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Here, we investigate the behavior of the energy of a tape spring as its thickness becomes
smaller and smaller. We consider the case of pure bending, i.e., we impose opposite rotations
at both ends of the device. First, tape springs are introduced and their peculiar mechanical
behavior is explained, and the details of the numerical model are carefully introduced. Then,
a parametric study of the device is conducted for increasing end rotations and decreasing
values of the thickness. Thus, we obtain parametric diagrams of reaction moments, energy
per unit thickness, and energy densities. Finally, energy estimates are obtained.
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1. Introduction

Tape springs are thin structures with transverse curvature (shells) used in many fields of engi-
neering, for example in the aerospace engineering (CRTS reflector Seffen et al., (2000)). These
devices can be used as real deployment organs, thanks to their ability to form localized elastic
hinges. This effect is entirely due to presence of the initial transverse curvature. An example of
a daily use of these tapes is in carpenter’s meters.
In their simplest form they are longitudinally straight, but they can also be provided with a

non-zero initial longitudinal curvature. A fundamental characteristic common to all types of tape
springs is the ability to concentrate the curvature even if there are no mechanical hinges, i.e.,
they are capable to form elastic hinges. The geometrical characteristics of straight tape spring
devices are: length L, transverse radius of curvature R, angle subtended by the cross-section
curve α and thickness t. The characteristics of an isotropic material are Young’s modulus E
and Poisson’s ratio ν. The geometrical parameters are shown in Fig. 1. In general, the relation
between the geometrical parameters can be summarized as follows: t≪ a≪ L, so these devices
can be classified as shells.

Fig. 1. Geometrical parameters of a straight tape spring

Many studies have been conducted on these devices in the past, mainly on the mechanical
behavior under pure bending. In the work of Seffen and Pellegrino (1999), an introduction to the
mechanical behavior of tape springs subjected to pure bending and an investigation about the
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dynamic deployment of these devices is presented. In the article of Seffen et al. (2000), a study
about curved tape springs is presented, showing that they have much in common with straight
tape spring devices. A dissertation about the formation of elastic folds and an investigation of the
mechanical behavior during pure bending is proposed in Seffen’s PhD thesis (1997), where the
author presents an estimate of key parameters of the moment-rotation relationship. A work about
static and dynamic properties of three dimensional tape spring folds, using both experimental
and theoretical methods, is presented in Walker’s PhD thesis (2004). In the works of Guinot et
al. (2012), Picault et al. (2013, 2014) and Martin et al. (2020) different beam models of tape
springs are proposed in the case of pure bending, and in the one of Picault et al. (2016) there is
an extension to 3D motions. In Kumar et al. (2023), the authors derive a one-dimensional model
for tape springs that accounts for bending and twisting.
As shown in the literature, the moment-rotation relationship of tape spring devices under-

going pure bending is almost linear until a peak moment is reached, then it becomes highly
non-linear as the elastic hinge forms. Due to this high non-linearity, the numerical modeling of
these devices must be carefully addressed. A schematic example of the moment-rotation rela-
tionship is shown in Fig. 2.

Fig. 2. Qualitative moment-rotation relationship, and lateral views of the deformed centerline in the
post-critical regime (once the elastic hinge has taken place). For small rotations, the device deforms
smoothly and follows a linear trend in the moment-rotation plane. When rotation increases, the

behavior becomes highly non-linear and deeply different in the two cases of bending. This Figure is an
adaptation of Fig. 2.4 of Walker’s PhD thesis (2004)

It is observed that for small rotations the device deforms smoothly and follows a linear trend
in the moment-rotation plane. When rotation increases, the behavior becomes highly non-linear
and strongly dependent on the sign of rotation.
The purpose of this article is to highlight the behavior of tape springs as their thickness

become smaller and smaller. The main novelty of this paper is to propose very simple formulas
to obtain a good estimation of energy per unit thickness in the pre-critical and post-critical
regime, in the case of pure bending.

2. Numerical model

Hereafter, we shall always refer to a straight cylindrical shell as shown in Fig. 1.
The characteristics of the examined specimen are those specified in Walker’s PhD thesis

(2004). The mechanical and geometrical parameters of the sample are: length L = 267mm,
cross section radius R = 15.37mm, thickness t = 0.1225mm, angle subtended by the cross
section α = 1.719 rad, Young’s modulus 195300MPa, Poisson’s ratio 0.3.
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The modeling and analysis challenges have been addressed with the Abaqus software (Smith,
2014).
The tape was simulated as a portion of a cylindrical surface, first modeling the cross section

as a circumferential arc of radius R subtending an angle α.
In Interaction section two Reference Points located at the end cross sections were defined,

then all the end nodes were constrained to the Reference Point, as shown in Fig. 3. The con-
straints were applied to the Reference Points. With reference to Fig. 1, the degrees of freedom
constrained at the Reference Point at x3 = L are: translations in the three directions x1, x2
and x3, rotations around the x2 and x3 axes. Instead, at the Reference Point at x3 = 0, the
degrees of freedom constrained are: translations in the directions x1 and x2, rotations about x2
and x3 axes.
Rotations at the end cross sections are imposed: at the end x3 = 0, rotation φe1 and at

x3 = L, rotation φe1, as shown in Fig. 3.

Fig. 3. Schematic view of the sample implemented in Abaqus. In this figure, there are reference points,
RP-1 and RP-2 constrained, the segment from RP-1 and RP-2 represent constraints applied to the

nodes of the end cross sections and the load condition

The size of the mesh was set up to 2.0mm, for a total of about 1800 elements. S8R5 elements
were chosen, as in the works of Martin et al. (2020) and Picault et al. (2016), i.e., eight-node thin-
-shell elements with five degrees of freedom for each node with quadratic interpolation functions.
Static-Riks analysis was chosen, activating geometric non linearities and imposing the end

of analysis when φ = π/2. The settings of the step are: maximum number of increments 1000,
initial arc length increment 0.01, minimum arc length increment 1E-10, the maximum arc length
increment 1.2 and estimated total arc length 1.
The arc length method was originally developed by Riks (1972, 1979) and Wempner (1971).

This approach is the most used path following method in the solution of non-trivial equilibrium
paths. The Riks method solves simultaneously for both the load and displacements, and is
the ideal method for solving problems of the tape spring devices, characterized by snap-back
phenomena.
In Fig. 4, there is a view of the Abaqus model.

Fig. 4. Orthogonal projection of the Abaqus model on the x1-x3 plane, visualized mesh

3. Main results

3.1. M-φ diagram

With reference to the characteristics of the tape specified in Section 2, eight different analyses
were carried out, for opposite sense bending, varying thickness t of the device and keeping the
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other geometrical and material parameters unchanged. The reference thicknesses are shown in
Table 1.

Table 1. Thicknesses adopted in the analysis

Thickness t [mm]

0.1215 0.1225 0.1300 0.1350 0.1400 0.1450 0.1500 0.1550

The thickness t = 0.1215mm is the smallest thickness the convergence of analysis was
achieved with.

We made sure that analysis results did not depend on the mesh size. The same analysis
were carried out modifying the mesh, setting the mesh size to 1.0mm for a total of about 3600
elements: the final results were the same.
Figure 5 shows the trends of the positive reactive moment as a function of rotation φ (Fig. 3),

for the thickness values t shown in Table 1. Referring to the thickness t = 0.1225mm, the results
obtained here are in good agreement with those of Walker (2004), with an overestimation of the
peak moment of about 7%. Instead, the stationary moment was quite close to the reference one.

Fig. 5. M -φ diagram (M > 0)

In Fig. 6, the energy per unit thickness versus rotation φ is represented, in the case of opposite
sense bending, for the thickness values in Table 1.

From the M -φ diagram in Fig. 5, one can observe the typical trend described in previous
works, for example Seffen and Pellegrino (1999), for these devices undergoing pure bending:
the behavior is almost linear until the peak moment is reached, then the reactive moment M
decreases and reaches a stationary value.

From Fig. 6, it can be seen that the trend is initially quadratic, corresponding to the linear
behavior in the M -φ diagram, Fig. 5. In the post-critical regime, after formation of the elastic
hinge, it is linear in φ.

For equal sense bending, various analyses were carried out relating to the same thicknesses
used for positive bending. However, the convergence of the analysis in this case was much more
difficult to achieve. We report just the case t = 0.1225mm.

In Fig. 7, the energy per unit thickness versus the rotation φ in the case t = 0.1225mm, for
M < 0, is shown. Also, one can see that the energy trend is initially quadratic, then it is linear
in φ.
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Fig. 6. Ue/t-φ diagram (M > 0)

Fig. 7. Ue/t-φ diagram (M < 0)

To obtain the unloading path of the moment-rotation relationship, as in Fischer (1995), the
command and change restart analysis was used decreasing the end rotation from φ = π/2 to
φ = 0. The unloading paths found were the same as the loading ones.

For opposite and equal sense bending, the formation of the localized elastic hinge is due
to buckling phenomena. We define the pre-critical regime when the device deforms prior to
the elastic hinge has taken place, and post-critical regime when the device deforms after the
formation of the localized elastic hinge.

Thanks to the analysis adopted, Static-Riks analysis, it is possible to detect snap-back phe-
nomena that occur when, for opposite sense bending, the elastic hinge forms and there is a jump
in the energy between the two stable solution branches. As shown in Fig. 6, for t = 0.1550mm,
the analysis captures the branch with a decreasing value of φ, but physically there is the snap-
-back, dashed line, that implies a jump in the energy between the two branches. In the same way
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there is a jump, dashed line, in the reaction moment diagram M -φ, as shown in Fig. 5, from the
peak moment to the stationary one.

To estimate the transmission of potential energy distribution between the membrane and
the flexural energy densities, which occurs right after the opening, it is enough to calculate the
difference between the total energy before and after the formation of the localized elastic hinge.

3.2. Pre-critical regime

The pre-critical regime is before the formation of the localized elastic hinge.

As can be seen from the moment-rotation diagram for opposite sense bending, Fig. 5, for
small values of φ, the moment is almost linear and the cross section varies its shape smoothly
(”opening” of the cross section curve). Here, the energy has a quadratic trend, as represented
in Fig. 6.
For the opposite sense bending, it is postulated that for small values of thicknesses t the

energy per unit thickness can be represented by a formula of the following type

Ue
t
= Ctaφb (3.1)

In Eq. (3.1), C is some positive constant depending on the material and geometrical prop-
erties of the device, but not on the thickness.

To determine the exponents a and b, the energy per unit thickness is represented in a bi-
-logarithmic plane, in this way the exponents a and b are actually the slopes of the plotted curves,
and the average slope of the curves can be determined. In the pre-critical regime, a = 0 and
b = 2. The energy per unit thickness is independent of the thickness of the tape and quadratic
in the rotation φ. Therefore, it is membranal regime, and the energy in Eq. (3.1) becomes

Ue
t
= Ct0φ2 (3.2)

The diagrams of energy, normalized with respect to the thickness, are represented in Fig. 8.

Fig. 8. Ue/t-t diagrams in the pre-critical regime in a bi-logarithmic plane

To obtain the color maps of the energy densities of the shell model, the strain and the stress
measures were exported, for every node, from Abaqus. Then, by post processing, we obtained
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Fig. 9. Membrane energy density um/t, pre-critical regime (M > 0)

Fig. 10. Flexural energy density uf/t, pre-critical regime (M > 0)

Fig. 11. Membrane energy density um/t, pre-critical regime (M < 0).

Fig. 12. Flexural energy density uf/t, pre-critical regime (M < 0).

the energy densities by multiplying the membrane and bending strains by the energetically
conjugate strains and changes of curvatures. The membrane and the flexural energy densities are
represented in Figs. 9 to 12, for the opposite sense (φ = 0.1 rad) and equal sense (φ = −0.1 rad)
bending, referring to t = 0.1225mm. In these figures, s1 represents the longitudinal abscissa
of the shell, and s2 the transversal one. Both the abscissas belong to the middle surface. It is
observed that in the pre-critical regime the flexural energy density per unit thickness uf/t is
lower than the membrane energy density um/t, for both M > 0 and M < 0. Furthermore, the
maps highlight a concentration of energy in the central area of the tape, close to the area where
the elastic hinge will form.

3.3. Post-critical regime

During post-critical regime, i.e., in the case of well formed elastic hinge, the tape is char-
acterized by another behavior in which the energy per unit thickness scales linearly with φ,
Fig. 6.
For the opposite sense bending, it is postulated that for small values of thicknesses t the

energy per unit thickness can be represented by a formula similar to the one used for the pre-
-critical regime

Ue
t
= Ctcφ (3.3)
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Analogously, at the pre-critical regime, we got c = 1.8. Therefore, in the post-critical regime
the normalized energy scales as t1.8 and linearly in the rotation φ

Ue
t
= Ct1.8φ (3.4)

This means that in the post-critical regime there is a mixture of membranal and flexural
energy, although the main component is flexural. The diagrams of the energy, normalized with
respect to the thickness, are represented in Fig. 13.

Fig. 13. Ue/t-t diagrams in the post-critical regime in a bi-logarithmic plane

The membrane and flexural energy densities are represented in Figs. 14 to 17 for the opposite
sense (φ = 1 rad) and equal sense (φ = −1 rad) bending, referring to t = 0.1225mm. In these
figures, s1 represents the longitudinal abscissa of the shell, and s2 the transversal one. In the post-
-critical regime for M > 0, it is observed that the membrane energy density per unit thickness
um/t is approximately zero over the entire tape, with the exception of two areas near the hinge,
where there is the transition from the almost constant curvature zone (hinge) and the transition
zone. The energy uf/t represents the largest contribution to the total energy density, and it is
most concentrated in the hinge area where it is approximately constant.

Also in the case M < 0, the major contribution to the total energy density is given by uf/t,
however there are peaks near the hinge area.

In Figs. 18a and 18b, the trends of variations of longitudinal and transversal curvature are
represented for φ = 1 rad in the case M > 0.

From Fig. 18a, it can be seen that in the hinge area the longitudinal curvature is close to
the initial transversal one, then the curvature increases very rapidly and after the maximum
reached at s1 ≈ 158mm becomes very close to zero, and is almost zero from s1 ≈ 190mm. From
Fig. 18b, it can be seen that most of the cross section has a constant curvature, while at the
edges there is a residual curvature.

In the case M < 0, it is observed that the longitudinal curvature has a similar trend to
the case M > 0. Also the trend of transverse curvature in the hinge area is similar to the case
M > 0, with a concentration of curvature at the edges of the device.
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Fig. 14. Membrane energy density um/t, post-critical regime (M > 0)

Fig. 15. Flexural energy density uf/t, post-critical regime (M > 0)

Fig. 16. Membrane energy density um/t, post-critical regime (M < 0)

Fig. 17. Flexural energy density uf/t, post-critical regime (M < 0)

Fig. 18. On the left side, variation of the longitudinal curvature in the center of the tape (on a half of
the tape length), on the right side, variation of transverse curvature in the hinge zone. In red dashed
line, variation of the transversal curvature from the end configuration, perfectly flat, to the initial one.
s1 and s2 are shell abscissas belonging to the middle surface. Figures (a) and (b) refer to post-critical

regime (M > 0)



544 M, Coppedè et al.

4. Conclusions

In this paper, a numerical analysis of a tape spring device is carried out. First, tape springs are
introduced with a brief description of the particular mechanical behavior under pure bending.
Then, the description of the numerical model is presented: mesh, type of mesh elements and the
type of analysis conducted. Finally, the main results obtained are: moment-rotation diagrams
for opposite sense bending (Fig. 5), energy diagrams per unit thickness for opposite sense and
equal sense bending (Figs. 6 and 7), estimates of the energy per unit thickness Eq. (3.2) and Eq.
(3.4), obtained from different analyses by varying the thickness of the device, and the color maps
of the energies (Figs. 9-12 and 14-17). The moment-rotation diagrams obtained are typical of
these devices, characterized by an almost linear trend for small rotations until a peak moment is
reached. Then the reactive moment decreases and remains almost constant for further increments
of rotation.

As regards the pre-critical regime, it was found that the energy expressed by Eq. (3.2) is
typical of a membranal regime, i.e., the device deforms without activating the flexural regime.

For the post-critical regime, after formation of the localized elastic hinge, the energy ex-
pressed by Eq. (3.4) suggests the coexistence of the membrane and flexural regime, even if the
major energy contribution is flexural.

Possible future developments could be: energy estimates for equal sense bending, development
of beam models that are in agreement with these estimates for both opposite sense and equal
sense bending.
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