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The paper proposes a new multiaxiality coefficient that can characterize fatigue tests for
various combinations of bending and torsion. This coefficient can be defined depending on
the criterion used. The factor is 1 for cyclic bending and 2 for pure torsion. Based on
the fatigue tests of the RG7 bronze, analysis of calculation dispersion of the fatigue life
was carried out concerning test results obtained through an experiment. This analysis was
performed separately for individual tested combinations and for selected multiaxial fatigue
criteria. The selected criteria are Huber-Mises, Gough-Pollard, maximum normal stress,
maximum shear stress, and maximum normal and shear stress in the plane defined by
shear stresses. The average values of the obtained durability were compared to the newly
defined multiaxial coefficient distinguishing different combinations of bending and torsion.
Fractographic analysis was also performed for selected samples for all four combinations of
fatigue tests. It was found that the failure planes and design critical planes do not coincide.
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More important nomenclatures

Aσ,mσ – coefficients in fatigue characteristic for bending

Aτ ,mτ – coefficients in fatigue characteristics for torsion

cal, exp – calculated and experimental

E – elastic modulus

Nf – number of cycles to failure

r, rBF – loading ratio and biaxial factor

∆τ – range of shear stresses

σa – amplitude of normal stress from bending

σu, σy – ultimate and yield stress

τa – amplitude of shear stress from torsion

1. Introduction

In the literature, we find numerous works on fatigue tests of cyclic bending with torsion of
samples with a solid cross-section, i.e., in which stress and strain gradients for both bending and
torsion are important. Less frequently, these are fatigue tests with cyclic tension-compression
with torsion. In this case, thin-walled hollow samples are often used. In the case of torsion of
thin-walled hollow samples, it does not give an additional effect of a stress gradient or strain.
Then, the distribution of stresses and strains can be assumed to be homogeneous. These tests
are described as cyclic bending or tension-compression τa = 0, cyclic torsion σa = 0, and a
combination of cyclic bending and torsion τa = kτ/σσa, where kτ/σ is the ratio of shear to
normal stresses. However, this does not describe the possible combinations uniformly. For this
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purpose, a loading ratio has been proposed, which is defined in various ways. In the paper
(Slamečka et al., 2016), it was defined as

r =

√
3τa

σa +
√
3τa

(1.1)

But in the works (Slámečka et al., 2010, 2013), it was defined as

r =
τa
σa + τa

(1.2)

It can be seen that in the first case, the correction factor before the shear stress amplitude τa
is
√
3, which is related to the Huber-Mises hypothesis, and in the second case, it is 1, which is

related to the Galileo hypothesis. However, the defined loading ratio always ranges from 0 for
cyclic bending (extension-compression) to 1 for cyclic torsion.
Another approach is also conceivable. Expressions can be written according to Tresca’s hy-

pothesis as

r =
2τa
σa + 2τa

(1.3)

or the Gough-Pollard (Gough et al., 1951) criterion, which is the most commonly used criterion
for a proportional combination of cyclic bending and torsion in the form

r =
1

σa +
σa−1
τa−1
τa

σa−1
τa−1
τq (1.4)

However, we always get a result in the interval (0, 1), and the final equation can be written as
general equation

rLR =
kτa

σa + kτa
(1.5)

where k can be defined as
√
3 – Eq. (1.1), 1 – Eq. (1.2), 2 – Eq. (1.3), and σa−1/τa−1 – Eq.

(1.4) which is the fatigue strength ratio (Papuga et al., 2021; Wächter et al., 2022). If we are
dealing with a brittle material, the value of this factor is 1.25, and if we are dealing with an
extra ductile material, the value of this factor is > 1.75. However, it can be noticed that the
proposed parameter has no physical significance, according to formulas (1.1)-(1.5), although it
is very convenient to describe fatigue tests.

A slightly different approach can be found in (Susmel and Lazzarin, 2002) and later used,
for example, in (Gan et al., 2021), where a coefficient was introduced to modified fatigue char-
acteristics, which, according to the authors, takes into account both multiaxiality and non-
proportionality in the form

ρ =
σmax
2∆τ

(1.6)

In this case, coefficient (1.6) becomes 0 for torsion and 1 for the axial load. This is opposite to
coefficient rLR (1.5). A completely different approach can be found in (Wang et al., 2023) based
on (Wang et al., 2001). These papers propose a principal stress coefficient defined as

γ =
σ2 − σ3
σ1 − σ3

(1.7)

The value of this coefficient determined on the basis of the principal stresses range from 0 to 1.



Use of the biaxial coefficient in determining life... 549

However, the fatigue life itself is determined using selected multiaxial fatigue criteria. Here, an
appropriate criterion should (for example, presented in works (Kardas et al., 2008; Karolczuk et
al., 2015; Carpinteri et al., 2018; Łagoda and Macha, 1994; Niesłony et al., 2014) be used to reduce
a complex state of stress to an equivalent uniaxial one. Then, the fatigue life is determined based
on the specified equivalent amplitude and fatigue characteristics for the uniaxial state of stress.
Then, the computational durability is compared with the experimental one. Most often, both
calculated and experimental lifetime are presented in a logarithmic system. The diagonal reflects
perfect agreement of the calculation results with the experiment. The logarithmic system of axes
corresponds to fatigue characteristics written as the logarithm of fatigue life. This approach can
be found in many works. The first such an approach is most likely found in (Łagoda and Macha,
1994). It seems, however, that it would be possible to determine the average values of fatigue
life dispersion for individual load combinations. Then, such a distribution can be compared with
the dispersion for the uniaxial state of stress for particular combinations defined by Eq. (1.5)
depending on the criterion used.

This work aims to propose such a biaxiality coefficient using the presented loading factor,
which will be adequate to the selected applied criterion, taking into account the complex state of
stress and especially various combinations of proportional bending and torsion. The verification
of the proposal will be presented based on fatigue tests of bronze RG7 (Małecka and Łagoda,
2023a; Małecka et al., 2023) performed by the authors of this paper. In addition, the work
explains in detail the results, which may be used by other authors, of fatigue tests for this
material, which have yet to be done before.

2. Biaxiality coefficient

The introduction presents proposals for different definitions of the loading ratio depending on
a combination of bending and torsion. In the case of bending or tension-compression, we are
dealing with a uniaxial state of stress. However, the matter could be more evident in the case of
shear stresses. In this case, the shear stress can be applied by a torque for solid samples (Fig. 1a)
or thin-walled hollow samples (Fig. 1b) to eliminate the stress and strain gradient effect. In both
cases, we can talk about torsion about one axis. Shear stress can also be caused by technical
shear, as shown in Fig. 1c. In this case, the axial force causes shear stress. Pure shear, on the
other hand, is defined as simultaneous compression in one direction and tension in the other
with the same force values as shown in Fig. 1d. Such fatigue tests have been presented, among
others, on cross samples. The results of such tests for the 10HNAP material have been presented,
among others, in work (Łagoda et al., 2020). In this case, biaxial cyclic and random fatigue tests
with a correlation coefficient of −1 result in pure shear fatigue. Therefore, switching from forces
to stresses.

Figure 2a shows uniaxial fatigue tests, and Fig. 2c presents a pure shear stress state caused
by a biaxial state of stress, where

σx = −σy (2.1)

and in Fig. 2b, where we have an intermediate situation, i.e

σx = kx/yσy (2.2)

where −1 < kx/y < 0. The loading factor known in the literature, presented in the general
form by formula (1.5), apart from the fact that it distinguishes various combinations of normal
and tangential loads with values from 0 to 1, has no other meaning. Since the uniaxial state is
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Fig. 1. Different ways to obtain shear stresses: (a) solid bar torsion, (b) tube torsion, (c) technical shear,
(d) pure shear

Fig. 2. Stress distribution for: (a) tension, (b) tension with shear, (c) pure shear

associated with the value 1, and the biaxial state with 2, it seems more logical to reformulate
general formula (1.5) presented in this work with a new biaxial factor in the form

rBF = 1 +
kτa

σa + kτa
(2.3)

The value of this parameter rBF reaches the minimum value for tension-compression (bending
in the plane) equal to 1 (uniaxial load) and for maximum cyclic shear (two-sided torsion) equal
to 2 (biaxial state). This means that pure bending reaches 1, and pure torsion values 2. However,
the combination of bending and torsion is an intermediate value. The closer this value is to 2, it
means that there is a more significant share of torsion. The k coefficient in Eq. (2.3) can be defined
here depending on the criterion proposed by the researcher adopted for further calculations.

3. Experimental research and analysis

The fatigue tests concern the RG7 bronze alloy, also known as CuSn7Zn4Pb6. Its basic static
properties are E = 92.14GPa, σu = 270MPa, σy = 120MPa. The basic chemical composition
is Cu: 81%-86%, Sn: 5.2%-8%, Zn: 2%-5%, Pb: 5%-8% (Slamečka et al., 2016; Susmel and
Lazzarin, 2002). Tables 1-5 present the results of cyclical experiments in simple load conditions
– tension-compression (Table 1), bending in a plane, and torsion on both sides (Table 2), and two
combinations of proportional bending and torsion (Table 3). In the case of bending or torsion,
nominal stress values are given, i.e., those that result from the given bending or torsion moment
and the appropriate elastic section modulus for bending and torsion, respectively.
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Table 1. Experimental results of RG7 copper alloy under axial tension-compression conditions

εa [‰] σa [MPa] Nexp [cycles]

3.0 192 5954

2.5 167 22556

2.2 162 73986

2.0 156 42000

1.8 136 137849

1.5 140 357851

1.3 – > 2000000

Table 2. Experimental results of RG7 copper alloy in the conditions of in-plane cyclic

Bending Torsion

σan [MPa] Nexp [cycles] σan [MPa] Nexp [cycles]

254 25850 163 17271

254 37723 158 35902

244 27766 158 3215

244 40511 153 171275

233 58327 153 93219

233 85021 143 19122

218 75647 143 70400

218 58069 143 86055

203 229748 135 289812

203 106173 135 785924

188 888016 127 650800

188 596720 127 481710

172 1592848 125 2499155

172 1135442 125 742896

152 1361954 117 3021316

152 571257 117 1349697

142 2011739 115 3215695

142 5827190 102 ¿10000000

131 > 10000000

Based on cyclical tests of the analyzed material, fatigue characteristics were determined
according to the Basquin model, the double-logarithmic model, and the formulas according to
(ASTM Standard 2003) – for in-plane bending and combinations of bending and torsion and
two-sided torsion, respectively

logNf = Aσ −mσ log σa logNf = Aτ −mτ log τa (3.1)

The coefficients obtained according to equations (3.1) are summarized in Table 4.
The verification will be presented for several selected multiaxial fatigue criteria:

— Huber-Mises hypothesis

σa eq =
√

σ2a + 3τ
2
a (3.2)

— Gough-Pollard hypothesis (Gough et al., 1951)

σa eq =

√

σ2a +
(σa−1
τa−1

)2
τ2a (3.3)
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Table 3. Experimental results of RG7 copper alloy for the combination of cyclic bending and
torsion

τan = 0.5σan τan = σan
σan [MPa] τan [MPa] Nexp [cycles] σan [MPa] τan [MPa] Nexp [cycles]

177 88 42488 125 125 45085

177 88 59187 125 125 28808

166 83 89283 118 118 110665

166 83 88376 118 118 79988

144 72 136893 112 112 88149

144 72 136991 112 112 104546

133 67 776838 105 105 400352

133 67 424789 105 105 334607

122 61 919070 98 98 522700

122 61 1393731 98 98 896867

112 56 929541 91 91 435266

112 56 5691131 91 91 508131

102 51 > 5400000 84 84 > 10000000

101 50 5851778
94 47 6058621

Table 4. Coefficients according to the Basquin model according to formulas (3.1) for particular
combinations of bending and torsion (Susmel and Lazzarin, 2002; Wächter et al., 2022)

Bending Torsion τa = 0.5σa τa = σa
Aσ mσ Aτ mτ Aσ mσ Aσ mσ

26.26 9.09 38.34 15.38 24.47 8.85 26.85 10.64

Hypothesis (3.2) and (3.3) have a similar formula, and in a particular case, when σa−1/τa−1=
√
3,

they are the same:
— maximum normal stress

σa eq = σan,max (3.4)

— maximum shear stress

σa eq = 2τans,max (3.5)

— maximum shear stress and normal stress in the critical plane defined by the maximum shear
stress

σa eq =
(

2−
σa−1
τa−1

)

σan,max +
σa−1
τa−1
τans,max (3.6)

Here, it should be noted that hypotheses (3.4)-(3.6), unlike (3.2) and (3.3), are linear criteria
due to components of the stress state, and such criteria can also be dedicated to random or non-
proportional loads (Mamiya et al., 2011). Normal and shear stress for a combination of normal
(from bending) and shear (from torsion) stresses at an angle α can be determined according to
the formulas

σan(α) = cos(2α)σa + sin(2α)τa τans(α) = −
1

2
sin(2α)σa + cos(2α)τa (3.7)

Critical planes for criteria (3.4)-(3.6) were determined for individual combinations of bending
and torsion in accordance with formulas (3.7). The critical planes are defined by the angle α for
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which the value of the amplitude, according to expressions (3.7), reaches its maximum value.
The values of these angles are listed in Table 5, depending on the type of load. Table 5 also
shows the positions of critical fatigue planes and experimental positions of the critical planes,
which are presented in Figs. 3-6, and shows that the experimental failure planes coincide with
the direction determined by the maximum normal stress.

Table 5. Setting the location of the critical planes and the macro-split plane of destruction [◦]

Bending τa = 0.5σa τa = σa Torsion

σan,maxα 0 22.50 31.45 45

τans,maxα 45 67.50 76.45 90

Experiment 1.43 20.15 33.30 44.60

In connection with the proposed introduction of the biaxiality factor rBF , it is possible to
analyze how this coefficient translates into fracture fractography. Figures 3-6 shows photos of
fracture surfaces for durability in the medium durability range, i.e. for durability of about 100 000
cycles. For in-plane bending (Fig. 3), i.e. with the biaxial fatigue factor rBF = 1, the development
of fatigue cracks can be seen from the two most distant points from the bending plane. In the
case of two-sided torsion, i.e. when the biaxial fatigue factor reaches the value rBF = 2, the
fatigue crack (Fig. 4) may initiate on the entire external surface. In the intermediate case, i.e., a
combination of bending and torsion, the proposed factor is within (1, 2). Its exact value depends
on the adopted methodology for determining this coefficient. In this case (Fig. 5), fatigue cracks
begin to develop where the maximum normal stress occurs. The additional shear stress from
torsion amplifies the fatigue cracking effect. A detailed analysis of fatigue cracks leads to the
following conclusions. In the case of in-plane bending (Fig. 3), it is effortless to distinguish the
fatigue zone and the residual zone, which are characteristic for fatigue fractures.

Fig. 3. Cyclic bending in a plane

However, a greater share of the fatigue zone concerning the residual zone is observed. At the
fracture, a significant near-focal area is visible, along the edge of which a fatigue focus is visible
in the form of characteristic fatigue lines, the distribution of which is not uniform. The surface
of the fatigue zone at a low magnification seems smooth, which may indicate that the sample
was subjected to a load with a low stress amplitude. In the case of cyclic torsion (Fig. 4), near-
-focus faults can be observed, which are already visible with the unaided eye. Parallel fatigue
lines are observed in relation to the faults, and the morphology of the fracture surface indicates
cleavage cracking along the grain sliding planes, as evidenced by the very finely developed surface
topography. The branching of the faults, which a load change may have caused, is also clearly
visible. For both bending and torsion combinations (Figs. 5-6), the fractures are characterized
by a similar microrelief of the fatigue area topography throughout the area. Minor irregularities
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Fig. 4. Double-sided torsion

Fig. 5. Combination of cyclic bending with torsion τa = 0.5σa

Fig. 6. Combination of cyclic bending with torsion τa = σa

running deep into the fracture surface in the residual zone are noticeable. On the surface of both
fractures, it is easy to locate the crack initiation site (fatigue focus visible in the fatigue zone),
and it is also easy to identify mutually demarcating zones separating the fatigue zone band from
the residual zone band. The surface of the residual zone is an area of a secondary scrap created
by friction of the material during bending with torsion. The revealed properties of the scrap
form the basis for considerations about the mechanism of initiation and development of fatigue
cracks. From the analysis of the obtained images of fracture surfaces, it can be concluded that
for each of the analyzed cases, the fatigue zone was formed in a long-term process of fatigue
change growth as a result of crack propagation and spreading, and the residual zone was formed
as a result of rapid destruction of the already weakened element.
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4. Fatigue life according to multiaxial fatigue criteria

Table 6 lists the calculated multiaxial factors. These factors were derived depending on the
multiaxiality criterion applied to the combination of proportional bending and torsion. The
analysis of these coefficients shows that each time, in the case of cyclic bending, the multiaxiality
factor is 1, and for cyclic torsion, it is 2. In the case of a combination of bending and torsion,
this coefficient is between 1 and 2. In the case of criterion (3.6), the multiaxial coefficient can be
defined in two ways. Both criteria (3.3) and (3.5) can be used here. A detailed analysis showed
that for the combination of bending and torsion τa = 0.5σ + a, this coefficient varies for the
analyzed models within (1.33 and 1.50, and for the combination τa = σa within 1.50 and 1.63).
Lower values are for criterion (3.5) – the criterion of maximum shear stresses, and greater for
criterion (3.2) – Huber-Mises hypothesis.

Table 6. Multiaxial factors depending on the criterion and combination of bending and torsion

Criterion Bending τa = 0.5σa τ + a = σa Torsion

(3.2) 1 1.46 1.63 2

(3.3), (3.6) 1 1.43 1.60 2

(3.4) 1 1.33 1.50 2

(3.5), (3.6) 1 1.50 1.67 2

Then, analysis of the relationship between the obtained computational durability and those
obtained as a result of the experiment was performed. Depending on the adopted criterion of
multiaxial fatigue (3.2)-(3.6), the equivalent amplitude of normal stress was determined for all
the obtained test results. This equivalent amplitude can be thought of as the stress amplitude
from bending. Therefore, on the basis of fatigue characteristics (3.1)1, the amplitude of cycles
can be determined, where the design life is Ncal −Nf , based on the transformed characteristics
in the form

Ncal = 10
Aσ−mσ log σaeq (4.1)

For each of the analyzed characteristics, depending on the adopted criterion, the ratio of compu-
tational to experimental durability was determined for all experimental results. A linear approach
can be found in the literature (Mamiya et al., 2011) or a logarithmic one (Ma et al., 2001)

d =
Ncal
Nexp

d = log
Nexp
Ncal

(4.2)

This paper used a linear relationship to analyze the dispersion given by formula (4.2). Then, the
spreads mean values d and median dm were determined. Table 7 shows the average values and
median of fatigue life dispersion using selected multiaxial fatigue criteria (3.2)-(3.6). A scatter
value of 1 means that the calculations perfectly agree with the experimental results. In the case
of bending, the average error is close to 1. For the arithmetic mean value, it is slightly more
(1.25), and for the median, it is less than 0.884. It follows that neither the mean nor the median
value is a parameter that describes the mean value well in this case. Based on other studies,
a parameter that would describe this phenomenon should be sought in the future. It may be
a prime parameter combining these two average values. Coefficients close to 1 were obtained
for torsion for criteria (3.3) and (3.6). This is because these criteria were derived from tests for
cyclic bending and cyclic torsion.

For individual criteria, the results of calculating the mean values and the median are also
presented in Figs. 7-12. In these figures, full points indicate average values. In these graphs, the
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Table 7. Average/median life dispersion depending on the criterion used and the combination
of bending and torsion

Criterion Bending τa = 0.5σa τ + a = σa Torsion

(3.2) 1.25/0.884 1.062/1.381 0.678/0.612 0.233/0.183

(3.3) 1.25/0.884 3.101/2.576 2.151/1.941 0.976/0.766

(3.4) 1.25/0.884 3.821/3.175 4.054/4.200 34.383/21.018

(3.5) 1.25/0.884 0.902/0.752 0.246/0.222 0.063/0.050

(3.6) 1.25/0.884 3.105/2.579 1.122/1.013 0.974/0.766

scatter band of 95% confidence, taking into account the 95% confidence interval for the mean
value based on the standard error of the mean, is additionally marked by blank points. The
horizontal line in each figure indicates compliance with the average value for cyclic bending.
The analysis of the dispersion obtained in appropriate bands, depending on the criterion used
and the multiaxiality coefficient, shows that none of the analyzed multiaxial fatigue criteria
was consistent for all tested combinations of proportional cyclic bending with torsion in the
95% confidential interval band. It does not matter whether the arithmetic mean value or the
median was taken as the mean value. In any case Gough-Pollard Criterion (3.3) and Maximum
Normal Stresses (3.4) did not give satisfactory results. In the case of a small shear stress division,
Huber-Mises criterion (3.2) and shear stress criterion (3.5) were effective. However, in the case
of a large share of shear stresses, the criterion of shear and normal stresses determined by the
maximum normal stress turned out to be effective (3.6). Therefore, it is proposed to use a hybrid
criterion: shear stresses and shear and normal stresses determined by the maximum normal stress
dependent on the multiaxiality factor in the form

σaeq =















2τans,max for 1 ¬ rBF <
3

2
(

2−
σa−1
τa−1

)

σan,max +
σa−1
τa−1
τans,max for

3

2
¬ rBF ¬ 2

(4.3)

Fig. 7. Dispersion of the computational and experimental durability ratio for Huber-Mises criterion
(3.2) with a probability coefficient of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value
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Fig. 8. Scatters of the computational and experimental durability ratio for Gough-Pollard criterion (3.3)
with a probability coefficient of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Fig. 9. Dispersion of the computational and experimental life ratio for criterion of maximum normal
stresses (3.4) with a probability factor of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Analyzing the calculations in which critical planes were used, it turns out that the concepts
of a critical plane and a crack plane are different. These concepts are not the same and mean
completely other things. The values do not have to be the same either.

From the analysis of Table 7 and Figs, 7-12, it can be seen that in the case of mean values
defined as average and median, the average value is always higher than that of the median value,
except for one case. Additionally, it should be noted that the same situation applies to cyclic
bending. Cyclic bending is the reference point in defining the multiaxial fatigue criterion. This
value should be 1 for perfect compliance.
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Fig. 10. Dispersion of the ratio of design and experimental life for criterion of maximum shear stresses
(3.5) with a probability factor of 95% depending on the multiaxiality factor: (a) mean value,

(b) median value

Fig. 11. Dispersion of the ratio of the design and experimental life for the criterion of maximum shear
and normal stresses in the critical plane determined by maximum shear stresses (3.6) with a probability

factor of 95% depending on the multiaxiality factor according to Tresca: (a) mean value,
(b) median value

5. Conclusions

Based on the presented research results, the proposed models and presented analysis, it was
found that:

• The new multiaxiality factor rBF proposed in the paper, which can characterize fatigue
tests for various combinations of bending and torsion, well characterizes multiaxiality.

• The proposed multiaxiality coefficient rBF is a generalization of various coefficients found
in the literature and can be selected depending on the criterion used.
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Fig. 12. Dispersion of the ratio of the design and experimental life for the criterion (maximum shear and
normal stresses in the critical plane determined by maximum shear stresses (3.6) with a probability
factor of 95% depending on the polyaxiality coefficient according to Gough-Pollard: (a) mean value,

(b) median value

• The multiaxiality factor rBF is 1 for cyclic bending and 2 for pure torsion. In the case of
a combination of bending and torsion, the value of this factor is in the range (1, 2).

• The analysis of the dispersion obtained in appropriate bands, depending on the criterion
used and the multiaxiality factor, shows that none of the analyzed multiaxial fatigue
criteria was consistent for all tested combinations of proportional cyclic bending with
torsion in the 95% confidental interval band. It does not matter whether the arithmetic
mean value or the median was taken as the mean value.

• In no case the Gough-Pollard criterion and the maximum normal stresses gave satisfactory
results.

• In the case of a small branch of shear stresses, the Huber-Mises criterion and the shear
stresses proved effective.

• In the case of a large share of shear stresses, the criterion of shear and normal stresses
determined by the maximum normal stress turned out to be effective.

• It was proposed to use a hybrid criterion: shear and shear and normal stresses determined
by the maximum normal stress dependent on the multiaxiality factor rBF .

• The fractographic analysis of selected samples for all four combinations of fatigue tests
showed that the occurrence of a fatigue center conditions the formation of the fatigue
zone, the source of which is the concentration of stresses or an inhomogeneous structure
of the material.

• The experimental failure planes are not coincident with the critical planes that are used
first to determine the equivalent stresses and, consequently, the design life.
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17. Slámečka K., Šesták P., Vojtek T., Kianicová M., Hornková J., Šandera P., Pok-
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19. Wächter M., Linn A., Wuthenow R., Esderts A., Gaier Ch., Kraft J., Fllgren C.,
Vormwald M., 2022, On scaled normal stresses in multiaxial fatigue and their exemplary appli-
cation to ductile cast iron, Applied Mechanics, 3, 259-295

20. Wang Q., Lade P.V., 2001, Shear banding in true triaxial tests and its effect on failure in sand,
Journal of Engineering Mechanics, 127, 754-761

21. Wang Z., Pan P., Zuo J., Gao Y., 2023, A generalized nonlinear three-dimensional failure
criterion based on fracture mechanics, Journal of Rock Mechanics and Geotechnical Engineering,
15, 630-640

Manuscript received August 29, 2024; accepted for print January 29, 2024


