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The problem of computation time in numerical calculations of aerodynamics has been studied
by many research centres. In this work, a feed forward artificial neural network (FF-ANN)
was used to determine the dependence of lift and drag coefficients on the angle of attack for
NACA four-digit families. A panel method was used to generate the data needed to train
the FF-ANNs. Optimisation using a genetic algorithm and a neural metamodel resulted
in a non-standard NACA aerofoil for which the optimal angle of attack was determined
with a maximum L/D ratio. The optimisation results were validated using the finite volume
method.

Keywords: Artificial Neural Network (ANN), NACA airfoil, optimization, surrogate model,
model reduction

List of designations

α – angle of attack

Cl, Cd – lift and drag coefficient, respectively

K – lift-to-drag ratio, L/D ratio

m – maximum camber in tenths of chord

p – position of the maximum camber along chord in tenths of chord

R – regression

R2 – coefficient of determination

t – maximum airfoil thickness in tenths of chord

xU , xL, yU , yL – coordinates of point for upper (U) and lower (L) edge of airfoil

yt, yc – thickness and camber coordinates, respectively

θ – angle of inclination of tangent to chamber of airfoil at point

MaH – Mach number of undisturbed flow

1. State of the art

The use of artificial intelligence in engineering is becoming increasingly popular. The main
task of artificial intelligence research is to construct machines and computer programs capable
of performing selected functions of the mind and human senses, not amenable to numerical
algorithmization. Such problems are sometimes called AI-complete and include decision-making
in the absence of all data. This paper uses AI to predict behavior of a system for intermediate
values not present in the results of numerical simulations.
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The applications of Artificial Neural Networks (ANNs) is becoming increasingly popular,
especially in areas that require time-consuming numerical calculations. One such an area is
aerodynamic analysis. Costly wind tunnel tests or time-consuming CFD (computational fluid
dynamics) analyses are required to determine aerodynamic characteristics of aerofoils. In this
paper, the authors propose an alternative approach by replacing hard calculations (like CFD)
with ANNs. The objective of this work was to demonstrate that this approach could enable
rapid analysis of aerofoils and determine their aerodynamic characteristics without the need to
perform numerical analyses for each aerofoil in a selected family of NACA aerofoils.

The problem of computation time for numerical calculations of aerodynamics has been stud-
ied by many research centres all over the world, demonstrating its complexity and the need for
novel solutions. A variety of methods have been used to reduce the running time of algorithms.
For example, Proper Orthogonal Decomposition (POD) (Berkooz et al., 1992) is a method that
reduces complexity of numerical simulations, such as CFD. Typically, it is used in CFD analyses
(including turbulence analyses) to replace the Navier-Stokes equations with models that are sim-
pler to solve. This method has been used by Bakewell and Lumley (1967), among others. Various
methods based on machine learning tied to CFD are used to reduce computation time (San and
Maulik, 2018), usually combined with neural networks. However, an ANN requires a large volume
of training data and thus significant computational time. This problem was presented by Fukami
et al. (2021). Buterweck and Głuch (2014) used ANNs to analyse the effect of Mach number on
the prediction of turbine blade degradation. Prediction of aerodynamic characteristics using an
artificial neural network for a wind turbine was performed by Verma and Baloni (2021). Sekar et
al. (2010) presents an approach based on analysis of data produced with a CFD solver to predict
the incompressible laminar flow field around aerofoils. The approach was based on a combina-
tion of a deep convolutional neural network (CNN) and a deep multilayer perceptron (MLP).
Aramendia et al. (2019) used ANNs to predict the aerodynamic efficiency of Gurney flaps. A
CFD-based drag coefficient analysis was also carried out in (Viquerat and Hachem, 2020), where
a set of random geometries based on Bézier curves was prepared to train the neural network.
Pressure distributions were calculated for several representative cases. In addition, a lift and
drag coefficient was predicted based on CFD approximation calculations (Kharal and Saleem,
2012). Kharal and Saleem (2012) described an aerofoil using Bézier curves, developed their aero-
dynamic characteristics and then proceeded with FF-ANN training. The inverted ANNs were
then used to determine aerofoil geometry for a given drag coefficient. Similarly, inverted ANNs
were used in (Sun et al., 2015), where geometry of the aerofoil was described as shown in Fig. 1.
The pressure distribution on the aerofoil and then on the wing was determined by the proposed
ANN algorithm. Thirumalainambi and Bardina (2003) also analysed the optimal ANN structure
for predicting aerodynamic coefficients of an aircraft.

Fig. 1. Airfoil geometry (Sobieczky, 1999)

A frequently used method for optimising aerodynamics is genetic algorithms. Porta Ko et al.
(2023) describes the process of optimising kinked aerofoils using the NSGA-II (Non-dominated
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Sorting Genetic Algorithm). Optimisation to minimise the aerodynamic forces generated was
carried out in (Khan et al., 2022) where solar panels were studied.
The most common method used in computer fluid mechanics is the finite volume method

(FVM) used for CFD analyses, which takes place in conjunction with ANNs. One example of
less commonly used methods would be a combination of the vortex method and a neural network
(Sessarego et al., 2020).
The use of surrogate models is relatively infrequently used in practice due to errors arising

from the surrogate model approximations. The main purpose of the article is to demonstrate that
it is possible to prepare a surrogate model based on AI or, more precisely, SSN. The accuracy
of such a model should be sufficient and the optimization results should be no worse than the
available solutions.

2. NACA four-digit family

In this work, an artificial neural network was used to determine the dependence of lift and drag
coefficients on the angle of attack for NACA four-digit aerofoils. First, the data was generated
from an open database of aerodynamic diagrams to train the ANN. The data generation was
described by Drela (1989).
An asymmetric NACA four-digit aerofoil (NACA – National Advisory Committee for Aero-

nautics, NACAmpt) is defined by three parameters: m, p, t. Equations (2.1) and (2.2) were used
to describe the aerofoil geometry mathematically, based on the work [12]

xU = x− yt sin θ yU = yc + yt cos θ

xL = x+ yt sin θ yL = yc − yt cos θ
(2.1)

and
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where: a1 = 0.2969, a2 = 0.1260, a3 = 0.3516, a4 = 0.2843, a5 = 0.1015 – coefficients defined by
NACA.
In the remainder of this work, only asymmetrical aerofoils were analysed. The database of

aerodynamic coefficients acting on the aerofoil was determined with reference to (Oliveira, 2021),
where after a simple parameterisation of the code, the lift Cl and drag Cd versus the angle of
attack α was calculated by Xfoil. Xfoil is a panel-based software that enables analysis of aerofoils
and wings operating at low Reynolds numbers.

3. Artificial neural network

This paper uses a feed-forward artificial neural network (FF-ANN). The input (training) pa-
rameters for the NACA aerofoil number were: m, p ∈ 〈2; 8〉, t ∈ 〈8; 24〉, as well as angles of
attack α within ±24◦. The output (training) data was determined using the Xfoil software; the
lift and drag coefficients corresponding to the cases in the input database. The Reynolds number
Re = 5.7 · 106 and Mach number MaH = 0.1439 were set as constant values. This corresponded
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to velocity of 49.39m/s for an average aerodynamic chord of length 1.738m. The database con-
taining the characteristics of 441 profiles was needed to train the artificial neural network. Due
to the lack of availability of such a large database of NACA four-digit profiles, it was decided to
use Xfoil to prepare it.

As a result of numerical analyses, it was decided to develop separate ANNs (trained in
parallel) for the prediction of lift and drag coefficients for selected angles of attack from the
range ±24◦ with an increment of ∆α = 2◦.
The MATLAB Neural Network Toolbox was used as the ANN environment. The ANNs were

trained using the SCG (Scaled Conjugate Gradient) backpropagation algorithm. The objective
of the training was to minimise the mean squared error (MSE) of the data fit. The ANN archi-
tecture was optimised, where the mean absolute error (MAE) was the objective function. An
optimisation of the ANN structure using a genetic algorithm was done for two and three hidden
layers. A feed-forward ANN (3-65-8-1) was chosen as the optimal ANN structure. A diagram of
the ANN used is shown in Fig. 2. The optimisation was run until MAE was no greater than 3%.
During the ANN optimisation, the size of the ANN was not increased beyond 500 neurons to
prevent “learning by heart”.

Fig. 2. Scheme of the used artificial neural network, where: w – weights, b – bias

Figure 3 shows the regression results for the ANNs used, trained for the zero angle of attack
and the predicted values of the drag coefficient Cd. A high regression coefficient of R = 0.9858
was obtained for all the data.

A separate ANN was used for each angle of attack. This reduced the duration of the learning
process and increased the accuracy of the ANN learning. The learning time for all optimised
ANNs was less than 130 seconds with an approximation error less than 1%. Figure 4 shows the
coefficient of lift Cl and drag Cd predicted by the trained ANNs, as a function of the angle of
attack for the NACA2412 aerofoil. The neural model achieved a high coefficient of determination
for both lift (0.9984) and drag coefficient prediction (0.9911), compared to the data generated
with Xfoil. It also presents the lift and drag coefficients obtained in experimental tests, based
on a NACA report (Abbott et al., 1945). For angles of attack from −10◦ to 16◦, the analysis
performed with Xfoil and ANN were consistent with experimental tests. For larger angles, the
differences were significant. This could be due to the choice of the Reynolds number in the
Xfoil software, as confirmed by the conclusions from (Günel et al., 2016) or a tendency towards
numerical errors for angles of attack: α > 8◦ (Saad et al., 2017). However, in order to determine
the aerofoil L/D ratio, the accuracy of the ANN was sufficient, as usually the maximum L/D
ratio corresponds to an angle of attack in the range from 2◦ to 8◦.

In order to test the adopted research concept, the lift coefficient as a function of angle of
attack was calculated for a non-standard NACA four-digit aerofoil in Xfoil. This aerofoil was
not present in the ANN teaching database. This aerofoil was NACA model (2.4)(3.6)12, where
m = 2.4, p = 3.6 and t = 12 are shown in Fig. 5, which was numerically analysed using the
panel method. Comparative results for the Xfoil and ANN are shown in Fig. 6.
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Fig. 3. Regression of used ANN

For the NACA (2.4)(3.6)12 aerofoil, the coefficient of determination (R2) of the lift coefficient
was 0.998. However, the ANN was not able to correctly predict the distribution of the drag
coefficient for larger angles of attack (above 16◦ and below −10◦). For angles of attack between
−10◦ and 16◦, the accuracy was higher, and the corresponding coefficient of determination was
0.9942, as shown in Fig. 7.

4. Optimization

In this work, an attempt at optimisation was made using the presented neural metamodel to
maximise the L/D ratio, K = Cl/Cx. Both the lift and drag coefficients were determined using
ANNs. The default genetic algorithm (GA) in Matlab was used for optimisation, the working
principle of which was based on (Conn et al., 1991). In the algorithm used, the decision variables
were parameters m, p and t, which described geometry of the aerofoil. Restrictive conditions
related to the span of the database that were used to teach the ANN were imposed, assuming
that m = 2-6, p = 2-6 and t = 12-24. The angle of attack α was a discrete variable within ±24◦
with an increment of 2◦. The algorithm with the objective function determined the aerofoil
L/D ratio K for all angles of attack α and returned its largest value, the corresponding angle
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Fig. 4. Predicted, computed and by Xfoil experimental lift (a) and drag (b) coefficients vs. the angle of
attack, and the coefficient of determination of lift (c) and drag (d) coefficients for NACA2412

of attack and the values of the decision variables defining the aerofoil geometries. The NACA
12(5.18)(4.18) aerofoil resulting from the optimisation is shown in Fig. 8.

According to the ANN, the maximum L/D ratio of the tested aerofoil corresponded to the
angle of attack α = 4◦, and after optimisation it was K = 194.4 for the ANN and K = 197.4
for Xfoil. This provided the difference of relative error of L/D ratio RE(K) = 1.53%. Figure 9
shows the relationship RE(K) = f(α). For angles of attack below α = −12◦, the calculations
diverged.

Thinner aerofoils achieved higher L/D ratios, so the algorithm naturally brought the aerofoil
thickness down to a lower limit t = 12. Due to simplifications made for the drag coefficient
confounded in the Xfoil software, a comparative analysis of the prediction results from the
ANN, the Xfoil programme and the Ansys Fluent software were applied.

For further numerical tests of the aerofoil after the optimisation process, a suitable geomet-
rical model of the aerofoil was developed, together with the computational domain in the Ansys
Workbench DesignModeler software (Fig. 10).
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Fig. 5. Example of geometry of a non-standard NACA aerofoil (2.4)(3.6)12

At the stage of developing the domain for digitisation, the relevant edges were assigned with
appropriate names representing the boundary conditions. The outer edges of the calculation
area were assigned with a pressure-far-field condition, while the edges representing the aerofoil
outline were assigned with a wall condition. The computational area was then digitised. The
developed computational domain was digitised using a structured grid (Fig. 10a). The grid was
appropriately compacted towards the aerofoil (Fig. 10b). The total number of grid elements was
306 000. The numerical grid thus developed was exported in .msh format to Ansys Fluent for
numerical simulations of the flow around the aerofoil.

Numerical flow simulations were performed for the Mach number MaH = 0.1439 and a
reference pressure of 101325 Pa, with Double Precision and Density-Based solver settings (the
“Implicit” method). Numerical simulations of the flow around the aerofoil were done over a range
of angles of attack α = ±24◦ with an increment of ∆α = 2◦. The determinant of convergence
of the calculations, and thus the termination of simulation for a given angle of attack, was the
obtained value – which was constant in the iteration function of the lift and drag coefficients
referenced to the value of the chord, 1.738m.
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Fig. 6. Predicted by SSN and computed by Xfoil (Xflr5) lift (a) and drag (b) coefficients vs. the angle of
attack, and the coefficient of determination of lift (c) and drag (d) coefficients for NACA (2.4)(3.6)12

The results of analyses comparing the aerodynamic characteristics of the optimised aerofoil
obtained with the ANN, Xfoil and Ansys Fluent are shown in Fig. 11.

Based on the obtained characteristics, it can be concluded that a satisfactory agreement was
achieved, especially in the linear range Cl = f(α). Over the range of critical angles of attack, the
lift coefficients obtained from the calculations performed in Ansys Fluent and Xfoil were very
close to each other, and partly differed from the values obtained based on the ANN prediction.
A similar situation occurred with large negative angles of attack −15◦ to −24◦. In the case of the
Cd = f(α) characteristics, the drag force coefficients obtained from the numerical analyses run
in the Ansys Fluent software were higher than the values obtained from the ANN prediction and
Xfoil calculations. This is because for each angle of attack, the Ansys Fluent software determined
the drag as the sum of the pressure drag and friction drag. In the case of SSN and Xfoil, the drag
calculations run with the assumption of constant freestream velocity and the steady flow which
resulted in increased inaccuracies at higher angles of attack. As with the previous profile, the
ANN prediction for the drag coefficient over the full range of angles of attack was inadequate.
However, for the angles of attack in the range from −10◦ to 14◦, it was already higher, and the
coefficient of determination was R2 = 0.9983, as shown in Fig. 12.
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Fig. 7. Predicted by SSN and computed by Xfoil drag coefficients vs. the angle of attack (a) and the
coefficient of determination of the drag coefficient (b) for small angles of attacks (−10 ¬ α ¬ 16◦) for

NACA (2.4)(3.6)12

Fig. 8. NACA 12(5.18)(4.18) aerofoil, a result of the optimisation algorithm

Fig. 9. Relative difference in the L/D ratio determined by ANN and Xfoil

Fig. 10. Discretized computational domain (a), discretized airfoil area (b)
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Fig. 11. Predicted by ANN and computed by Xfoil (Xflr5) lift (a) and drag (b) coefficients vs. the angle
of attack, and the coefficient of determination of lift (c) and drag (d) coefficients for

NACA (5.18)(4.18)12

A comparative analysis of the coefficient of determination of the lift and drag coefficients for
all algorithms used was also performed. This comparison is shown in Fig. 13 with α = ±10◦.
The ANNs were trained on the data produced in Xfoil, which was the computational kernel

of Xflr5, and therefore the predictions of the aerodynamic coefficients were consistent with the
results calculated by Xfoil (Figs. 13a and 13b), and were characterised by R2 = 0.9995 for Cl
and R2 = 0.9983 for Cd, respectively. In contrast, the coefficient of determination for the data
predicted by the ANN and calculated in Ansys Fluent were R2 = 0.9980 for Cl and R

2 = 0.9657
for Cd (Figs. 13e and 13f), respectively.

According to the references reviewed (Hsiao et al., 2013; López-Briones et al., 2020; Dhileep
et al., 2020) the lift coefficient calculated with Xfoil and Ansys Fluent were in agreement. This
was confirmed by numerical tests, characterised by a coefficient of determination R2 = 0.9974
(Fig. 13c). On the other hand, the frictional drag component was omitted from the Xfoil software
and the aerodynamic drag coefficient was underestimated, with a coefficient of determination of
R2 = 0.9652 (Fig. 13d).
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Fig. 12. Predicted by SSN and computed by Xfoil and FLUENT drag coefficient vs. the angle of
attack (a) and coefficient of determination of the drag coefficient (b) for small angles of attacks

(−10 ¬ α ¬ 16◦) for NACA (5.18)(4.18)12

The analyses were complemented by a comparison of the L/D ratio determined using the
methods previously referred to (Fig. 14). The maximum L/D ratios determined by Xfoil and
by ANN were Kmax = 197 and Kmax = 195, respectively, for the angle of attack α = 4

◦. In
contrast, due to inclusion of the frictional drag component in Ansys Fluent, the L/D ratio for
the angle of attack α = 4◦ was much lower, K = 78. The maximum L/D ratio corresponded
to the angle of attack α = 6◦ and was Kmax = 80. The predicted excellence of the aerofoil
calculated using Ansys Fluent decreased, as given in (Dhileep et al., 2020).

5. Conclusion

This work demonstrates that the feed-forward artificial neural networks (FF-ANN) used to
determine the lift and drag coefficients for a non-standard NACA four-digit aerofoil obtained
the change in the lift coefficient as a function of the angle of attack, at a selected interval,
with a coefficient of determination of R2 = 0.9846, while for the drag coefficient, the change
was a function of the angle of attack and R2 = 0.7634 for the entire range of angles of attack
tested. If the interval was narrowed to a range of −10◦ to +16◦, the coefficient increased to
R2 = 0.9983. The results obtained were compared to the experimental tests (Figs. 4a and 4b)
for verification. The coefficient of determination for the lift coefficient, for angles of attack
ranging from −10◦ to +16◦ was R2 = 0.9695, which can be considered a good result. According
to the knowledge from reference literature, the predicted aerofoil L/D ratio calculated using
finite volumes decreased, relative to the panel method, but the nature of the L/D ratio change
remained the same.

The disadvantages of the presented method are related to the disadvantages of metamodeling
and machine learning. There are always errors in the metamodel due to interpolation of functions.
In addition, when analyzing a different problem, or even the same problem but for a different
Reynolds number, it is necessary to re-generate training data and train the SSN. Generalizing
the algorithm for any Reynolds number would require a significant expansion of the database
of training cases. In addition, the growth of the database would likely reduce the accuracy of
prediction even for the Reynolds number found in the training case database. In further studies,
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Fig. 13. Cross validation of coefficient of determination for lift (1st column) and drag (2nd column)
coefficients (for α = ±10◦) for NACA (5.18)(4.18)12 calculated by ANN and Xfoil (a) and (b),

FLUENT and Xfoil (c) and (d), ANN and FLUENT (e) and (f)
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Fig. 14. Comparison of the L/D ratio determined with ANN, Xflr and Fluent

we intend to use finite volume methods (FVM) to obtain more accurate results by, among other
things, taking into account frictional resistance, which Xfoil does not.

The proposed algorithm can be used as a metamodel for optimisation. The FF-ANNs re-
duced the execution time of the algorithm by replacing the solution of computer fluid mechanics
equations (in the panel method), while retaining high accuracy for a properly selected range.

The optimised aerofoil will be used on the wing of an unmanned aerial platform designed
under Project SZAFIR – Competition No. 4/SZAFIR/2021.

Acknowledgement

This paper was created as part of the project: Unmanned water surface/air platform using

ground effect to support offshore Special Forces operations, funded by the NCBiR (National Centre

for Research and Development), “SZAFIR” – Competition No. 4/SZAFIR/2021, Contract No. DOB-

-SZAFIR/01/B/036/04/2021 dated 20/12/2022.

References

1. Abbott H., Doenhoff E., Lous S., Stivers J., 1945, Summary of airfoil data, National Ad-
visory Commitee for Aeronautics Report, 824

2. Aramendia I., Fernandez-Gamiz U., Zulueta E., Saenz-Aguirre A., Teso-Fz-Betoño
D., 2019, Parametric study of a Gurney flap implementation in a DU91W (2) 250 airfoil, Energies,
12, 2, 294

3. Bakewell H.P., Lumley J.L., 1967, Viscous sublayer and adjacent wall region in turbulent pipe
flow, Physics Fluids, 10, 1880-1889

4. Berkooz G., Holmes P., Lumley J.L., 1993, The proper orthogonal decomposition in the
analysis of turbulent flows, Annual Review of Fluid Mechanics, 25, 539-575

5. Butterweck A., Głuch J., 2014, Neural network simulator’s application to reference perfor-
mance determination of turbine blading in the heat-flow diagnostics, [In:] Intelligent Systems in
Technical and Medical Diagnostics, Springer, Berlin, Heidelberg

6. Conn A.R., Gould N.I. Toint P., 1991, A globally convergent augmented Lagrangian algorithm
for optimization with general constraints and simple bounds, SIAM Journal on Numerical Analysis,
28, 2, 545-572

7. Dhileep K., Kumar D., Ghosh S., Ali S.F., Arockiarajan A., 2020, Numerical study of
camber morphing in NACA0012 airfoil, Conference: AIAA AVIATION 2020 Forum, 2781



534 R. Kieszek et al.

8. Drela M., 1989, XFOIL: An analysis and design system for low Reynolds number airfoils, [In:]
Low Reynolds Number Aerodynamics. Proceedings of the Conference Noire Dame, Indiana, USA,
Springer Berlin Heidelberg, 1-12

9. Fukami K., Fukagata K., Taira K., 2021, Machine-learning-based spatio-temporal super res-
olution reconstruction of turbulent flows, Journal of Fluid Mechanics, 909
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