As such, they fail to incorporate external excitations and are unable to proactively
pre-adjust control parameters to promptly react to variations in external stimuli. In an effort
to improve control precision of the fuzzy controller, Pang et al. (2018) put forward a variable
universe fuzzy T-S with a semi-active suspension system, whereas Zhang et al. (2024) designed
variable universe fuzzy PID (VUF-PID) for a continuous damping semi-active suspension. The
conventional fuzzy PID technique is unable to scale owing to variation of the initial theoreti-
cal domain error, causing the system control accuracy decline. The VUF-PID strategy has the
advantages of the conventional fuzzy PID, and meanwhile, the utilization rate of fuzzy rules is
largely enhanced by adjusting theoretical domain factor, which enhances the system accuracy.
The major contribution of this work is a new inverse model of MRD, which estimates the current
required to make the desired force exerted by MRD. Prior studies have suggested that the use
of fuzzy PID in the suspension system offers considerable robustness. In this study, the notion
of variable domains is incorporated into the realm of fuzzy control. By modifying the control
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domain, both the controller input and output can be flexibly tailored, thereby enhancing the
system adaptability and the performance of the suspension.

Structural organization of the paper is a follows: Section 2 describes the semi-active sus-
pension and MRD dynamic model, Section 3 focuses on design of the MRD inverse model and
system controller, Section 4 performs an experimental simulation of the developed controller,
and Section 5 provides a summary of the entire work accomplished.

2. Dynamic modeling

2.1. Semi-active suspension system

The vertical force and vibration are the main factors affecting the vehicle suspension system,
and the single suspension system mainly responds to vertical motion of the vehicle, so it can
fulfill the requirement of the research. This paper focuses on the two-degrees of freedom semi-
-active suspension system of a quarter vehicle model, which is shown as a simplified model in
Fig. 1.

Fig. 1. Modeling of a semi-active suspension with MRD

The differential equations for semi-active suspension motion can be derived based on New-
ton’s law of motion and Lagrange’s law

msẍs + cs(ẋs − ẋu) + ks(xs − xu) + f = 0

muẍu − cs(ẋs − ẋu)− ks(xs − xu) + ku(xu − xr)− f = 0
(2.1)

In Eqs. (2.1), ms and mu are body mass and wheels mass, ks is the suspension stiffness, xs refers
to the absolute displacement of vehicle body, cs is the damping coefficient, xr is the road surface
excitation, kt is the tire stiffness, xu is the absolute displacement of the wheel, f stands for the
damping force. The parameter values for the quarter semi-active suspension are shown Table 1.

Table 1. Parameter values of the quarter semi-active suspension

Parameter Value Unit

ms 345 kg

mu 40.5 kg

ks 17 kN/m

ku 192 kN/m

cs 1500 Ns/m
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To facilitate the design of the controller, the state is definined as

x1 = xs − xu x2 = ẋs x3 = xu − xr x4 = ẋu (2.2)

The state-space equation is acquired form Eqs. (2.1) and (2.2) as follows

ẋ = Ax+Bf +Cẋu (2.3)

where
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2.2. Dynamic model of a magnetorheological damper

According to the modified Bouc-Wen model, this paper investigates MRD. Its structure
includes a damping element, elastic element and hysteresis operator, as show in Fig. 2.

Fig. 2. Modified Bouc-wen model

The function expression is

f = c1ẏ + k1(x− x0) y =
1

c0
+ c1[δz + c0ẋ+ k0(x− y)]

z = −γ|ẋ− ẏ|z|z|n−1 − ψ(ẋ− ẏ)|z|n +G(ẋ− ẏ)

(2.4)

where c1 and δ can be expressed as

c1 = c1a + c1bi δ = δa + δbi (2.5)

In equations (2.4) and (2.5), x denotes the displacement of the spring, x0 stands for the initial
value, y is the internal displacement, c0 represents viscous damping factor at a high speed, z is an
evolutionary variable, k0 stands for the stiffness coefficient, k1 expresses the stiffness coefficient
of the accumulator, c1 represents the viscous damping factor at a low speed, δ indicates the scale
factor of hysteresis operator, γ, ψ, n, G represent the adjustment coefficient.

3. Control system design

A novel control technique is developed utilizing the semi-active suspension of MRD. This tech-
nique incorporates the VUF-PID control model and the inverse model of MRD, which has been
created using BPNN optimized with BWO, as depicted in Fig. 3.
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Fig. 3. Control schematic diagram

3.1. An inverse model of the magnetorheological damper

3.1.1. An inverse model based on BPNN

The BPNN is employed in constructing the inverse model of MRD, as depicted in Fig. 4. This
figure also illustrates the correlation between the current and the damping force, as represented
by the mapping relationship. Damping forces are obtained from the Modified Bouc-Wen model
of magnetorheological dampers, the control current from random white noise, displacement of
MRD data from suspension dynamic travel. 2000 sets of data were collected in total, with 1500
sets designated for network training and the remaining 500 sets reserved for testing purposes.

Fig. 4. Inverse model identification scheme of the MRD with BPNN

The neural network used in this study consists of three layers, namely the input layer, the
hidden layer, and the output layer. It is composed of a total of seven input nodes, while the
hidden layer comprises twelve nodes, and finally, a single output node. The inputs chosen for
the neural network include the damping force, velocity, and displacement of MRD at time t
and t − 1, along with the control current at time t − 1. The neural network output represents
the current at time t.

3.1.2. Optimization of inverse models

During training, BPNN is likely to generate local optimum. In order to obtain more accurate
current signals, this paper focuses on optimizing BPNN with the Beluga Whale Optimization
(GWO). BWO, a bio-inspired optimization technique is applied to tackle challenging engineering
and optimization issues. BPNN is most sensitive to weights and thresholds in initialization
parameters. In the process of optimizing BPNN, BWO is equivalent to constantly updating the
weights and thresholds and calculating the global optimum through multiple iterations. Figure 5
expresses the flow chart of the algorithm.
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Fig. 5. The flow chart of BP neural network optimized by BWO

The main focus of this program lies in acquiring knowledge from the exploration and ex-
ploitation phases, as well as adopting behavioral traits observed in whales. In the BWO method,
with the help of a balancing factor Bf , B0 is randomly varied between (0, 1) at each iteration. It
allows conversion from exploration to exploitation. T and Tmax denote the current and maximum
number of iterations, respectively. The balance factor Bf can be expressed as

Bf = B0
(

1−
T

2Tmax

)

(3.1)

When the Bf exceeds 0.5, the exploration phase commences, whereas when Bf falls below 0.5,
it is the start of exploitation phase.

I) Exploration phase

Now, it is about to mimic beluga whales’ swimming style. Depending on the odd and even
numbers of positions, different positions are updated. Here is the mathematical model

xT+1i,j =

{

xTr,Pj + (x
T
r,P1
− xTi,Pj)(1 + r1) sin(2πr2) for j = even

xTr,Pj + (x
T
r,P1
− xTi,Pj)(1 + r1) cos(2πr2) for j = odd

(3.2)

where xT+1i,j represents the i-th beluga whale in the j-th dimension, T denotes current iteration,
r denotes randomly selected beluga whale. r1 and r2 indicate random numbers that range from
0 to 1, sin(2πr2) and cos(2πr2) denote mirrored beluga whales with their fins facing water.
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II) Exploitation phase

The idea of this stage comes from the feeding behavior of beluga whales, which share in-
formation between themselves and their neighboring partners, so that the position of the best
individual and other individuals can be updated. Introducing the Lévy flight strategy of preda-
tion, which is mathematically represented as

xT+1i = r3x
T
best − r4x

T
i + C1LF (x

T
r − x

T
i ) (3.3)

where xTi stands for the i-th beluga whale’s current position, x
T
r stands for random beluga

whale’s current positions, the optimal position for beluga whales is xTbest, r3 and r4 indicate
random numbers that range from 0 to 1, C1 stands for the random jump strength used to
gauge the Lévy flight intensity and represented by equation (3.4)1, LF represents the Lévy flight
function, calculated from equation (3.4)2

C1 = 2r4
(1− T

Tmax

)

LF = 0.05
uσ

|v|1/ζ
(3.4)

where u and v represent normally distributed random variables, while ζ represents a constant
with a default value of 1.5σ, which is represented as

σ =
( Γ (1 + β) sin(πζ/2)

Γ [(1 + β)/2]ζ2(ζ−1)/2

)1/ζ
(3.5)

III) Whale fall

Belugas face threats from orcas, polar bears and humans as they migrate and forage. The
majority of belugas demonstrate their intelligence by evading these threats through effective
communication. Nonetheless, some belugas unfortunately perish, sinking to depths of the ocean
floor. This occurrence is referred to as a “whale fall”.
In each iteration, to imitate the behavior of a whale fall, we simulate slight variations in the

groups by selecting a likelihood of the whale fall from the individual. The beluga whales in ques-
tion have either repositioned themselves or been subjected to expulsion and have subsequently
descended into depths of the ocean. To establish the revised position, the utilization of beluga
whale locations and the magnitude of their stride during falls is imperative. It guarantees the
population size remain unaltered. The mathematical representation of the model is as follows

xT+1i = r5x
T
i − r6x+ r7xstep (3.6)

where r5, r6 and r7 indicate a random numbers that range from 0 to 1, xstep indicates the step
size for the whale fall, and xstep can be expressed as

xstep = (ub − lb) exp
(

−C2
T

Tmax

)

(3.7)

where ub represents the maximum limit of the variable, while lb represents the minimum limit
of the variable lower boundary. C2 is expressed as

C2 = 2Wfn (3.8)

where C2 denotes the step factor, Wf can be expressed as

Wf = 0.1− 0.05
T

Tmax
(3.9)

As beluga whales progressively approach their source of sustenance, the level of risk associated
with them diminishes throughout the optimization process. The evident proof arises from a drop
in the likelihood of the whale fall, plunging from 0.1 in the initial iteration to 0.05 in the final
iteration.
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3.2. Control design of the suspension system

3.2.1. VUF-PID theory

The fuzzy PID controller integrates a variable universe controller known as VUF-PID. To
enhance its performance, the fuzzy PID controller applies the expansion factor to incorporate
the variable domain concept. The number of fuzzy rules at the local level is adjusted by this
effect while overcoming the restricted accuracy caused by the limited count of fuzzy control rules
found in the parameterization of the PID control problem. As shown in Fig. 6, the concept of
fuzzy variable universe is aimed at changing the size of basic fuzzy variable set as the system
error changes during the control process, thus ensuring dynamic adaptation for the optimized
performance. In Fig. 6, x stands for input variables of the control system, µ represents the
membership degree function, α(x) indicates the expansion factor of the input variable domain,
e denotes the input initial domain.

Fig. 6. Schematic diagram of universe transformation

3.2.2. Fuzzy PID controller

Figure 7 depicts the flow chart of fuzzy PID control, which builds upon the foundational PID
control system through incorporation of fuzzy theory. This integration allows for the enhance-
ment and improvement of the basic PID control approach. This paper adopts the two-input,
three-output form of fuzzy control, controller inputs are error e and change rate of error ec. The
error e is calculated as a difference between vertical acceleration of the vehicle ẍs, and the set
value r(t) = 0, ∆Kp, ∆Ki and ∆Kd as the controller output. The input and output variables are
grouped into seven levels, denoted as NB, NM, NS, ZE, PS, PM, PB. All domains have a range
of (−6, 6) configured. The triangle function is employed for the membership functions of input
and output. Fuzzy inference rules are established based on the suspension system characteristics,
displayed in Table 2.

Fig. 7. Fuzzy-PID controller scheme
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Table 2. Fuzzy rule table

NB NM NS ZE PS PM PB

NB PB/NB/PS PB/NB/NS PM/NM/NB PM/NM/NB PS/NS/NB ZE/ZE/NM ZE/ZE/PS
NM PB/NB/PS PB/NB/NS PM/NM/NB PM/NS/NM PS/NS/NM ZE/ZE/NS NS/ZE/ZE
NS PM/NM/ZE PM/NM/NS PM/NS/NM PS/NS/NM ZE/ZE/NS NS/PS/NS NS/PS/ZE
ZE PM/NM/ZE PM/NM/NS PS/NS/NS ZE/ZE/NS NS/PS/NS NM/PM/NS NM/PM/ZE
PS PS/NM/ZE PS/NS/ZE ZE/ZE/ZE NS/PS/ZE NS/PS/ZE NM/PM/ZE PM/PB/ZE
PM PS/ZE/PB ZE/ZE/NS NS/PS/PS NM/PS/PS NM/PM/PS NM/PB/PS NB/PB/PB
PB ZE/ZE/PB ZE/ZE/PM NM/PS/PM NM/PM/PM NM/PM/PS NB/PB/PS NB/PB/PB

Based on the control principle of fuzzy PID, the formula for adjusting the parameters of PID
is presented below

Kp = Kp0 +∆Kp Ki = Ki0 +∆Ki Kd = Kd0 +∆Kd (3.10)

3.2.3. VUF-PID controller

In variable universe fuzzy control, the expansion factor directly determines the precise control
effect and overall control performance. The universe formula for the scaling factor is as follows

Xe = [−αe, αe] Y = [−βu, βu] (3.11)

where α, β can be regarded as the scaling factors for input and output, e, u represent the original
input and output universe, Xe, Y denote the resultant input and output universe.

The present investigation utilizes the VUF-PID function (Zeng et al., 2020), as depicted
in Fig. 8. The scaling coefficients primarily derived from functional models are produced via
functions parameterized by the error and its rate of change. The scaling factors change in the
form of exponent

α(x) = 1− λe−kx
2

β(t) = KI

n
∑

i=1

Pi

t
∫

0

ei(τ) dτ + β(0) (3.12)

In Eq. (3.12), 9 < λ < 1, k > 0, the value of k reflects changing speed of universe of the
controller, λ reflects accuracy of the controller, KI , Pi are constants, β(0) is the initial value,
ei(τ) is the error vector, τ is the adjustment parameter.

The domain of the input variable is

Xe(e) = [−α(x)e, α(x)e] Xe(ec) = [−α(x)ec, α(x)ec] (3.13)

Based on the characteristics of MRD semi-active suspension, taking into account the influence
of parameters λ and k in the scaling factor, based on experience and after multiple experiments,
the value of λ is 0.6 and k is 0.5, then

α(e) = 1− 0.6e−0.5e
2

α(ec) = 1− 0.6e−0.5ec
2

(3.14)

The variation of integral coefficient Ki tends to opposite direction to the variation of the system
deviation, whereas the variation of the output variables Kp and Kd are consistent with variation
of the system deviation. The following are the scaling factors for Kp, Ki and Kd

β(Kp) = 3|e| β(Ki) =
1

|e|+ 0.9
β(Kd) = 3|e| (3.15)
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The changed output variables Y (Kp), Y (Kp) and Y (Kd) domains can be expressed as

Y (Kp) = [−β(Kp)Kp, β(Kp)Kp] Y (Ki) = [−β(Ki)Ki, β(Ki)Ki]

Y (Kd) = [−β(Kd)Kd, β(Kd)Kd]
(3.16)

The fuzzy tuning relation is defined by Θ, the output of the fuzzy control is

∆Kp = Θ[β(Kp)Θ(α(x)e, α(x)ec)] ∆Ki = Θ[β(Ki)Θ(α(x)e, α(x)ec)]

∆Kd = Θ[β(Kd)Θ(α(x)e, α(x)ec)]
(3.17)

In summary, the output of the controller is

f(k) = (∆Kp +Kp0)e(k) + (∆Ki +Ki0)

k
∫

0

e(k) dk + (∆Kd +Kd0)
de(k)

dk
(3.18)

Fig. 8. Variable universe fuzzy PID control system

4. Simulation analysis

4.1. Performance of MRD

According to Eqs. (2.4) and (2.5), the model of MRD is established. Table 3 displays the
research parameters for the Bouc-Wen phenomenon model (Sosthene et al., 2018). The dis-
placement follows a sinusoidal pattern with 10mm amplitude and 2Hz frequency, while the
current ranges from 0A, 1A, 2A to 3A. Figure 9 illustrates the property of MRD divided into
three portions for description, which included the force-time curve, force-displacement curve and
force-velocity curve.
To assess the efficacy of the BWO, comparison and analysis of the prediction results of the

inverse model built by BPNN before and after optimization are made. Figure 10a illustrates
the original current and predictive control current with BPNN and BWO-BPNN, in Fig. 10b,
a comparison is displayed between the control current of the BPNN and the BWO-BPNN,
highlighting the errors. Based on the comparison of prediction results and errors provided by
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Table 3. Bouc-Wen model parameters (Sosthene et al., 2018)

Parameter Value Parameter Value

C0 [Ns/m] 997 k1 [–] 134

C1a [Ns/(mA)] 8186 x0 [–] 0.115

C1b [Ns/(mA)] 2725 ψ [m2] 70000

δa [N/m] 0 G [–] 300

δb [N/m] 1723 γ [1/m2] 70000

k0 [–] 1072 n [–] 2

Fig. 9. Performance of MRD with different applied currents: (a) force versus time curve, (b) force versus
displacement curve, (c) force versus velocity curve

Fig. 10, it is seen that BWO-BPNN has a superior fitting results of the control current predicted
to original current sample than that of BPNN. Moreover, the root mean square (RMS) value
of BWO-BPNN prediction error is smaller than that of BPNN, with RMS value of 0.0025621
and BPNN of 0.006093. In addition, the BWO-BPNN fitting error is reduced by 57.97%, which
demonstrates the superior performance of the inverse model by BWO-BPNN.

4.2. Performance of the system controller

With the aim at thoroughly assessing the effectiveness of this controller, two types of road
excitation random and sinusoidal are introduced.
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Fig. 10. The predicted values of the current using the BWO-BP and BPNN: (a) current,
(b) current error

4.2.1. Random road

The random road is created by white noise. The model expression is

q̇t = −2πfminqt + 2πn0

√

Gq(n0)Wt (4.1)

where q̇t is the impact strength, fmin is the time frequency, n0 denotes the spatial frequency,
Gq(n0) stands for the road unevenness coefficient, v is the travel speed,Wt expresses the Gaussian
white noise. In this simulation: v = 40m/s, Gq(n0) = 64 · 10

−6m/s, n0 = 0.1m
−1.

Figure 11 interprets variation of the suspension performance under a random surface. In this
investigation, a comparison is made between four distinct suspension systems, namely passive
suspension, fuzzy control, fuzzy PID control, and VUF-PID control. Performance in the time
and frequency domain is analyzed to evaluate their respective effectiveness. Figures 11a,b rep-
resent body vertical acceleration, by making use of VUF-PID. The body vertical acceleration
is effectively reduced, improving riding comfort. Figures 11c,d indicate the suspension dynamic
displacement, VUF-PID control reduces its value to avoid the breakdown phenomenon. The
stability of the vehicle is ensured by VUF-PID control, as demonstrated in Figs. 11e,f, which
depicts the dynamic load on the wheel. According to the frequency domain results, the VUF-PID
controller has the best results in the low frequency range of 0-20Hz.
Table 4 displays RMS values of the suspension performance index for various control meth-

ods employed on the random road surface. Compared to the passive suspension, the vehicle
body experiences a decrease in vertical acceleration by 15.85%, 36.21%, and 41.29%, while the
suspension deflects dynamically by 5.57%, 33.44%, and 37.70%, respectively. Additionally, the
dynamic load on the wheel witnesses a reduction of 4.01%, 35.02%, and 40.46% correspondingly.

Table 4. Simulation results under the random road

Performance indicators
Control method body vertical suspension dynamic wheel dynamic

acceleration [m/s2] travel [m] load [N]

Passive 0.322836 0.008760 183.2071

Fuzzy 0.271669 0.008272 175.8765

Fuzzy-PID 0.205912 0.005831 119.0387

VUF-PID 0.189534 0.005458 109.0793
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Fig. 11. Performance indexes of different control under the random road suspension system: (a) body
vertical acceleration (time domain), (b) body vertical acceleration (frequency domain), (c) suspension
dynamic travel (time domain), (d) suspension dynamic travel (frequency domain), (e) wheel dynamic

load (time domain), (f) wheel dynamic load (frequency domain)

4.2.2. Sinusoidal road

The second road model is adopted: a sinusoidal road surface. A sinusoidal road signal is a
common road excitation for suspension vibration analysis. Its is model expression is

xr = ξ sin(ωx) (4.2)

where ξ [m] represents the road displacement, ω [rad/s] represents the angular frequency. In this
simulation, the road displacement is 0.02m and the angular frequency is 4π rad/s.
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Figure 12 shows the variation of suspension performance index under the sinusoidal road
signal. The performance measures of the suspension system are enhanced when comparing it
to the passive suspension through implementations of fuzzy control, fuzzy PID control, and
VUF-PID control.

Fig. 12. Performance indexes of different control under the sinusoidal road suspension system: (a) body
vertical acceleration (time domain), (b) body vertical acceleration (frequency domain), (c) suspension
dynamic travel (time domain), (d) suspension dynamic travel (frequency domain), (e) wheel dynamic

load (time domain), (f) wheel dynamic load (frequency domain)

Table 5 shows the RMS values of the suspension performance index across different control
strategies when subjected to a sinusoidal road surface. In comparison to the passive suspension,
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the vehicle body experiences a reduction in vertical acceleration by 11.46%, 22.12%, and 39.90%,
while the suspension dynamic deflection decreases by 1.88%, 3.67%, and 7.04% correspondingly.
Additionally, there is a consecutive decrease in the dynamic load observed for the wheel by
10.47%, 19.39%, and 29.28%.

Table 5. Simulation results under the sinusoidal road

Performance indicators
Control method body vertical suspension dynamic wheel dynamic

acceleration [m/s2] travel [m] load [N]

Passive 0.845642 0.018207 344.8268

Fuzzy 0.748745 0.017864 308.722

Fuzzy-PID 0.658616 0.017539 277.9482

VUF-PID 0.508267 0.016926 243.8728

5. Conclusions

In this study, a functional VUF-PID control is developed with a quarter magnetorheological
semi-active suspension system. In the semi-active suspension control system with MRD, the
damping effect depends not only on the control algorithm of the system, but also on the precise
mechanical model of MRD.

• The modified Bouc-Wen model of MRD is created, and the relationship between the damp-
ing force and displacement as well as velocity under different control currents is analyzed,
which shows accurate characteristics of MRD. By using the BWO-BPNN to create an
inverse model of the MRD, the fitting error has decreased by 57.97%, and the output
prediction current has been more accurate compared with the BPNN.

• In this study, a functional VUF-PID control is developed with a quarter magnetorheological
semi-active suspension system. With the additional control methods stated in this research,
the performance indices of the suspension improved under different conditions (random
road, sinusoidal road). The controller is better suited and more efficient.
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