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This study aims to provide a theoretical basis for engineering construction in alpine frozen
soil area, simplify the soil medium of the site in alpine permafrost region to saturated
permafrost, and expand the elastic foundation and saturated ground foundation to better
reflect the dynamic response problem of permafrost site in alpine region. Based on the theory
of solid porous media with pores, a physical model of dynamic response of saturated frozen
soil foundation with underlying bedrock under vertical harmonic load is established, and
the effects of temperature, porosity, cementation parameters, load frequency and contact
parameters on the dynamic response are analyzed.
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1. Introduction

China is the third largest frozen soil country in the world. Frozen soil is mainly distributed in
China’s western high-altitude and cold regions. With the implementation of the national western
development strategy and the “One Belt, One Road” strategy, there are many infrastructure
projects under construction which are proposed to be implemented in the western high-altitude
and high-cold areas. Because the soil layer in the western high altitude and cold area is frozen
chiefly soil, the mechanical properties of frozen soil are very different from those of unfrozen soil.
Therefore, in order to ensure stability as well as safety of engineering buildings in the permafrost
region, the research on the dynamic response of permafrost needs to be carried out urgently.

Since the first study of single-phase elastic half-space dynamics by Lamb (1904) in 1904,
more and more scholars (Ai et al., 2018; Liang et al., 2020) have gradually improved the the-
oretical study of the dynamic response of single-phase elastic foundations. However, it is not
practical to analyze the soil by simply assuming it to be single-phase elastic, and when the
single-phase soil is filled with water, it becomes two-phase saturated soil. Biot (1956; 1962) was
the first to study the dynamic response of saturated soil foundation, and put forward the fluctu-
ation equation of saturated soil. Based on Biot’s theory, Zhou et al. (2013) obtained numerical
solutions for the displacement and stress integrals of soil particles and pore water in saturated
soils when simple harmonic loads were applied to the surface of the saturated soil foundation.
Xu et al. (2009) further considered the layered nature of the soil, and used the transfer matrix
method and Hankel transform to study the dynamic response of a layered saturated soil foun-
dation when a horizontal simple harmonic load was applied to the surface of the foundation,
and found that the layered nature of the soil had a significant effect on the dynamic response
of the foundation. Liu et al. (2022) investigated the dynamic response of a layered transverse
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isotropic saturated land base under two-dimensional moving loads under permeable and imper-
meable conditions on the surface using Fourier series expansion and dual variable and position
methods. However, soils in nature are usually unsaturated soils, which consist of three phases:
gas phase, liquid phase and soil particle phase, and the influence of gas phase in unsaturated soils
on the dynamic response should not be neglected. Considering the coupling effect of the three
phases of unsaturated soils, Xu (2010) and Xu et al. (2011) obtained the fluctuation equation
of unsaturated soils by using Bishop’s effective stress equation combined with the V-G model
of capillary pressure function, and investigated the dynamic response of unsaturated semi-space
surfaces under arbitrary loading. Shi et al. (2021; 2022) investigated the dynamic response of
semi-space unsaturated soil foundations under simple harmonic loads under different boundary
conditions by utilizing the Fourier transform. Ma et al. (2023a) developed a layered foundation
model and analyzed and discussed the dynamic response of three types of layered unsaturated
foundations, homogeneous soil, hard interbedded and soft interbedded, under moving loads us-
ing coordinate transformations and the transfer and reflection matrix method. Ma et al. (2023b)
investigated the dynamic response of different types of loads on transversely isotropic multi-
layered unsaturated and ground foundations in a three-dimensional column coordinate system
using the Laplace-Hankel transform.

The above studies on the foundation dynamic response mostly regard foundation soil as
single-phase elastic soil, two-phase saturated soil and three-phase unsaturated soil, but in the
high-latitude and high-altitude region of western China, the site soil medium is mostly per-
mafrost, and many projects in the western region involve permafrost, and the dynamic response
of the permafrost is very different from that of the unfrozen soil due to the existence of the ice
phase. Therefore, on the basis of the above research, this paper simplifies the frozen soil into sat-
urated frozen soil, establishes the two-dimensional saturated frozen soil foundation power control
equation under a simple harmonic load based on the theory of porous solid porous medium, and
obtains the answer to the question of the power response of saturated frozen soil foundation
in the frequency domain by using the Fourier integral transform, the principle of Helmholtz
vector decomposition and combining with the boundary conditions. The effects of tempera-
ture, porosity, cementation parameters, and loading frequency on the dynamic response of a
two-dimensional saturated frozen soil foundation are analyzed and discussed through numerical
examples.

2. Mechanical model and governing equations

2.1. Mechanical model

Considering a saturated frozen soil foundation with finite thickness, the surface action has a
vertical strip harmonic load, as shown in Fig. 1, where H is the layer thickness, q0 is the linear
load acting on the surface of the foundation, l is the half of the linear load length, q is the load
amplitude, q = q0/(2π), and ω is the circular frequency of the load vibration. Assuming that
the surface is permeable and the bottom bedrock is impermeable, the coordinate axis shown in
the diagram is established, and the coordinate origin is placed on the surface of the foundation,
that is, the surface of the foundation z = 0.

2.2. Governing equations

According to the definition of Zhou and Lai (2011), ice is formed in pores and coexists with
liquid water in thepores. Therefore, saturated frozen soil can be regarded as a three-phase porous
medium composed of soil particle phase, pore liquid water phase, and pore ice phase, that is,
solid phase, liquid phase, and ice phase. The volume fraction of each phase is expressed as follows
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Fig. 1. A schematic diagram of the harmonic load acting on a two-dimensional saturated frozen soil
foundation

φS = 1− φ φF = φSr φI = φ(1− Sr) (2.1)

where Sr denotes the saturation level of pore liquid water, φ denotes the porosity of porous
media; the subscripts S, F and I denote the volume fraction of soil particles, pore liquid water,
and pore ice in saturated frozen soil, respectively.

Under a harmonic load, the stress and displacement of each phase in saturated frozen soil
can be expressed as follows

G(x, z, t) = G(x, z)∗eiωt (2.2)

where i is an imaginary unit, ω is the frequency of load circle; for the convenience of represen-
tation, the superscript ∗ in the following text is omitted.
The governing equation for saturated frozen soil can be derived based on the theory presented

by Leclaire et al. (1994, 1995) and further developed by Carcione et al. (2000, 2003), Carcione
and Seriani (2001)

ρ11ü
S + ρ12ü

F + ρ13ü
I = R11∇(∇ · uS) +R12∇(∇ · uF ) +R13∇(∇ · uI)

− µ11∇×∇× uS − µ13∇×∇× uI − (b12 + b13)u̇S + b12u̇F + b13u̇I

ρ12ü
S + ρ22ü

F + ρ23ü
I = R12∇(∇ · uS) +R22∇(∇ · uF ) +R23∇(∇ · uI)

+ b12u̇
S − (b12 + b23)u̇F + b23u̇I

ρ13ü
S + ρ23ü

F + ρ33ü
I = R13∇(∇ · uS) +R23∇(∇ · uF ) +R33∇(∇ · uI)

− µ13∇×∇× uS − µ33∇×∇× uI + b13u̇S + b23u̇F − (b13 + b23)u̇I

(2.3)

where ρij (i = 1, 2, 3; j = 1, 2, 3) denote the coupling inertia coefficients between each phase;
uS , uF and uI denote the displacement vectors of soil particles, pore liquid water, and pore
ice in the saturated frozen soil medium, respectively. b12, b23 and b13 are viscosity parameters;
Rij (i = 1, 2, 3; j = 1, 2, 3) and µ11, µ13, µ33 are stiffness parameters. The coefficients of ρij , Rij,
µ11, µ13, µ33, b12, b23, b13, etc. are detailed in Qiu et al. (2018) literature. The symbols (·), (··)
denote the first and second derivatives with respect to time, respectively; ∇2 is the Laplacian
operator in a Cartesian coordinate system.

The stress-strain relationship in the saturated permafrost medium is as follows

σSij = (K1θS + C12θF + C13θI)δij + 2µ11d
S
ij + µ13d

I
ij

σF = C12θS +K2θF + C23θI

σIij = (C13θS + C23θF +K3θI)δij + 2µ33d
I
ij + µ13d

S
ij

(2.4)
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and

C12 = (1− c1)φSφFKav C13 = (1− c1)(1 − c3)φSφIKav
C23 = (1− c3)φIφFKav
K1 = [(1 − c1)φS ]2Kav +Ksm K2 = φ

2
FKav K3 = [(1− c3)φI ]2Kav +Kim

θS = u
S
i,i θF = u

F
i,i θI = u

I
i,i

dSij = ε
S
ij −
1

3
θSδij dIij = ε

I
ij −
1

3
θIδij εSij =

1

2
(uSi,j + u

S
j,i)

εIij =
1

2
(uIi,j + u

I
j,i)

(2.5)

where σSij , σ
F , σIij denote the stress components acting on the solid phase, liquid phase, and ice

phase, respectively; K1, K2 and K3 are bulk moduli of elasticity; C12, C13 and C23 are the bulk
modulus between the three phases. δij is the Kronecker symbol; ε

a
ij , d

a
ij and θa denote the body

strain, bias strain, and strain of the a (a = S,F, I) phase, respectively. The coefficients of c1, c3,
Kav , Kim, Ksm, etc. are detailed in Qiu et al. (2018).
According to Zhou (2020), among the parameters involved in the governing equations of

saturated frozen soil, porosity, and ice content are considered to be significant factors that
influence the characteristics of the soil. Leclaire et al. (1994) used the normal distribution of
pores to describe the ice content and considered that at a certain temperature, when the pore is
less than a certain scale, the water in the pore will not freeze, and the water in the pore larger
than this pore diameter will freeze completely. Therefore, the relationship between temperature
and pore ice content is calculated as follows

φF = (1− φS)A
r0/ ln(T0/Tk0)∫

0

exp
[
−(r − rav)

2

2∆r2

]
dr (2.6)

By normalizing the Gaussian probability function from r = 0 →∞, the expression of unfrozen
water content used in this paper can be expressed as follows

φF = (1− φS)
erf (ζ) + erf (η)

1 + erf (η)
ζ =

r0/ ln(T0/Tk0)√
2∆r

− η η =
rav√
2∆r

(2.7)

where rav is the average pore radius; ∆r is the standard deviation of pore radius; r0 = 0.228 nm,
Tk0 = T +T0, Tk0, T0, T all indicate temperature, Tk0, T0 in Kelvin, T0 = 273.15 K, T in Celsius.
The parameters η, ζ are explained in detail in Carcione and Seriani (2001).
Substituting Eq. (2.2) into Eqs. (2.3), we can get the following

a11u
S + a12u

F + a13u
I = R11∇(∇ · uS) +R12∇(∇ · uF ) +R13∇(∇ · uI)

− µ11∇×∇× uS − µ13∇×∇× uI

a12u
S + a22u

F + a23u
I = R12∇(∇ · uS) +R22∇(∇ · uF ) +R23∇(∇ · uI)

a13u
S + a23u

F + a33u
I = R13∇(∇ · uS) +R23∇(∇ · uF ) +R33∇(∇ · uI)

− µ13∇×∇× uS − µ33∇×∇× uI

(2.8)

where a11 = −ρ11ω2 + (b12 + b13)iω, a12 = −ρ12ω2 − b12iω, a13 = −ρ13ω2 − b13iω,
a22 = −ρ22ω2 + (b12 + b23)iω, a23 = −ρ23ω2 − b23iω, a33 = −ρ33ω2 + (b13 + b23)iω.
The displacement vector of each phase can be expressed by the Helmholtz vector decompo-

sition theorem as

ua = ∇ϕa +∇× ψa ∇ · ψa = 0 a = S,F, I (2.9)

where ϕa and ψa are the three-phase medium scalar and vector potential functions, respectively.
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Substituting Eq. (2.9) into Eqs. (2.8), we can get

a11ϕS + a12ϕF + a13ϕI = R11∇2ϕS +R12∇2ϕF +R13∇2ϕI
a12ϕS + a22ϕF + a23ϕI = R12∇2ϕS +R22∇2ϕF +R23∇2ϕI
a13ϕS + a23ϕF + a33ϕI = R13∇2ϕS +R23∇2ϕF +R33∇2ϕI

(2.10)

a11ψS + a12ψF + a13ψI = µ11∇2ψS + µ13∇2ψI
a12ψS + a22ψF + a23ψI = 0 a13ψS + a23ψF + a33ψI = µ13∇2ψS + µ33∇2ψI

(2.11)

3. The solution of the potential function

The above governing equations can be transformed into ordinary differential equations, which
are easy to solve by the Fourier transform of the horizontal coordinate x. The Fourier transform
of the function f(x, z) is as follows

f̃(ξ, z) =

∞∫

−∞

f(x, z)e−iξx dx (3.1)

where ξ is the Fourier transform parameter, the superscript (̃·) denotes the Fourier transform of
the space coordinate x.
The Fourier transform of Eqs. (2.10) can be obtained

R11
d2ϕ̃S
dz2
+A11ϕ̃S +R12

d2ϕ̃F
dz2
+A12ϕ̃F +R13

d2ϕ̃I
dz2
+A13ϕ̃I = 0

R12
d2ϕ̃S
dz2
+A12ϕ̃S +R22

d2

ϕ̃F
dz2 +A22ϕ̃F +R23

d2ϕ̃I
dz2
+A23ϕ̃I = 0

R13
d2ϕ̃S
dz2
+A13ϕ̃S +R23

d2ϕ̃F
dz2
+A23ϕ̃F +R33

d2ϕ̃I
dz2
+A33ϕ̃I = 0

(3.2)

where A11 = −a11 − ξ2R11, A12 = −a12 − ξ2R12, A13 = −a13 − ξ2R13, A22 = −a22 − ξ2R22,
A23 = −a23 − ξ2R23, A33 = −a33 − ξ2R33.
The solution of Eqs. (3.2) is assumed as follows

[ϕ̃S , ϕ̃F , ϕ̃I ]
T = [cS , cF , cI ]T exp(λz) (3.3)

By substituting Eq. (3.3) into Eqs. (3.2), we obtain the following system of linear equations


λ2R13 +A13 λ2R12 +A12 λ2R11 +A11
λ2R23 +A23 λ2R22 +A22 λ2R12 +A12
λ2R33 +A33 λ2R23 +A23 λ2R13 +A13






cI

cF

cS


 = 0 (3.4)

When the coefficient matrix determinant is zero, Eq. (3.4) has a non-zero solution, that is

β1λ
6 + β2λ

4 + β3λ
2 + β4 = 0 (3.5)

where

β1 = −R11R22R33 +R11R223 +R212R33 − 2R12R13R23 +R213R22
β2 = −A11R22R33 +A11R223 + 2A12R12R33 − 2A12R13R23 − 2A13R12R23 + 2A13R13R22
−A22R11R33 +A22R213 + 2A23R11R23 − 2A23R12R13 −A33R11R22 +A33R212

β3 = −A11A22R33 + 2A11A23R22 −A11A33R22 +A212R33 − 2A12A13R23 − 2A12A23R13
+ 2A12A33R12 +A

2
13R22 + 2A13A22R13 − 2A13A23R12 −A22A33R11 +A223R11

β4 = −A11A22A33 +A11A223 +A212A33 − 2A12A13A23 +A213A22
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The roots of Eq. (2.5), denoted as ±λn (n = 1, 2, 3), can be obtained by solving the following
equation

λn =
√
dn(Re[λn] ­ 0 n = 1, 2, 3 (3.6)

where dn are determined by the equation β1d
3
n + β2d

2
n + β3dn + β4 = 0.

The general solution of the system of Eqs. (3.2) can be obtained as

ϕ̃S =
3∑

n=1

(Dne
−λnz + Ene

λnz) ϕ̃F =
3∑

n=1

δFpn(Dne
−λnz + Ene

λnz)

ϕ̃I =
3∑

n=1

δIpn(Dne
−λnz + Ene

λnz)

(3.7)

where Di and Ei (i = 1, 2, 3) are undetermined coefficients

δFpn=
(R11R23−R12R13)d2n+(A11R23−A12R13−A13R12+A23R11)dn+A11A23−A12A13
(−R12R23+R13R22)d2n+(−A12R23+A13R22+A22R13−A23R12)dn−A12A23+A13A22

δIpn=
(−R11R22+R212)d2n+(−A11R22+2A12R12−A22R11)dn−A11A22+A212

(−R12R23+R13R22)d2n+(−A12R23+A13R22+A22R13−A23R12)dn−A12A23+A13A22

The Fourier transform of Eqs. (2.11) can be obtained

µ11
d2ψ̃S
dz2
+B11ψ̃S +B12ψ̃F + µ13

d2ψ̃I
dz2
+B13ψ̃I = 0

B21ψ̃S +B22ψ̃F +B23ψ̃I = 0

µ13
d2ψ̃S
dz2
+B31ψ̃S +B32ψ̃F + µ33

d2ψ̃I
dz2
+B33ψ̃I = 0

(3.8)

where B11 = −a11 − ξ2µ11, B12 = −a12, B13 = −a13 − ξ2µ13, B21 = a12, B22 = a22, B23 = a23,
B31 = −a13 − ξ2µ13, B32 = −a23, B33 = −a33 − ξ2µ33.
The solution of Eqs. (3.8) is assumed as follows

[ψ̃S , ψ̃F , ψ̃I ]
T = [hS , hF , hI ]T exp(rz) (3.9)

Substituting Eq. (3.9) into Eqs. (3.8), the linear equations are obtained



µ13r

2 +B13 B12 µ11r
2 +B11

B23 B22 B21
µ33r

2 +B33 B32 µ13r
2 +B31






hI

hF

hS


 = 0 (3.10)

When the coefficient matrix determinant is zero, Eq. (9.10) has a non-zero solution, that is

β5r
4 + β6r

2 + β7 = 0 (3.11)

where

β5 = −µ11µ33B22 + µ213B22
β6 = −µ11B22B33 + µ11B23B32 − µ13B12B23 + µ13B13B22 − µ13B21B32 + µ13B22B31
− µ33B11B22 + µ33B12B21

β7 = −B11B22B33 +B11B23B32 +B12B21B33 −B12B23B31 −B13B21B32 +B13B22B31
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The roots of Eq. (3.11), denoted as ±rn (n = 1, 2), can be obtained by solving the following
equation

rn =
√
tn(Re[rn] ­ 0 n = 1, 2 (3.12)

where tn are determined from the equation β5t
2
n + β6tn + β7 = 0.

The general solution of the system of Eqs. (3.8) can be obtained as

ψ̃S =
2∑

n=1

(Mne
−rnz +Nne

rnz) ψ̃F =
2∑

n=1

δFsn(Mne
−rnz +Nne

rnz)

ψ̃I =
2∑

n=1

δIsn(Mne
−rnz +Nne

rnz)

(3.13)

where M1, M2, N1 and N2 are undetermined coefficients

δFsn =
(µ11tn +B11)B23 −B21(µ13tn +B13)
−B23B12 +B22µ13tn +B13)

δIsn =
(−µ11tn +B11)B22 −B12B21
−B23B12 +B22(µ13tn +B13)

4. Solution of the dynamic response of the saturated frozen soil foundation

4.1. Dynamic response of the foundation

The displacement component in the right angle coordinate system can be expressed by the
potential functions ϕ and ψ

ux =
∂ϕ

∂x
− ∂ψ

∂z
uz =

∂ϕ

∂z
+
∂ψ

∂x
(4.1)

Combining Eqs. (2.5) with Eq. (4.1), then substituting into Eqs. (2.4), the constitutive equation
for the saturated frozen soil medium are be obtained as follows

σSzz =
(
K1 −

2µ11
3

)
∇2ϕ̃S +C12∇2ϕ̃F +

(
C13 −

µ13
3

)
∇2ϕ̃I + 2µ11

(∂2ϕ̃S
∂z2
+
∂2ψ̃S
∂x∂z

)

+ µ13
(∂2ϕ̃I
∂z2
+
∂2ψ̃I
∂x∂z

)

σSxz = µ11
(
2
∂2ϕ̃S
∂x∂z

+
∂2ψ̃S
∂x2
− ∂2ψ̃S

∂z2

)
+
1

2
µ13
(
2
∂2ϕ̃I
∂x∂z

+
∂2ψ̃I
∂x2
− ∂2ψ̃I

∂z2

)

σF = C12∇2ϕ̃S +K2∇2ϕ̃F + C23∇2ϕ̃I

σIzz =
(
C13 −

µ13
3

)
∇2ϕ̃S + C23∇2ϕ̃F +

(
K3 −

2µ33
3

)
∇2ϕ̃I + µ13

(∂2ϕ̃S
∂z2
+
∂2ψ̃S
∂x∂z

)

+ 2µ33
(∂2ϕ̃I
∂z2
+
∂2ψ̃I
∂x∂z

)

σIxz = µ33
(
2
∂2ϕ̃I
∂x∂z

+
∂2ψ̃I
∂x2
− ∂2ψ̃I

∂z2

)
+
1

2
µ13
(
2
∂2ϕ̃S
∂x∂z

+
∂2ψ̃S
∂x2
− ∂2ψ̃S

∂z2

)

(4.2)

Substituting Eqs. (3.7) and (3.13) into Eqs. (4.1) and (4.2) and combining the relationship
between the parameters by Qiu et al. (2018), the expressions of displacement and stress of each
phase in the saturated frozen soil medium in the Fourier transform domain can be obtained
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ũSx = iξ
3∑

n=1

(Dne
−λnz + Ene

λnz) +
2∑

n=1

rn(Mne
−rnz −Nnernz)

ũSz =
3∑

n=1

−λn(Dne−λnz − Eneλnz) + iξ
2∑

n=1

(Mne
−rnz +Nne

rnz)

ũFz =
3∑

n=1

−λnδFpn(Dne−λnz − Eneλnz) + iξ
2∑

n=1

δFsn(Mne
−rnz +Nne

rnz)

ũIx = iξ
3∑

n=1

δIpn(Dne
−λnz + Ene

λnz) +
2∑

n=1

rnδ
I
sn(Mne

−rnz −Nnernz)

ũIz =
3∑

n=1

−λnδIpn(Dne−λnz − Eneλnz) + iξ
2∑

n=1

δIsn(Mne
−rnz +Nne

rnz)

(4.3)

and

σ̃Sxz = iξ
3∑

n=1

−λn(2µ11 + µ13δIpn)(Dne−λnz − Eneλnz)

−
2∑

n=1

(r2n + ξ
2)
(
µ11 +

1

2
µ13δ

I
sn]
)
(Mne

−rnz +Nne
rnz)

σ̃Szz =
3∑

n=1

χn(Dne
−λnz +Ene

λnz)− iξ
2∑

n=1

rn(2µ11 + µ13δ
I
sn)(Mne

−rnz −Nnernz)

σ̃Fzz =
3∑

n=1

(R12 +R22δ
F
pn +R23δ

I
pn)(λ

2
n − ξ2)(Dne−λnz + Eneλnz)

σ̃Ixz = iξ
3∑

n=1

−λn(2µ33δIpn + µ13)(Dne−λnz − Eneλnz)

−
2∑

n=1

(r2n + ξ
2)
(
µ33δ

I
sn +
1

2
µ13
)
(Mne

−rnz +Nne
rnz)

σ̃Izz =
3∑

n=1

αn(Dne
−λnz + Ene

λnz)− iξ
2∑

n=1

rn(µ13 + 2µ33δ
I
sn)(Mne

−rnz −Nnernz)

(4.4)

where for n = 1, 2, 3

χn = [(R11 − 2µ11) +R12δFpn + (R13 − µ13)δIpn](λ2n − ξ2) + (2µ11 + µ13δIpn)λ2n
αn = [(R13 − µ13) +R23δFpn + (R33 − 2µ33)δIpn](λ2n − ξ2) + (µ13 + 2µ33δIpn)λ2n

4.2. Boundary conditions and solution

Considering the boundary condition that the surface of foundation (z = 0) is permeable and
subjected to a vertical harmonic load at −l < x < l, and the bottom surface of bedrock (z = H)
is fixed and impermeable, we get:
— at z = 0

σ̃Szz + σ̃
F
zz + σ̃

I
zz = q0

sin ξl

ξl
σ̃Sxz + σ̃

I
xz = 0 σ̃Fzz = 0

ũSz = ũ
I
z ũSx = ũ

I
x

(4.5)

— at z = H

ũSx = 0 ũSz = 0 ũFz = 0 ũIx = 0 ũIz = 0 (4.6)
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By substituting Eqs. (4.3) and (4.4) into Eqs. (4.5) and (4.6) boundary conditions, we obtain
the following

Jx = f (4.7)

where J is a 10 × 10 matrix, and

x = [D1,D2,D3,M1,M2, E1, E2, E3, N1, N2]
T f =

[
q0
sin(ξl)

ξl
, 0, 0, 0, 0, 0, 0, 0, 0, 0

]T

By solving Eq. (4.7), x can be obtained. Combined with Eqs. (4.3) and (4.5), the stress and
displacement of the saturated frozen soil foundation in the wavenumber domain can be found.

5. Numerical examples

In this Section, the effect of temperature T , porosity φ, cementation parameter ̟, load fre-
quency f , and contact parameter ε on the dynamic response is studied by numerical calculation
when the boundary condition is permeable at the surface of the foundation and subjected to the
vertical harmonic load, and the bottom is fixed and impermeable.
This paper chooses a collection of physical and mechanical parameters pertaining to the

saturated frozen soil foundation, as illustrated in Table 1 (Qiu et al., 2018). Take the load
amplitude q = 1kPa, saturated frozen soil thickness H = 20m, distribution length l = 1m. The
closed-form solution of the inverse Fourier transform is challenging to obtain due to the intricate
nature of the integrand function. Therefore, this paper employs the Fast Fourier Transform
(FFT) method to perform the inverse Fourier transform. The wave number is discretized into
1024 points. The vertical and horizontal displacement examples in this paper take the calculation
results at the surface of the foundation (z = 0)

Table 1. Physical and mechanical parameters of the saturated frozen soil foundation

Material parameters

Hydrodynamic Density Density Density Bulk Bulk Bulk
Viscosity of soil of of modulus of modulus of modulus of
coefficient particle liquid particles soil particles liquid ice particle

ηF ρs ρF ρI KS KF KI
[Kg/(m s)] [Kg/m3] [Kg/m3] [Kg/m3] [GPa] [GPa] [GPa]

1.8 · 10−3 2580 1000 920 20.9 2.25 8.58

Material parameters

Shear Shear Reference value of Reference value of
modulus of modulus of soil skeleton ice permeability
soil particle ice particle permeability coeff. coefficient

µS [GPa] µI [GPa] κs0 [m
2] κi0 [m

2]

6.85 3.32 1.0 · 10−11 5.0 · 10−5

5.1. Verification

To verify the accuracy of the numerical calculations in this paper, the model is validated by
degrading the Lamb problem in which the seismic source is located on the surface of a semi-
-infinite, single-phase homogeneous medium, and the results are compared with those of Yuan
(1999) under the same conditions. A saturated permafrost foundation is degraded to an elastic
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foundation when saturation Sr → 0 and porosity φ → 0. Taking ω = 0.01 rad/s, Poisson’s
ratio ν = 0.3, soil particle density Sr = 1884 kg/m

3, and modulus of elasticity E = 1 · 107 Pa,
Fig. 2 shows the variation of positive stress with depth under the load edge at the surface of
the foundation where the bar load is applied. It can be seen that the vertical positive stresses
in this paper are in good agreement with the results given by Yuan.

Fig. 2. The normal stress under the edge of the load when the strip load acts on the surface of the
foundation

5.2. Effect of temperature

Changes in temperature cause changes in the composition of ice and liquid phases in satu-
rated frozen soil, which in turn cause changes in the bearing capacity of the soil particle phase.
Figures 3a and 3b show the effect curves of varying temperatures on the displacement of foun-
dation under the condition of overburdened soil thickness H = 20m, porosity φ = 0.3, Poisson’s
ratio ν = 0.3, frequency f = 1Hz, and contact parameter ε = 0.5. As depicted in Figs. 3a

Fig. 3. Variation curves of the vertical and horizontal displacement of the foundation surface
with temperature

and 3b, it becomes apparent that as the temperature rises, there is a noticeable escalation in
both the magnitude of vertical and horizontal surface displacements. Furthermore, this increase
in temperature leads to a gradual augmentation of the displacement amplitudes. This is because
as the temperature increases, the ice particle content in the pore space gradually decreases, and
the interaction with the soil particle skeleton gradually weakens so that the load borne by the
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ice phase of the pore space decreases and the load borne by the soil particle phase increases,
which finally makes the vertical displacement and horizontal displacement increase.

5.3. Effect of porosity

The ratio of the volume of connected pores in the unit body to the volume of unit body
is the porosity, which is consistent with the actual geotechnical material, and the porosity is
taken to be in the range of φ = 0.05-0.50. The other parameters in the numerical calculation
are selected as follows: H = 20m, T = −0.5◦C, ν = 0.3, f = 1Hz, ε = 0.5, φ taken as
0.1, 0.2, 0.3, 0.4, respectively. Figures 4a and 4b give the displacement curves of the saturated
frozen soil foundation when the porosity is changed. From Figs. 4a and 4b, it is evident that
variations in porosity exert a pronounced influence on both vertical and horizontal displacements
of the foundation. Moreover, the displacements demonstrate an escalating trend with increasing
porosity. This phenomenon can be attributed to the increase in porosity, which refers to the
volume of interconnected pores within the unit body. As porosity increases, the volume of ice
particles within the pores remains constant. Consequently, the supporting effect of ice particles
on the soil particle framework gradually weakens. This causes an augmentation in the load carried
by the soil particle framework, leading to a subsequent increase in the overall soil displacement.

Fig. 4. Variation curves of the vertical and horizontal displacement of the foundation surface
with porosity

5.4. Effect of cementation parameters

Imitating the relationship between modulus-porosity-Poisson’s ratio of the two-phase
medium and ignoring the effect of porosity on Poisson’s ratio of the skeleton, Luo (1999) and
Liu et al. (2015) believed that the cementation parameters can be taken as

̟ =
1 + ν

2(1 − 2ν) (5.1)

where ̟ denotes the level of overall cementation within the skeleton, ranging from 0.5 to infinity.
A higher value of ̟ signifies a lower degree of cementation between particles, indicating a
decreased bonding strength within the soil particle skeleton. ν denotes Poisson’s ratio of the soil
particle skeleton.
The range of Poisson’s ratio considered in this study is ν = 0.100 to 0.498, within which

the cementation parameters exhibit an increasing trend with higher values of Poisson’s ratio.
Considering the overburdened thickness H = 20m, temperature T = −0.5◦C, porosity φ = 0.3,
load frequency f = 1Hz, and contact parameter ε = 0.5, Figs. 5a and 5b present the curves of
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displacement along the surface when Poisson’s ratio ν gradually increases from 0.1 to 0.4, re-
spectively. From these figures, it is evident that changes in Poisson’s ratio, which corresponds to
variations in the cementation parameter, have a significant impact on the amplitude of vertical
and horizontal displacements of the ground surface. As Poisson’s ratio increases (indicating an in-
crease in the cementation parameter), both the vertical and horizontal displacements experience
amplified amplitudes with the magnitude of displacement amplification gradually intensifying.
This law can be explained as follows: an increase in the cementation parameters corresponds
to a decrease in the degree of cementation between soil particles in saturated frozen soil and
ice particles within the pores. This, in turn, results in a decrease in the skeleton modulus and
softening of the soil. As a consequence, there is an increase in displacement observed.

Fig. 5. Variation curves of the vertical and horizontal displacement of the foundation surface
with cementation parameters

5.5. Effect of load frequency

Figures 6a and 6b analyze the influence of load frequency on the surface displacement of
foundation. The following parameters are employed in the numerical calculations: overburden
soil thickness H = 20m, temperature T = −0.5◦C, Poisson’s ratio ν = 0.3, porosity φ = 0.3,
contact parameter ε = 0.5. The load frequencies considered are 1Hz, 10Hz, 20Hz, and 30Hz.
From the observations made in Figs. 6a and 6b, it is apparent that as the load frequency increases,
both the amplitude of vertical displacement and horizontal displacement of the ground surface
also increase. This indicates that with an increase of load frequency, the load borne by the pore
water and pore ice phases decreases, and the load borne by the soil particle phase increases.

5.6. Effect of contact parameters

The contact parameter ε characterizes the support of ice in the pore space on the skeleton
of soil particles, and its value ranges from 0 to 1. When ε = 1, the ice has the smallest support
to the soil particle skeleton, and the ice is suspended in the pores; when ε = 0, the ice has
the largest support to the soil particle skeleton. The contact parameter affects the dynamic
response of saturated permafrost foundation by influencing the bulk modulus Ksm and shear
modulus µsm of the soil particles skeleton, which in turn affects the stiffness parameter. The
relationship between the contact parameters and the volume and shear modulus of the skeletal
mold of the soil particles is described in detail in Qiu et al. (2018). Figures 7a and 7b display the
influence of contact parameters on the vertical and horizontal displacements of the surface under
specific conditions: overlying soil layer thickness H = 20m, Poisson’s ratio ν = 0.3, temperature
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Fig. 6. Variation curves of the vertical and horizontal displacement of the foundation surface
with load frequency

Fig. 7. Variation curves of the vertical and horizontal displacement of the foundation surface
with contact parameters

T = −0.5◦C, porosity φ = 0.3, load frequency f = 1Hz, and contact parameters ε = 0.3, 0.5,
and 0.7. From Figs. 7a and 7b, it can be observed that an increase in the contact parameters
leads to amplification in both the vertical and horizontal displacement amplitudes of the surface.
This phenomenon can be attributed to the enlargement of pores between the ice particles and
soil particle skeleton as the contact parameters increase. Consequently, there is a reduction in
the friction force and an increase in the relative displacement between the ice and solid phases
within the pores.

6. Conclusions

Based on the porous theory of porous solid medium, this paper establishes the governing equa-
tion of the two-dimensional dynamic response problem of a saturated frozen soil medium. Using
the Fourier transform and boundary conditions, the solutions of the corresponding forces and
displacements in the frequency domain of the saturated frozen soil foundation under the un-
derlying bedrock under a harmonic load are obtained. Finally, the FFT method obtains the
numerical results, and the influence of various parameters on the dynamic response of saturated
frozen soil is analyzed in detail. The following conclusions are obtained:
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• The amplitudes of vertical and horizontal displacements on the surface of saturated frozen
soil foundations exhibit an increasing trend with elevated temperatures, porosity levels,
cementation parameters, load frequencies, and contact parameters.

• The variations in porosity and cementation parameters within a saturated frozen soil
foundation have a notable impact on the amplitude of both vertical and horizontal dis-
placements.
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