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In this work, we employ the multiple scale method to introduce a novel analytical solu-
tion for an extended four-degrees-of-freedom dynamical system modeled on a swinging At-
wood machine. We provide a methodology for obtaining the asymptotic solution up to the
second-order approximation for both the swinging and modified swinging Atwood machine,
demonstrating its solvability through the multiple scale approach. Subsequently, we present
a comparative analysis of time histories between numerical and analytical solutions. These
analytical solutions are of particular significance in applied mechanics, given their practical
applications in parametric dynamical models grounded in the pendulum concept.
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1. Introduction

Analytical solutions find extensive applications across physics, engineering, and mathematics.
Their versatility allows for simulating a wide range of systems, from elementary pendulums
to intricate electromagnetic fields. Furthermore, these solutions prove invaluable in validating
numerical methods, offering a reliable benchmark for precise comparison and assessment.
Drawing from the existing body of literature on variable-length pendulums (Yakubu et al.,

2022), it becomes apparent that the modeling and analysis of parametric dynamical models
for such pendulums can be intricate and demanding. The applications of such pendulums in
mechanical and mechatronic systems provide a compelling motivation for undertaking research
in this area, and they have a strong presence in both theoretical and practical engineering
applications.
The multiple scale approach is a widely utilized technique for finding analytical solutions

of dynamical systems, as evidenced by various authors in the following references: Abady et al.
(2022), Abohamer et al. (2023a,b), Awrejcewicz et al. (2022), Starosta et al. (2017), Manafian
and Allahverdiyeva (2022). A recent publication by Prokopenya (2021) tackled the problem of
finding solutions to the equations of motion of swinging Atwood machine, a system comprised
of two equal masses that oscillate and are in a state of dynamic equilibrium. The author derived
the system differential equations of motion and computed them in the form of a power series
with a small parameter.
Obtaining an analytical solution for novel 4-degrees of freedom (4-DOF) modified swinging

Atwood machine (SAM) holds immense significance. This is primarily due to its ability to provide
fast, stable, and precise solutions that can be readily understood and explicitly expressed due to
its parameter dependencies (Manafian and Allahverdiyeva, 2022; Seadawy and Manafian, 2018;
Starosta et al., 2017).
To explore the potentially intricate dynamics of a variable-length pendulum in a range of

engineering and mechatronic systems, we introduce a novel 4-DOF variable-length pendulum
model. This pendulum is analytically solved, and a comparative analysis is performed to identify
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correlative features between analytical and numerical solutions, thus verifying the accuracy of
the computational model. The primary objective of this analysis is to uncover the system internal
structure by identifying all the existing resonances. The analytical solution presented allows for
the resolution of resonance issues by making appropriate adjustments to the forcing term when
the model is applied in engineering and mechatronic systems. This ensures that the pendulum
operates optimally in various practical applications.
In this paper, we utilized the multiple scale method, which allowed us to derive an asymptotic

solution up to the second-order approximation of the SAM. The objective was to gain insight
into applying the same technique for analytically solving the novel modified SAM with 4-DOF.
Accordingly, we applied the same multiple scale method and derived the analytical solution for
the modified SAM.

Before delving into procedures for finding solutions, the main assumptions are presented in
Section 1.1. This approach ensures that the reader has a clear understanding of the underlying
assumptions that are used in developing the analytical solution. Furthermore, by establishing
the key assumptions upfront, the subsequent steps in the solution-finding process are grounded
in a well-defined set of criteria. Therefore, by clearly stating the main assumptions at the outset,
we can ensure that the subsequent analysis is rigorous, transparent, and logically consistent.

1.1. Main assumptions

To approximate the solution to the differential equation, a series expansion based on powers
of a small parameter is employed (Awrejcewicz et al., 2022). Each term in the series represents
a distinct time or length scale (Abohamer et al., 2023b; Awrejcewicz et al., 2022). In order to
streamline the resulting equations, the higher-order terms associated with the small parameter
are neglected.
The precision of a multiple scale solution relies on the small parameter size and the number

of terms incorporated in the series expansion. Generally, a more accurate solution is achieved
when more terms are added in the expansion (Awrejcewicz et al., 2022; Nayfeh, 2005). However,
it is important to acknowledge that despite the potential for increased accuracy with more terms,
the complexity of the equations often requires limiting Taylor’s series expansion to the inceptive
terms only.
Considering the assumptions mentioned earlier, we have neglected the impact of frictional

forces in the model equations. To make the system suitable for investigation, we transformed
the equations of motion into a dimensionless form to make it solvable using multiple scales. In
doing so, we introduced specific dimensionless terms. Furthermore, we offset the time-dependent
variables x(t) and φ̇(t) in the SAM model, and x1(t) and φ̇1(t) in the modified SAM model by
an independent variable designated by λ.

2. The swinging Atwood machine

The SAM is a classical mechanics concept that can aid in comprehending the variable-length
pendulum. In this particular system, the pendulum body oscillates within a two-dimensional
plane, displaying a diverse range of dynamic behavior while remaining disconnected from another
mass known as the counterweight (Elmandouh, 2016; Prokopeny, 2017; Tufillaro, 1985). In the
initial approach, the two bodies are linked by an unyielding weightless string suspended on two
pulleys devoid of friction (Tufillaro, 1994), as demonstrated in Fig. 1a.
The behavior of the SAM can be described by employing concepts of circular motion, cen-

tripetal force, and energy conservation. The tension in the string creates the centripetal force
which enables the pendulum, mass m, to move horizontally to follow a circular trajectory, and
the counterweight of mass M to move vertically, solely influenced by the force of gravity only
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Fig. 1. (a) The initial physical model of the 2-DOF SAM: M – counterweight, m – pendulum body;
(b) the proposed original Modified SAM

(Elmandouh, 2016; Tufillaro et al., 1988). By analyzing motion of this system, various phys-
ical phenomena can be explored, such as conservation of angular momentum and the impact
of centripetal force on object motion. Due to the pendulum reactive centrifugal force oppos-
ing the weight of the counterweight mass M , the dynamic response of the system can exhibit
characteristics such as singularity or non-singularity, chaos or quasi-periodicity, boundedness or
unboundedness, and even discontinuity (Casasayas et al., 1990; Tufillaro, 1986; Nunes et al.,
1995; Pujol et al., 2010; Yehia, 2006).

2.1. Equations of motion

The system being examined possesses two degrees of freedom. First, by utilizing the La-
grangian L, one can deduce the equation of motion (Elmandouh, 2016) for T and U , which
respectively denote the kinetic and potential energy. The equations of motion for the SAM as
described by Prokopenya (2021), Elmandouh (2016), Tufillaro et al. (1988), Tufillaro (1994),
Casasayas et al. (1990), Nunes et al. (1995), Pujol et al. (2010), Yehia (2006), Tufillaro (1985)
are presented below.
Upon considering the initial state-space variable, we observe that the two ordinary differential

equations (ODEs) encompass the dynamics along the two independent degrees of freedom, i.e.,
ϕ(t) and l(t)

∂L

∂ϕ
=

d

dt

(∂L
∂ϕ̇

) ∂L

∂l
=

d

dt

(∂L
∂l̇

)
(2.1)

Based on the presented model illustrated in Fig. 1a, we express the following

T =
1

2
Ml̇2(t) +

1

2
m[l̇2(t) + l2(t)ϕ̇2(t)] U =Mgl(t)−mgl(t) cosϕ(t) (2.2)

where M is the non-swinging mass, m – pendulum mass as it swings, l(t) – distance from the
pivot point to the center of the swinging pendulum body.
We determine the Lagrangian as L = T − U , i.e.

L =
1

2
Ml̇2(t) +

1

2
m[l̇2(t) + l2(t)ϕ̇2(t)]−Mgl(t) +mgl(t) cosϕ(t) (2.3)

Given that the Hamiltonian H = T + U is defined in terms of the canonical momenta pl
and pϕ, we obtain the following

H =
p2l

2(M +m)
+

p2ϕ
2ml2(t)

+Mgl(t)−mgl cosϕ(t) (2.4)

where: pl = (M +m)l̇(t), pϕ = ml
2(t)ϕ̇(t).
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The equations governing dynamical behavior in the state-space variables ϕ and l can be
obtained based on the aforementioned assumptions

l(t)ϕ̈(t) + 2l̇(t)ϕ̇(t) + g sinϕ(t) = 0

ml(t)ϕ̇2(t)−Mg +mg cosϕ(t) = (M +m)l̈(t)
(2.5)

Taking into account the mass ratio µm =M/m, then Eq. (2.5)2 becomes

(µm + 1)l̈(t)− l(t)ϕ̇
2(t) + g[µm − cosϕ(t)] = 0 (2.6)

In order to find the solution of the systems using the MSM method, the following parameters
are employed

ω22 =
g

l
ω24 =

ω22
ω21

σ1 =
λ3

(µ+ 1)ω21
+

µω24
µ+ 1

−
ω24
µ+ 1

σ2 =
λ2

(µ+ 1)ω21
σ3 =

ω24
3(µ+ 1)

ζ5 =
1

λ
σ4 =

2λ2

(µ+ 1)ω1

σ5 =
2λ

(µ+ 1)ω1
σ6 = −

λ

µ+ 1
σ7 =

1

µ+ 1
ζ1 = ω

2
4

ζ2 =
ω24
6

ζ3 =
2

ω1
ζ4 =

2

λ

(2.7)

Moreover, we employed the Taylor series to incorporate an additional approximation. In particu-
lar, we considered only the first term of Taylor’s expansion, resulting in the following expression

sinφ(t) = φ(t)−
φ3(t)

6
cosφ(t) = 1−

φ2(t)

2
(2.8)

By utilizing the parameters specified in Eqs. (2.7) and (2.8), Eqs. (2.5) are transformed into
their final dimensionless form, which can be expressed as follows

σ1 + σ2x(τ) + σ3φ(τ)
2 + σ4φ̇1(τ) + σ5x(τ)φ̇(τ) + σ6φ̇(τ)

2 + σ7x(τ)φ̇(τ)
2 + ẍ(τ) = 0

ζ1φ(τ)− ζ2φ(τ)
3 + ζ3ẋ(τ) + ζ4φ̇(τ)ẋ(τ) + φ̈(τ) + ζ5x(τ)φ̈(τ) = 0

(2.9)

where τ represents the dimensionless time, x(τ) and φ(τ) are dimensionless forms of l(t) and ϕ(t),
respectively. ω1 is first associated with φ̇(τ), then λ is introduced into both x(τ) and φ̇(τ) as a
way to partially linearize the nonlinear terms ensuring that they appear in the equation where
they should be. This effectively helps in decoupling the left-hand side of the approximate solution
using the multiple scale method.

2.2. The multiple scale approach technique

In this Section, we apply the multiple scale approach to obtain asymptotic solutions for
the equations mentioned in Eqs. (2.9). In accordance with the multiple scale technique, we
examine the dynamics of the systems under consideration within a close range around their static
equilibrium position (Abohamer et al., 2023a; Awrejcewicz et al., 2022). In order to characterize
the amplitudes of oscillations within this region, we introduce a small parameter denoted as
0 < ε << 1, which allows us to establish the following relationship

x(τ) = εα(τ : ε) φ(τ) = εγ(τ : ε) (2.10)

This enabled us to consider the following approximations

σ1 = ε
2σ̃1 σ4 = ε

1σ̃4 σ7 = ε
−1σ̃7

ζ2 = ε
−1ζ̃2 ζ3 = εζ̃3 ζ5 = ε

0ζ̃5
(2.11)
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where ε is a parameter used for bookkeeping, having no impact on the computation and not
appearing in the final approximate solution. Its purpose is to ensure that all other terms from
the original equations are included in the solution process. We assume that ε is small enough to
avoid computational errors.

In accordance with the multiple scale approach, the time-dependent variable x(τ), and
φ(τ) can be considered as a power series of ε

x(τ) =
2∑

k=1

εkx,k(τ0, τ1) +O(ε
k) φ(τ) =

2∑

k=1

εkφ,k(τ0, τ1) +O(ε
k) (2.12)

where τn = ε
nτ(n = 0, 1) with τ0 being the fastest and τ1 being the slowest.

To convert the derivatives with respect to τ to the new time scales τn, the following operators
are employed

d

dτ
=

∂

∂τ0
+ ε

∂

∂τ0

d2

dτ2
=

∂2

∂τ20
+ 2ε

∂2

∂τ0∂τ1
+O(ε2) (2.13)

It is worth noting that these operators neglect terms of O(ε2) and higher orders. To obtain the
partial differential equation (PDE) groups corresponding to different powers of ε, we substitute
equations (2.10)-(2.13) into the dimensionless form of governing equations (2.9). This procedure
leads to derivation of the preceding four linear PDEs. Based on the perturbation parameter ε,
the splitting method is employed for obtaining these PDEs (Awrejcewicz et al., 2022). These
equations are the orders of ε and ε2:

— first-order equations (coefficient 1 at ε1)

∂2α1
∂τ20
+ σ2α1 = 0

∂2γ1
∂τ20
+ ζ1γ1 = 0 (2.14)

— second-order equations (coefficient 2 at ε2)

σ̃1 + σ2α2 + σ3γ
2
1 + σ̃4γ1

∂γ1
∂τ0
+ σ5α1γ1

∂γ1
∂τ0
+ σ6
(∂γ1
∂τ0

)2

+ σ̃7α1
(∂γ1
∂τ0

)2
+ 2

∂2α1
∂τ0∂τ1

+
∂2α2
∂τ20
= 0

ζ1γ2 − ζ̃2γ
3
1 + ζ̃3

∂α1
∂τ0
+ ζ4

∂α1
∂τ0

∂γ1
∂τ0
+ 2

∂2γ1
∂τ0∂τ1

+ ζ̃5α1
∂2γ1
∂τ20
+
∂2γ2
∂τ20
= 0

(2.15)

where α1 and γ1 represent the solution of the first-order approximations of the time-dependent
variables x(τ) and φ1(τ), respectively. Also, α2 and γ2 are the solution of the second-order ap-
proximations of the time-dependent variables x(τ) and φ1(τ). Meanwhile, α and γ will represent
the respective general solutions of the time-dependent variables.

The solutions to Eqs. (2.15) are required to be solved in a specific order. Notably, the solutions
obtained from the first group hold significant importance. Therefore, our initial emphasis lies in
acquiring the general solutions to Eq. (2.14). The resulting established solutions are presented
as follows

α1 = e
iσ2τ0B1(τ1) + e

−iσ2τ0B̃1(τ1) γ1 = e
iζ1τ0B3(τ1) + e

−iζ1τ0B̃3(τ1) (2.16)
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Consequently, by substituting solutions (2.16) into the second group of PDEs (2.15), we obtain
the following second-order solutions with Bi and B̃i being τ1 dependent, where i = 1, 2

α2 = −
−2ζ21σ6B2(τ1)B̃2(τ1)− 2σ3B2(τ1)B̃2(τ1) + σ̃1

σ22
+
iσ5B1(τ1)B2(τ1)e

iτ0(ζ1+σ2)

ζ1 + 2σ2

−
e2iζ1τ0 [ζ21σ6B2(τ1)

2 − σ3B2(τ1)
2]

(2ζ1 − σ2)(2ζ1 + σ2)
+
iζ1σ̃4B2(τ1)e

iζ1τ0

(ζ1 − σ2)(ζ1 + σ2)
−
ζ1σ̃7B1(τ1)B2(τ1)

2eiτ0(2ζ1+σ2)

4(ζ1 + σ2)

+
iσ5B2(τ1)B̃1(τ1)e

iτ0(ζ1−σ2)

ζ1 − 2σ2
−
ζ1σ̃7B2(τ1)

2B̃1(τ1)e
iτ0(2ζ1−σ2)

4(ζ1 − σ2)
+ CT

γ2 = −
ζ̃2B2(τ1)

3e3iζ1τ0

8ζ21
−
eiτ0(ζ1+σ2)[ζ21 ζ̃5B1(τ1)B2(τ1) + ζ1ζ4σ2B1(τ1)B2(τ1)]

σ2(2ζ1 + σ2)

+
iσ2ζ̃3B1(τ1)e

iσ2τ0

(σ2 − ζ1)(ζ1 + σ2)
+
eiτ0(ζ1−σ2)[ζ21 ζ̃5B2(τ1)B̃1(τ1)− ζ1ζ4σ2B2(τ1)B̃1(τ1)]

σ2(2ζ1 − σ2)
+ CT

(2.17)

where CT represents the conjugates of the preceding terms.

2.3. Modulation equations

The modulation equations are a group of four first-order ODEs that describe the modulation
of amplitudes and phases, since the procedures for solving them are complemented by initial
conditions.

Secular terms in Eqs. (2.18) appear when the previous solutions are substituted into second-
-order Eqs (2.17). These terms act as conditions for solvability, which must be eliminated to
obtain the modulation equations.

In order to eliminate the secular terms from the equations, we use a method that involves
introducing new, unknown complex value functions that are defined in Eq. (2.19). These func-
tions are then substituted into the secular terms. Canceling them effectively allows us to obtain
the modulation equations. This, in turn, enables us to arrive at the final asymptotic solution.
These secular terms in α2 and γ2 follow

α2,s = −2ζ
2
1B1(τ1)B2(τ1)σ̃7(τ1)B̃2(τ1)− 2iσ2

∂B1(τ1)

∂τ1

γ2,s = 3ζ̃2B2(τ1)
2B̃2(τ1)− 2iζ1

∂B2(τ1)

∂τ1

(2.18)

and

Bk =
1

2
ak(τ)e

iψk B̃k =
1

2
ak(τ)e

−iψk k = 1, 2 (2.19)

where the order ψj and aj represent the phases and amplitude of the solutions α and γ, respec-
tively, for j = 1, 2.

Once we removed the secular terms from α2 and γ2, we arrived at the ensuing modulation
equations

ȧ1(τ) = 0 ȧ2(τ) = 0 ψ̇1(τ) =
ζ21a2(τ)

2σ7
4σ2

ψ̇2(τ) = −
3a2(τ)

2ζ2
8ζ1

(2.20)

Once we reconstituted the modulation equations for nonresonant cases and took into account
established equations (2.20), we obtained the final asymptotic solution up to the second-order
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approximations, with ai and ψi being dependent on τ1 for i = 1, 2. The resulting solution is as
follows

α =
a2(τ)

2(ζ12σ6 + σ3)− 2σ1
2σ22

+ a1(τ) cos(σ2τ + ψ1(τ))

+
a2(τ)

2(σ3 − ζ
2
1σ6) cos[2(ζ1τ + ψ2(τ))]

8ζ21 − 2σ
2
2

−
σ5a1(τ)a2(τ) sin[τ(ζ1 + σ2) + ψ1(τ) + ψ2(τ)]

2(ζ1 + 2σ2)

−
σ5a1(τ)a2(τ) sin[τ(ζ1 − σ2)− ψ1(τ) + ψ2(τ)]

2(ζ1 − 2σ2)

−
ζ1σ7a1(τ)a2(τ)

2 cos[τ(2ζ1 + σ2) + ψ1(τ) + 2ψ2(τ)]

16(ζ1 + σ2)
−
ζ1σ4a2(τ) sin(ζ1τ + ψ2(τ))

ζ21 − σ
2
2

−
ζ1σ7a1(τ)a2(τ)

2 cos[τ(2ζ1 − σ2)− ψ1(τ) + 2ψ2(τ)]

16(ζ1 − σ2)

γ = a2(τ) cos(ζ1τ + ψ2(τ)) +
ζ1a1(τ)a2(τ)(ζ1ζ5 − ζ4σ2) cos[τ(ζ1 − σ2)− ψ1(τ) + ψ2(τ)]

2σ2(2ζ1 − σ2)

−
ζ1a1(τ)a2(τ)(ζ1ζ5 + ζ4σ2) cos[τ(ζ1 + σ2) + ψ1(τ) + ψ2(τ)]

2σ2(2ζ1 + σ2)
+
ζ3σ2a1(τ) sin(σ2τψ1(τ))

ζ21 − σ
2
2

−
ζ2a2(τ)

3 cos[3(ζ1τ + ψ2(τ))]

32ζ21

(2.21)

2.4. Comparison between analytical and numerical solutions using time histories

To compare the dimensionless form of equations of motion (2.9) with second-order asymptotic
solution (2.21), we present a time history based on the data provided in Eqs. (2.22).

In Figs. 2a,b, we depict the time histories for two degrees of freedom of the dynamical
system, namely, x(τ) and φ1(τ), respectively. It is noteworthy that both the analytical and
numerical solutions demonstrate satisfactory accuracy of the obtained approximation. Hence,
even a simplified model of the dynamical system can be efficiently solved analytically using the
presented approach.

σ1 = 0.0025 σ2 = 1.01 σ3 = 0.06 σ4 = 0.014

σ5 = 0.06 σ6 = 0.01 σ7 = 0.05 ζ1 = 1.0

ζ2 = 0.1667 ζ3 = 0.0005 ζ4 = 0.01 ζ5 = 0.005

x(τ) = 0.04 ẋ(τ) = 0 φ(τ) = 0.01 φ̇(τ) = 0

(2.22)

The obtained solutions are then compared by plotting them in time history plots. The masses
of pendulums and length of the string greatly influence the simulation results. Furthermore, these
results can be utilized to gain more insights into energy transfers, tension in the string, and other
critical characteristics of the system.

2.4.1. Compliance error

To ensure solution dependability and precision, time histories of compliance errors in the re-
sults are presented. This not only aids potential computation optimization but also contributes
to advancing numerical methods. These histories, integrated with the results, enhance visual-
ization of discrepancies in individual time intervals. Additionally, the Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) are computed using

∑N
n=1[Numi − Apri)

2]/n and∑N
n=1[|Numi −Apri|]/n, respectively. Here, Num is the numerical solution, Apr is the approx-
imate solution, and N is the number of observations. These metrics provide additional tools
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Fig. 2. (a) Comparison between the analytical (in blue, Eq. (2.9)1) and numerical (in red, Eq. (2.21)1)
solution using the parameters given in Eqs. (2.22). (b) Comparison between analytical (φ(τ) in green,
Eq. (2.9)2) and numerical (β in red, Eq. (2.21)2) solution using the parameters presented in Eqs. (2.22).
(c) Compliance error for x(τ) with RMSE = 0.00844126 and MAE = 0.00662222. (d) Compliance error

for φ(τ) with RMSE = 0.000152463 and MAE = 0.000111975

for a thorough assessment of solution accuracy, offering a more comprehensive understanding of
overall performance.

Figures 2c and 2d depict the deviation between numerical and approximate solutions along
the x-axis (representing time). The y-axis shows the compliance error at each point. Peaks or
shifts in error plots signify notable deviations between solutions, while a declining trend suggests
convergence of the numerical solution. Oscillations in the compliance errors indicate sensitivity
to parameters and initial conditions. RMSE and MAE values are very small, affirming improved
performance of the method and appropriateness of the dataset.

Moving forward to the next Section, we show a more advanced version of the variable-length
pendulum with 4-DOF. The process used to obtain the solutions for this system closely mirrors
the one employed earlier, encompassing all the fundamental assumptions and culminating in
generating and comparing the results in time history plots.

3. The original modification of SAM

We introduce a novel and innovative modification to the SAMmodel based on the work presented
in (Yakubu et al., 2022). This modified version demonstrates potentially richer dynamics, as
depicted in Fig. 1b. To achieve this, we have added a second spring pendulum to the non-swinging
mass M , on the opposite end. The two pendulums, with masses of m1 and m2, are connected
by a suspension configuration with a stiffness k and a damper c. Point 02 is free to rotate and
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subject to oscillation in the (X,Y ) plane, while point 01 is fixed, allowing for the variability of
length l1 and the double pendulum configurations. The distance of l20 is measured between the
two pendulums, and l2 denotes the extension caused by the spring between them. The original
Modified SAM model can be applied to various scenarios, including wave variability, suspension
systems, elastic robotic links, and load-lifting equipment such as cranes. X0 = f0 sin(ωt+ θ) is a
time function that represents the periodic kinematic excitation. The displacement is measured
from the origin of the coordinate system O specifically in the direction of the x-axis. Here, f0 is
the excitation force, ω and θ represent the angular frequency and phase shift of the excitation,
respectively, while s denotes the distance in the X direction from the point O to the fixed support
point O1.

3.1. Equations of motion

The equation of motion for the 4-DOF MSAM model is derived in (Yakubu et al., 2022)
using Newton’s second law and the Lagrangian mechanics. The system equations of motion,
when friction in pulley bearing is neglected, are

l̈1 =
1

m1 +M
[T2 cos(ϕ2 − ϕ1)− (M +m1 sinϕ1)Ẍ0 +m1(l1ϕ̇

2
1 + g cosϕ1)−Mg]

l̈2 =
1

2m1m2(m1 +M)

(
{Mm1T2[cos(2(ϕ2 − ϕ1))] − 1}Mm1m2{Ẍ0[2 cos(ϕ2 − ϕ1)

+ sin(ϕ2 − 2ϕ1)− sinϕ2] + g}+ 2m1m2[Ml1ϕ̇
2
1 cos(ϕ2 − ϕ1) + (m1 +M)(l1 + l20)ϕ̇

2
2]

− 2m1T2(m1 +m2 +M)
)

ϕ̈1 =
T2 sin(ϕ2 − ϕ1)−m1(2l̇1ϕ̇1 + Ẍ0 cosϕ1 + g sinϕ1)

m1l1

ϕ̈2 =
1

2(m21 +Mm1)(l2 + l20)

{
[−MT2 sin(2(ϕ2 − ϕ1))−Mgm1(2 sin(ϕ2 − ϕ1))

+ sin(ϕ2 − 2ϕ1) + sinϕ2]−Mm1Ẍ0[2 sin(ϕ2 − ϕ1)− cos(ϕ2 − 2ϕ1) + cosϕ2]

− 2Mm1l1ϕ̇
2
1 sin(ϕ2 − ϕ1)− 4m1 l̇2ϕ̇2(m1 +M)

}

(3.1)

where T2 = (cl̇2 + kl2) and l1, l2, ϕ1, ϕ2 are t dependent variables.
Besides the assumptions outlined in Section 1.1, it is worth noting that the length l1 exhibits

motion opposite to that of l2. Thus, to transform the system to a solvable form using the multiple
scale method, we introduce dimensionless parameters presented in Appendix A.1 to adhere to
the system investigational process.

x1(τ), x2(τ), φ1(τ) and φ2(τ) are dimensionless forms of l1(t), l2(t), ϕ1(t) and ϕ2(t), respec-
tively. ω1 is first associated with φ̇1(τ), then λ is introduced into both x1(τ) and φ̇1(τ) for the
same reasons stated in Section 2.1. Additionally, we employ the following approximation based
on the Taylor series. In this approximation, we retain only the first term of Taylor’s expansion,
which can be expressed as follows

sinφi(t) = φi(t)−
(φi(t))

3

6
cosφi = 1−

(φi(t))
2

2
sin[2(φi+1(t)− φi(t))] = 2[φi+1(t)− φi(t)] cos[2(φi+1(t)− φi(t))] = 1

sin(φi+1(t)− φi(t)) = φi+1(t)− φi(t) cos(φi+1(t)− φi(t)) = 1

sin(φi+1(t)− 2φi(t)) = φi+1(t)− 2φi(t) cos(φi+1(t)− 2φi(t)) = 1

(3.2)

Using the parameters in Appendix A.1, then the final dimensionless form of Eqs. (3.1) can
be written as it is presented in Appendix A.2.
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3.2. The multiple scale method

Our analysis concentrates on a small region near the system static equilibrium. To charac-
terize the amplitudes of the oscillations within this region, we use a small parameter, denoted
by 0 < ε << 1

x1(τ) = εα(τ : ε) x2(τ) = εβ(τ : ε)

φ1(τ) = εγ(τ : ε) φ2(τ) = εΓ (τ : ε)
(3.3)

By assuming a small area around the system static equilibrium position and the amplitude
of oscillations within that area, as is consistent with the MSM, we can make the following
approximations (Abohamer et al., 2023a; Awrejcewicz et al., 2022)

b = εb̃ F = εF̃ c1 = εc̃1 G2 = εG̃2 ω0 = εω̃0

σ1 = ε
2σ̃1 σ2 = ε

2σ̃2 σ3 = εσ̃3 σ4 = ε
−1σ̃4 σ6 = εσ̃6

σ9 = ε
−1σ̃9 A = εÃ b2 = εb̃2 b3 = εb̃3 G = ε−1G̃

G1 = ε
−1G̃1 δ2 = εδ̃2 δ3 = εδ̃3 δ5 = ε

−1δ̃5 δ7 = εδ̃7

δ8 = εδ̃8 δ9 = εδ̃9 δ1 = ε
2δ̃1 y = εỹ c2 = εc̃2

ζ3 = εζ̃3 ζ2 = ε
−1ζ̃2 h = ε−1h ξ1 = εξ̃1 ξ6 = ε

−1ξ̃6

ξ9 = ε
−1ξ̃9 ξ10 = ε

−1ξ̃10 ξ11 = ε
−2ξ̃11

(3.4)

In line with the methodology of the multiple scale approach, the time-dependent variables
x1(τ), x2(τ), φ1(τ) and φ2(τ) can be considered as power series of ε

x1(τ) =
2∑

k=1

εkx1,k(τ0, τ1) +O(ε
k) x2(τ) =

2∑

k=1

εkx2,k(τ0, τ1) +O(ε
k)

φ1(τ) =
2∑

k=1

εkφ1,k(τ0, τ1) +O(ε
k) φ2(τ) =

2∑

k=1

εkφ2,k(τ0, τ1) +O(ε
k)

(3.5)

It is worth emphasizing that these operators exclude terms of O(ε2) and higher orders. To derive
the PDE groups associated with different powers of ε, we substitute Eqs. (3.3)-(3.5) into the
dimensionless form of governing equations (A.2) in Appendix. This process involves a splitting
method based on the perturbation parameter ε (Awrejcewicz et al., 2022). Then, we derive the
preceding 8 linear PDEs, each corresponding to a specific order of ε and ε2:
— first-order equations (coefficient 1 at ε1)

∂2α1
∂τ20
+w2α1 = 0

∂2β1
∂τ20
+β1 = 0

∂2γ1
∂τ20
+ω24γ1 = 0

∂2Γ1
∂τ20
+ ξ24Γ1 = 0 (3.6)

— second-order equations (coefficient 2 at ε2) (refer to Appendix A.3) where α1, β1, γ1, Γ1
represent the solutions of the first-order approximations of the time-dependent variables x1(τ),
x2(τ), φ1(τ), φ2(τ), respectively. Also, α2, β2, γ2, Γ2 are the solutions of the second-order ap-
proximations of the time-dependent variables x1(τ), x2(τ), φ1(τ), φ2(τ). Meanwhile, the general
solutions of the time-dependent variables will be represented by α, β, γ, and Γ , respectively.
The solutions to obtained Eqs. (a.3) in Appendix, which can be solved in a particular se-

quence, emphasize the importance of the solutions in the first category. Thus, our primary focus
is on obtaining the general solutions to Eqs. (3.6). The solutions obtained are as follows

α1 = e
iwτ0B1(τ1) + e

−iwτ0B̃1(τ1) β1 = e
iτ0B2(τ1) + e

−iτ0B̃2(τ1)

γ1 = e
iω4τ0B3(τ1) + e

−iω4τ0B̃3(τ1) Γ1 = e
iξ4τ0B4(τ1) + e

−iξ4τ0B̃4(τ1)
(3.7)



An approximate analytical solution of a 4-DOF variable-length... 471

As a result, by substituting solutions (3.7) into the second group of PDEs (A.3) in Appendix,
we derive the 2-order solutions as α2, β2, γ2 and Γ2, where Bi and B̃i depend on τ1, i takes
values of 1, . . . , 4.

3.3. Modulation equations

The modulation equations constitute a set of eight first-order ODEs describing the amplitude
and phase modulation. These equations necessitate initial conditions for the effective solution,
which complement the solving procedures.
Secular terms, as observed in Eqs. (3.8), emerge when inserting the previously derived so-

lutions into the second-order equations (refer to Eqs. (A.3) in Appendix). While serving as
solvability conditions, these secular terms must be eliminated to obtain the modulation equa-
tions.
To eliminate the secular terms (see Eqs. (3.8)), we employ a method introducing new

complex-valued functions, defined in Eqs. (3.9). Substituting these functions into the secular
terms eliminates them, allowing derivation of the modulation equations. The final asymptotic
solution is then obtained through these equations. The secular terms in α2, β2, γ2 and Γ2 are
expressed as

α2,s = −2ω
2
4σ̃9B1(τ1)B3(τ1)B̃3(τ1)− 2iw

∂B1(τ1)

∂τ1

β2,s = −b̃2B2(τ1)− b̃3B2(τ1) + 2ξ4
2G̃B2(τ1)B4(τ1)B̃4(τ1)− 2i

∂B2(τ1)

∂τ1

+ 2ξ42G̃1B2(τ1)B4(τ1)B̃4(τ1)− ic̃1B2(τ1)− iδ̃7B2(τ1)− iδ̃8B2(τ1)

γ2,s = 3ζ̃2B3(τ1)
2B̃3(τ1)− 2iω4

∂B3(τ1)

∂τ1

Γ2,s = −2ω
2
4 ξ̃10B3(τ1)B4(τ1)B̃3(τ1)− 3ξ̃6B4(τ1)

2B̃4(τ1)− 2iξ4
∂B4(τ1)

∂τ1

(3.8)

and

Bj =
1

2
aj(τ)e

iψj(τ1) B̃j =
1

2
aj(τ)e

−iψj(τ1) (3.9)

where ψj and aj represent the phases and amplitude of the solutions α, β, γ, and Γ , respectively.
For j = 1, 2, 3, 4.
After eliminating the secular terms from α2, β2, γ2 and Γ2, the modulation equations are

obtained as

ȧ1(τ) = 0 ȧ3(τ) = 0 ψ̇1(τ) =
ω24a3(τ)

2σ9
4w

ψ̇3(τ) = −
3a3(τ)

2ζ2
8ω4

ȧ2(τ) = −
1

2
a2(τ)(c1 + δ7 + δ8) ȧ4(τ) = 0

ψ̇2(τ) =
1

4
[2b2 + 2b3 + ξ

2
4a4(τ)

2(G+G1)] ψ̇4(τ) =
2ω24a3(τ)

2ξ10 + 3a4(τ)
2ξ6

8ξ4

(3.10)

After reconstituting the modulation equations for nonresonant cases and considering the equa-
tions established in Eq. (3.7), the final asymptotic solution up to the second-order approximation
for α, β, γ and Γ , with ai and ψi being dependent on τ1, where i = 1, 2, 3, 4, have been obtained.

3.4. Comparison between analytical and numerical solutions using time histories

For comparison, the dimensionless form of the equations of motion (see Eqs. (A.1) and (A.2)
in Appendix) and the asymptotic solution up to the second-order approximation are shown in
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Fig. 3. (a) Comparison between analytical (in blue) and numerical (in red) solutions using the
parameters presented in Eq. (3.11). (b) Comparison between analytical (in green) and numerical (in
red) solutions using the parameters presented in Eq. (3.11). (c) Compliance error for x1(τ) with

RMSE = 0.187473 and MAE = 0.140302. (d) Compliance error for x2(τ) with RMSE = 0.0693299 and
MAE = 0.0543544. (e) Comparison between analytical (in blue) and numerical (in red) solutions using
the parameters presented in Eq. (3.11). (f) Comparison between analytical (in green) and numerical (in
red) solutions using the parameters presented in Eq. (3.11). (g) Compliance error for φ1(τ) with

RMSE = 0.000639732 and MAE = 0.000528905. (h) Compliance error for φ2(τ) with
RMSE = 0.00157617 and MAE = 0.0012515
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the time history using the data in below. All initial conditions, except for x2(0) = φ2(0) = 0.1,
are set to zero

A = 0.5 c1 = c2 = ξ1 = ξ3 = δ3 = 0.01 σ5 = ζ3 = 0.0001 ξ4 = 1.61

ω5 = ξ2 = 0.002 σ6 = σ7 = ξ10 = ξ11 = 0.0002 σ8 = 0.0004

ξ12 = 0.00004 ξ5 = 0.005 σ9 = ξ14 = ζ4 = 0.00005 δ2 = 0.001

δ4 = 0.003 δ5 = 0.00008 ξ7 = 0.0012 h = ω0 = 1

δ8 = 0.008 δ9 = 0.00009 δ0 = 0.00002 ξ6 = 0.00008

ξ9 = 0.000021 ω = 10 ξ13 = 0.00015 σ1 = 0.15

σ2 = 0.464 b2 = 2.11 b3 = 1.63 G = 0.8 G1 = 0.1

F = 0.81 ω4 = 1.72 ζ1 = 0.05 σ3 = 1.15 w = 0.25

(3.11)

Figure 3a, 3b, 3e and 3f represent the time history for x1(τ), x2(τ), φ1(τ) and φ2(τ), re-
spectively. As we can observe, both the analytical and numerical solutions indicate the accuracy
of the system equation. Figure 3c, 3d, 3g and 3h depicts the deviation between the numeri-
cal and approximate solutions for x1(τ), x2(τ), φ1(τ) and φ2(τ), respectively. The compliance
error for the modified SAM follows the same trend as that of the SAM. Therefore, it aligns
with the presumption stated in Section 2.4.1. It becomes evident that the 4-DOF system can
be effectively solved analytically by employing the multiple scale approach. However, it comes
with a drawback in that it offers an approximate solution, and its accuracy depends on the
number of time scales used. As a result, it becomes crucial to identify particular traits be-
tween the analytical and numerical solutions to compare them accurately and guarantee their
correctness.

4. Conclusions

This publication focuses on the modeling and analysis challenges posed by variable-length pen-
dulums, with a particular emphasis on the 4-DOF system. The attainment of an analytical
solution not only validates the model but also contributes to improved efficiency, accuracy, and
theoretical advancements. These analytical solutions serve as crucial tools for the investigation
of dynamical systems, finding applications across diverse scientific and engineering fields. Fur-
thermore, the study identifies promising directions for future research, urging exploration into
steady-state solutions and conducting thorough stability analyses.
The publication highlights the practical applications of the analyzed models, revealing their

potential in studying dynamic entities like robots and load-lifting devices. For instance, the
study suggests examining a system comprising three inverted pendulums to represent different
segments of the human body or analyzing the dynamics of load-lifting devices such as cranes.
This approach extends the utility of the findings, offering insights into a broader applicability of
the studied parametric dynamical models. Notably, the potential application of these insights in
the field of energy harvesting is also underscored, adding a dimension of practical significance
to the theoretical advancements presented in the publication.

A. Appendix

A.1. Dimensionless parameters for the modified SAM

A =
l20
l

G =
M

(m1 +M)
G1 =

m1
(m1 +M)

ω22 =
g

l
ω23 =

k

m1
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ω21 =
k

m1 +M
λ2 =

ω21ω1
G1

c1 =
c

(m1 +M)ω1
F =

f0ω
2

lω21

c2 =
c

λω1
b1 =

M

m1
b2 =

M

m2
b3 =

m1
m2

ω24 =
ω22
ω21

ω25 =
ω23
λω21

σ1 = ω
2λ+Gω24 −

ω2ω21ω
2
4

λ2
σ2 = FG σ3 =

Fω2ω21
λ2

σ4 =
Fω2ω21
6λ2

σ5 =
ω2ω21ω

2
4

2λ2
σ6 = ω

2ω1 σ7 =
ω2ω21
λ

σ8 =
2ω2ω21
λ

σ9 =
ω2ω21
λ2

δ0 = Gλ δ1 =
Gλ3

ω21
+
5Gω24
2

δ2 =
Gλ2

ω21
δ3 = FGω0 δ4 =

Gω24
4

δ5 =
FG

12
δ6 =

2Gλ

ω1

δ7 = b2c1 δ8 = b3c1 δ9 =
2Gλ2

ω1
ζ1 =

F

3
+
5Gω24
2

ζ2 =
ω24
6

ζ3 =
2

ω1
ζ4 =

1

λ
ξ1 =

Gλ3

Aω21
+ 2Gω24

ξ2 =
Gλ2

Aω21
ξ3 = Gω

2
5 ξ24 =

Gλ3

Aω21
+Gω24 ξ5 =

hFG

4

ξ6 =
Gω24
12

h = 1 ξ7 = c2G ξ8 =
2Gλ2

Aω1
xi9 =

2Gλ

Aω1

ξ10 =
Gλ

A
ξ11 =

G

A
ξ12 =

2G

A
ξ13 =

2G1
A

ξ14 =
1

A

(A.1)

A.2. The final dimensionless form of the modified SAM equations of motion

σ1 − σ2 sin(ωτ)− w
2x1(τ)− ω0x2(τ)− σ3 sin(ωτ)φ1(τ) + σ4 sin(ωτ)φ

3
1(τ) + σ5φ

2
2(τ)

− c1ẋ2(τ)− σ6φ1(τ)− σ7φ̇
2
1(τ)− σ8x1(τ)φ̇1(τ)− σ9x1(τ)φ̇

2
1(τ)− ẍ1(τ) = 0

δ1 − σ2 sin(ωτ) + δ2x1(τ)− x2(τ)− b2x2(τ)− b2x2(τ)− b3x2(τ) + δ3 sin(ωτ)φ1(τ)

− δ4φ
2
2(τ)− δ5 sin(ωτ)φ

3
2(τ)− c1ẋ2(τ)− δ7ẋ2(τ)− δ8ẋ2(τ) + δ9φ̇1(τ)

+ δ6x1(τ)φ̇1(τ) + δ0φ̇
2
1(τ) +Gx1(τ)φ̇

2
1(τ) +

1

2
AG(τ)φ̇22(τ) +AG1(τ)φ̇

2
2(τ)

+G1x2(τ)φ̇
2
2(τ)− ẍ2(τ) = 0

F sin(ωτ)− ω24φ1 + ω
2
5x2(τ)φ1(τ) + ζ1φ

3
1(τ)− ζ1 sin(ωτ)φ

2
1(τ)− ω

2
5x2(τ)φ2(τ)

− ζ3ẋ1(τ)− c2φ1(τ)ẋ2(τ) + c2φ2(τ)− ẋ2(τ)− 2ζ4ẋ1(τ)φ̇1(τ)− ζ4x1(τ)φ̈1(τ)

− φ̈1(τ) = 0

ξ1φ1(τ) + hσ2 sin(ωτ)φ1(τ) + ξ2x1(τ)φ1(τ) + ξ3x1(τ)φ1(τ)− ξ
2
4φ2(τ)− hσ2 sin(ωτ)φ2(τ)

− ξ2x1(τ)φ2(τ)− ξ3x2(τ)φ2(τ)− ξ5 sin(ωτ)φ
2
2(τ)− ξ6φ

3
2(τ) + ξ7φ1(τ)ẋ2(τ)

− ξ7φ2(τ)ẋ2(τ) + ξ8φ1(τ)φ̇
2
2(τ) + ξ9x1(τ)φ1(τ)φ̇

2
2(τ)− ξ8φ2(τ)φ̇

2
1(τ)

− ξ9x1(τ)φ2(τ)φ̇
2
1(τ) + ξ10φ1(τ)φ̇

2
1(τ)ξ11x1(τ)φ1(τ)φ̇

2
1(τ)− ξ10φ2(τ)φ̇

2
1(τ)

− ξ11x1(τ)φ2(τ)φ̇
2
1(τ) + ξ12ẋ2(τ)φ̇

2
2(τ) + ξ13ẋ2(τ)φ̇

2
2(τ)− ξ14x2(τ)φ̈2(τ)− φ̈2(τ) = 0

(A.2)
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A.3. Second-order equations of the modified SAM

σ̃1 − σ̃2 sin(ωτ0)− w
2α1 − ω0β1 − σ̃3γ1 sin(ωτ0) + σ̃4γ

3
1 sin(ωτ0) + σ̃5Γ

2
1 sin(ωτ0)− c̃1

∂β1
∂τ0

− σ̃6
∂γ1
∂τ0
− σ8α1

∂γ1
∂τ0
− σ7
(∂γ1
∂τ0

)2
− σ̃6α1

(∂γ1
∂τ0

)2
− 2

∂2α1
∂τ0∂τ1

−
∂2α2
∂τ20
= 0

δ̃1 − δ̃2 sin(ωτ0) + δ̃2α1 − b̃2β1 − b̃3β1 − β1 + δ̃3γ1 sin(ωτ0)− δ̃4Γ
2
1 − δ̃5Γ

3
1 sin(ωτ0)− c̃1

∂β1
∂τ0

− δ̃7
∂β1
∂τ0
− δ̃8

∂β1
∂τ0
+ δ̃9

∂γ1
∂τ0
+ δ6α1

∂γ1
∂τ0
+ δ0
(∂γ1
∂τ0

)2
+ G̃α1

(∂γ1
∂τ0

)2
+
1

2
ÃG̃
(∂Γ1
∂τ0

)2

+ ÃG̃1
(∂Γ1
∂τ0

)2
+ G̃β1

(∂Γ1
∂τ0

)2
+ G̃1β1

(∂Γ1
∂τ0

)2
− 2

∂2β1
∂τ0∂τ1

−
∂2β2
∂τ20
= 0

F̃ sin(ωτ0) + ω
2
5β1γ1 − ζ1γ

2
1 sin(ωτ0) + ζ2γ

3
1 − ω

2
4γ2 − ω

2
5β1Γ1 − ζ3

∂α1
∂τ0
− 2ζ4

∂α1
∂τ0

∂γ1
∂τ0

− 2
∂2γ1
∂τ0∂τ1

− ζ4α1
∂2γ1
∂τ20
−
∂2γ2
∂τ20
= 0

ξ̃1γ1 + h̃σ̃2γ1 sin(ωτ0) + ξ2α1γ1 + ξ2β1γ1 − h̃σ̃2Γ1 sin(ωτ0)− ξ2α1Γ1 − ξ3β1Γ1

− ξ5Γ
2
1 sin(ωτ0)− ξ̃6Γ

3
1 − ξ

2
4Γ2 + ξ7γ1

∂β1
∂τ0
− ξ7Γ1

∂β1
∂τ0
+ ξ8γ1

∂γ1
∂τ0
+ ξ̃9α1γ1

∂γ1
∂τ0

− ξ8Γ1
∂γ1
∂τ0
− ξ̃9α1Γ1

∂γ1
∂τ0
+ ξ̃10γ1

(∂γ1
∂τ0

)2
+ ξ̃11α1γ1

(∂γ1
∂τ0

)2
− ξ̃10Γ1

(∂γ1
∂τ0

)2

− ξ̃11α1Γ1
(∂γ1
∂τ0

)2
+ ξ12

∂β1
∂τ0

∂Γ1
∂τ0
+ ξ13

∂β1
∂τ0

∂Γ1
∂τ0
− 2

∂Γ1
∂τ0∂τ1

− ξ14β1
∂2Γ1
∂τ20
−
∂2Γ2
∂τ20
= 0

(A.3)
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