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During cyclic loadings, metal alloys can undergo cyclic plasticity, for example, at notches.
The Chaboche kinematic hardening model provides a versatile and realistic description
of the material stress-strain behaviour under multiaxial cyclic loadings. In this work, the
global properties, extracted from stabilized cycles of strain-controlled tests and from a force-
-controlled test, are employed to calculate the parameters. Alternatively, the Bouc-Wen
model can provide a reliable representation of nonlinear hysteretic phenomena, and the clas-
sic nonlinear least squares approach is employed to tune its constants. The performances of
the two proposed techniques are compared, and a final discussion is provided.
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1. Introduction

The presence of notches in mechanical components can enhance the plastic behaviour, in partic-
ular, under cyclic loadings, thus an accurate description of the constitutive behaviour of metal
alloys is crucial for structural analysis. For example, in (Bertini et al., 2017; Santus et al.,
2023b) the use of a cyclic plastic constitutive law was motivated by the fact that, assuming
purely elastic behaviour, the presence of a severe V-notch combined with a high fatigue load
ratio R (R = σmin/σmax), resulted in very high and not meaningful values of stress near the
notch. The Chaboche kinematic hardening (CKH) model (Chaboche, 1986) is a powerful and
recognized model to describe the cyclic plastic behaviour of metals. Given that it is a kinematic
model, it accounts for the Bauschinger effect, which generally occurs during the cyclic plastic
behaviour of materials. This latter statement, together with the necessity to consider the plastic
behaviour of the material near the notches, justifies the widespread use of this model in fatigue
analyses such as in (Karolczuk et al., 2019; Hosseini and Seifi, 2020; Santus et al., 2022). The
CKH model is also implemented in Ansys finite element (FE) software.

Since its first introduction, the Chaboche model has undergone several proposals of modifi-
cation. Chaboche himself (Chaboche, 1991) suggested a modification to improve the ratcheting
prediction, which was subsequently validated by other researchers (Shafiqul and Tasnim, 2000).
Some changes to the classical CKH model were also proposed by (Dafalias et al., 2008), where the
parameters of backstress components were assumed variable during cyclic-loading to improve
the ratcheting rate prediction. Despite all the modifications of the Chaboche hardening rule,
the computation of Chaboche parameters is a challenging task even considering the classical
formulation of this model. Typically, only stabilized cycles extracted from strain-controlled tests
(SCTs) on plain specimens can be used to calculate the parameters, but force-controlled tests
(FCT) can also be used as in (Koo and Lee, 2007; Mahmoudi et al., 2011). Different techniques
can be employed to obtain the Chaboche parameters such as genetic algorithms (Badnava et al.,
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2012; Dvoršek et al., 2023), particle-swarm optimization (Li et al., 2018) and gradient-based op-
timization algorithm (Chaparro et al., 2008). The latter algorithms typically demand substantial
computational resources.

Alternatively, the Bouc-Wen (B-W) model (Bouc, 1967; Wen, 1976) is widely employed to
describe the hysteretic behaviour of mechanical systems such as piezo-actuated devices (Cai et
al., 2023) or wire rope isolators (Neri and Holzbauer, 2023). Various optimization algorithms
can be again employed to obtain B-W parameters such as the Levenberg-Marquardt algorithm
(Ni et al., 1998), multi-objective optimization algorithms (Ortiz et al., 2013) or particle-swarm
optimization (Charalampakis and Dimou, 2010).

In this research, a novel and physics-based algorithm to calculate the CKH model parameters
was employed. The global properties of stabilized cycles of the SCTs, such as the gradient at
extreme points of the cycles (EPOC), the hysteresis area (HA), the stress range (SR), the average
stress (AS), the average plastic strain (APS) and the plastic strain range (PSR) were employed
to compute the parameters. To provide an accurate description of the transient during the FCT,
the experimental ratcheting rate was also employed during determination of the parameters.
The Bouc-Wen model was also used to replicate the cyclic-plastic behaviour considering the
nonlinear hysteretic nature of cyclic plastic phenomena. However, the search of the parameters
required a different strategy due to different nature of model equations.

Section 2 is dedicated to show the experimental data and, in Section 3, the utilized procedure
to calculate the CKH parameters is explained along with the corresponding obtained results. In
Section 4, the Bouc-Wen model is introduced and the corresponding results to model the cyclic
plastic behaviour are shown. Finally, in Section 5, a discussion with a comparison between the
two engaged algorithms is provided.

2. Materials

The alloy investigated in this research is 42CrMo4 quenched and tempered steel. All tests were
performed on plain specimens (i.e. without notches) and under uniaxial loading. The mean values
of the yield strength and of the ultimate strength, obtained by a standard tensile test, were equal
to SY = 500MPa and SU = 700MPa, respectively. Three SCTs and one FCT were employed to
calculate the CKH parameters. Two SCTs were performed at Rε = −1, which means that the
minimum imposed total axial strain and the maximum imposed total axial strain were opposite,
while one was performed at Rε 6= −1. The FCT was conducted at R = −0.66, and R indicates
the ratio between the minimum and the maximum imposed axial stress. The SCTs conducted at
Rε = −1 are shown in Fig. 1, Cycle I (CI) and Cycle II (CII) indicate the stabilized cycles and
εp represents the axial plastic strain. The useful quantities extracted from the stabilised cycles
are also shown in Fig. 1, and their corresponding numerical values are reported in Table 1.

Table 1. Global properties extracted from CI and CII

∆εp ∆σ A dσ/dεp
[–] [MPa] [mJ/mm3] [GPa]

CI 1.43% 1030 12.0 5.81

CII 0.50% 918 3.61 20.2

The useful quantities extracted from the FCT in order to apply the procedure are shown in
Fig. 2. The ratcheting rate in Fig. 2b presents an initial linear trend, which is used to calculate the
Chaboche parameters. It is important to remark that the CKH model is not able to reproduce a
variable (increasing) ratcheting rate, unless combining the CKH model with damage mechanics
models.



Determination of Chaboche and Bouc-Wen parameters... 509

Fig. 1. Strain-controlled tests performed at Rε = −1, the transient cycles are indicated in grey, while
the stabilized cycles are marked in red as (a) CI and (b) CII

Fig. 2. (a) Few cycles of the force-controlled test involved in the research with significant quantities
highlighted; (b) experimental maximum plastic strain per cycle of the force-controlled test employed in

this research

From Fig. 2a some useful quantities need to be defined as the plastic strain amplitude (PSA)
per cycle and the plastic strain rate per cycle, which are formalized as

∆εap,N =
εmaxp,N+1 + ε

max
p,N

2
− εminp,N ∆εrp,N = ε

max
p,N+1 − ε

max
p,N (2.1)

These two quantities ∆εap,N and ∆ε
r
p,N are not generally constant. However, FE simulations by

involving the Chaboche model showed that, after the initial cycles, a constant ratcheting rate can
be obtained as described in (Kreethi et al., 2017; Zhang et al., 2020). Given these latter findings,
the two quantities of Eqs. (2.1) can be assumed constant in order to describe the ratcheting rate,
and they can be substituted with ∆εap and ∆ε

r
p in which there is no dependence on the number

of cycles N .

3. Computation of the CKH parameters

For a plain specimen loaded uniaxially, and employing the CKH model, the dependence between
the axial stress σ and the backstress components can be described by Eqs. (3.1). In these
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equations σL is the elastic limit (to be calculated), µ is a coefficient equal to 1 during positive
loading ramps, and to −1 during negative loading ramps and χ is the total backstress obtained
by the sum of backstress components

σ = µσL + χ χ =
n
∑

i=1

χi dχi = Cidεp − γiχi|dεp| (3.1)

The third of Eqs. (3.1) describes a differential equation which governs the dynamics of the back-
stress components. Ci and γi are the CKH model parameters to be tuned. In this work, the
classical CKH model with three backstress components was calibrated, and the fourth back-
stress was eventually added to improve the prediction of stabilized cycles of the SCTs near the
elastic limit zones. The qualitative trends of the three backstress components, according to our
procedure and for an ideal plastic strain controlled test with Rεp = 0.1, are reported in Fig. 3.
The first backstress has the most rapid dynamics (Fig. 3a), while the second backstress has much
slower dynamics than that of the first one (Fig. 3b). Finally, the third backstress was assumed
with a linear trend as shown in Fig. 3c that is just obtained by imposing γ3 = 0. It is important
to highlight that the first backstress leads to a nonzero value of the HA of the stabilized cycle,
while the second backstress leads to an almost null value of the HA of the stabilized cycle, which
can be approximated as null in the following analysis. The maximum and the minimum values
of the first and second backstress components, as concerns the stabilized cycles, are opposite as
highlighted in Figs. 3b and 3c. On the contrary, a nonzero mean stress remains for the linear
backstress component, despite the loading cycling.

Fig. 3. Trends of the three backstress components for ideal plastic SCT at Rεp = 0.1: (a) first backstress
component (fast), (b) second backstress component (slow) and (c) third backstress component (stable)

The CKH parameters to be determined were C1, γ1, C2, γ2, C3, χ3,0 and σL, and the
procedure to calculate them was presented in (Santus et al., 2023a) and is briefly recalled here.
Using the average point of the stabilized cycles extracted from the SCTs, the parameters C3
and χ3,0 were determined by combining CI and Cycle III (CIII), which indicates the stabilized
cycle of the strain-controlled test (SCT) performed at Rε 6= −1. Equations (3.2) provide a 2× 2
linear system which relates the AS σm = (σmax+σmin)/2 and the APS εp,m = (εp,max+εp,min)/2
of the stabilized cycles, which are also the experimental inputs. When the experimental SCT
performed at Rε 6= −1 is almost fully relaxed, the obtained value of C3 is much lower than the
values of C1 and C2

χ3,0 + C3εp,m,I = σm,I χ3,0 + C3εp,m,II = σm,II (3.2)

Once the parameters C3 and χ3,0 were calculated, Eqs. (3.3)-(3.5) were employed to calculate
the other parameters, except for γ2, which was calculated using the FCT. The experimental
inputs of Eqs. (3.3)-(3.5) were all extracted from the stabilized cycles of the SCTs performed
at Rε = −1 (CI and CII). Assuming the inequality given by γ2∆εp ≪ 1, which is meaningful
considering the low value of γ2 and which was employed in all the following equations, Eqs. (3.3)
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can be obtained to model the gradient at the EPOC in the σ − εpl plane. In Eqs. (3.3), the
PSR ∆εp = (εp,max− εp,min) and the gradient at the EPOC, dσ/dεp calculated at σ

stab
max, are the

experimental inputs, and the nonlinear system can be solved to obtain the expressions for C1
and C2 depending on γ1

C1
(

1− tanh
γ1∆εp,I
2

)

+ C2 = −C3 +
dσ

dεp

∣

∣

∣

∣

∣

σ=σstab,Imax

C1
(

1− tanh(
γ1∆εp,II
2

)

+ C2 = −C3 +
dσ

dεp

∣

∣

∣

∣

∣

σ=σstab,IImax

(3.3)

The expressions to calculate the values of the elastic limit for CI and CII were obtained as
functions depending on γ1 only, as shown in Eqs. (3.4). In these latter equations, the PSR and
the SR ∆σ = (σmax − σmin) are, in turn, the experimental inputs. The expressions of σL,I
and σL,II obtained from Eqs. (3.4) should lead to the same value considering that the elastic
limit is obviously a unique material property. Given that this assumption is not satisfied, in
general, an averaged function was defined as σL = (σL,I + σL,II)/2

σL,I =
∆σI
2
−
C1
γ1
tanh

γ1∆εp,I
2
−
C2 + C3
2

∆εp,I

σL,II =
∆σII
2
−
C1
γ1
tanh

γ1∆εp,II
2

−
C2 + C3
2

∆εp,II

(3.4)

The last property to be considered during the determination of the parameters is the HA of
the stabilized cycle, which is described for CI and CII , by A

mod
I and AmodII , respectively. It is

important to highlight that Eqs. (3.2)-(3.5) were obtained in (Santus et al., 2023a) by supposing
plastic SCTs, but they were extended to total SCTs without any loss of generality

AmodI = 2σL∆εp,I + 2
(C1
γ1
∆εp.I − 2

C1
γ21
tanh

γ1∆εp,I
2

)

AmodII = 2σL∆εp,II + 2
(C1
γ1
∆εp.II − 2

C1
γ21
tanh

γ1∆εp,II
2

)

(3.5)

Three error functions, all depending on γ1 only, were then defined:

• An error function to quantify the difference between the values obtained by the expression
of σL,I and those obtained by the expression of σL,II

Σ =
∣

∣

∣

σL,I − σL,II
σL

∣

∣

∣

• A relative error function about the HA of CI

ΛI =
AmodI −AI

AI

• A relative error function about the HA of CII

ΛII =
AmodII −AII

AII

The three introduced error functions were then included into a global error function, which is
presented in

ψ(γ1) = (1− α)Σ
2 + α(Λ2I + Λ

2
II) (3.6)
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The weight parameter α can balance between the importance of considering the relative error
of the HA and the error about the cycle amplitude. The parameter α is considered in the range
[0, 1]. The searched value of γ1 was just found by minimizing the global error function presented
in Eq. (3.6). A qualitative trend of the global error function ψ(γ1), obtained with α = 0.5, is
shown in Fig. 4. Once the value of γ1 was obtained, the parameters C1, C2 and σL were then
easily numerically calculated by following the expression proposed in Eqs. (3.3)-(3.5). The last
parameter to be calculated was γ2 by involving the FCT. Considering the CKH model with only
two nonlinear backstress components, the relationship between the AS, the PSA per cycle and
the plastic strain rate per cycle for a FCT on a plain specimen is provided by

σm =
2
∑

i=1

Ci
γi

sinh(γi∆ε
r
p/2)

sinh(γi∆εap)
(3.7)

Fig. 4. An example of the trend of the global error function ψ(γ1) with α = 0.5

Considering that, generally, γi∆ε
r
p ≪ 1 for each backstress component giving a small plastic

strain increment per cycle, Eq. (3.7) can be simplified into Eq. (3.8). This latter equation can
be easily inverted, and the value of γ2 can thus be obtained

σm =
2
∑

i=1

Ci
sinh(γi∆εap)

(3.8)

When the third linear backstress is also considered, the maximum value of this backstress com-
ponent evolves cycle per cycle according to

χmax3,i+1 = χ
max
3,i +C3∆ε

r
p (3.9)

This latter equation highlights that the only achievable equilibrium, when the third linear back-
stress component is considered, occurs for ∆εrp = 0, i.e. for a plastic shakedown. According to
this latter statement, the quantities ∆εap,N and ∆ε

r
p,N cannot be considered constant. The rela-

tionships shown by Eqs. (3.2), which were used for SCTs, are also valid to describe the average
point of the stabilized cycle of a FCT as remarked in (Santus, Grossi et al., 2023). Therefore,
the relationship to describe the APS of the stabilized cycle can be obtained by inverting Eqs.
(3.2), thus obtaining

εp,m =
σm − χ3,0

C3
(3.10)

This equation highlights that the APS of the stabilized cycle of a FCT is relatively high for low
values of C3, thus it is reached after a quite big number of cycles. Therefore, the PSA per cycle
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and the plastic strain rate per cycle can be considered constant without any loss of accuracy,
and Eq. (3.8) can be finally employed to obtain the value of γ2. In Fig. 5, some of the obtained
results are reported, more specifically, in Fig. 5a, the blue line predicts the mean points of the
stabilized cycles as described in Eqs. (3.2), and in Fig. 5b, differences between the experimental
stabilized cycles CI and CII and the corresponding modelled cycles are shown.

Fig. 5. (a) Average points of the stabilized cycles of the SCTs, (b) small differences between
experimental and reproduced CI and CII cycles by using the proposed procedure with three backstress

components

The ratcheting rate was also modelled, and the obtained results are reported in Fig. 6. The
comparison between the experimental and the modelled ratcheting rates is reported in Fig. 6a.
Clearly, this latter comparison was carried out in the region where the ratcheting rate could be
considered constant according to Fig. 2. In Fig. 6b, a comparison between the experimental and
the modelled FCT is shown in the same ratcheting cycle range.

Fig. 6. (a) Differences between experimental and modelled ratcheting rates in the constant ratcheting
rate region and (b) differences among experimental and modelled fully reproduced cycles of the

force-controlled test in the same constant ratcheting region

The fourth backstress, with an imposed high value of γ4, thus quickly saturating, was added
to improve the prediction of the stabilized cycles of the SCTs near the elastic limit region. The
searched ratio between C4 and γ4 was aimed at minimizing the further error function described
by

ϕ
(C4
γ4

)

= |σA − σB|
2 + |σC − σD|

2 (3.11)
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A graphical and qualitative explanation of the error function described by this latter equation
is provided in Fig. 7a. The superimposition of the fourth backstress, with a high value of γ4,
modifies Eqs. (3.4). In fact, the elastic limit can be modelled as σ′L = σL − C4/γ4, where
σ′L is the updated (and lower) value of the elastic limit provided that σL is the value of the
elastic limit previously obtained with the CKH model with three backstress components. The
updated expression of the elastic limit can be then substituted into Eqs. (3.5) leading to a clear
decrease in the value of the modelled HA. Finally, the comparisons between the experimental
and simulated stabilized cycles, considering the fourth backstress component and for CI , CII
and CIII , are reported in Fig. 7b. The numerical values of the obtained CKH parameters are
shown in Table 2.

Fig. 7. (a) Inaccuracy of the simulated stabilized cycle, which can be corrected by introducing the
fourth backstress component, (b) differences among experimental and modelled CI , CII and CIII

considering the additional fourth backstress component

Table 2. Obtained parameters for the CKH model with four backstress components

σL C1 γ1 C2 γ2 C3 γ3 χ3,0 C4 γ4
[MPa [MPa] [–] [MPa] [–] [MPa] [–] [MPa] [MPa] [–]

240 69200 426 2840 4.63 2670 0 −4.86 38200 5000

4. Use of the Bouc-Wen model to describe the cyclic-plastic behaviour

The B-W model is widely used to describe the hysteretic behaviour of mechanical systems, and
its general form is described as

Y = Y2(z + Y1) Y1 = k1x+ k2 sgn (x)x
2 + k3x

3 Y2 = b
cx

ż = ẋ
(

α+ δx− [γ + β sgn (ẋ) sgn (z)]zn
) (4.1)

In these equations, the variable x and its derivative with respect to time ẋ are the input variables,
while Y is the output variable. It is important to highlight, by considering the last expression
of Eqs. (4.1), that the time variable could be simplified, thus leading to a not time-dependent
expression. However, the time variable defines the sequence of the loading, i.e. the change of sign
of the input variable x, but the velocity of change of this variable does not affect the output of
the problem. As a consequence, in all performed searches of the Bouc-Wen model parameters
presented below, the time was never involved. In the last equation of Eqs. (4.1), the term δx
was added with respect to the original formulation of the model, as in (Neri and Holzabuer,
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2023). This added term aims to reproduce the possible asymmetry between the two EPOC.
In this research, the input variables were the axial plastic strain εp and its differential dεp,
while the output variable Y represented the axial stress. The parameters of the B-W model
were calculated by the Levenberg-Marquardt algorithm. This algorithm combines the steepest-
-descent and the Newton-Raphson methods, thus obtaining two different types of behaviour:
far from possible singularities, the algorithm tends to enhance Newton-Raphson to improve
the convergence rate, while, in order to improve its robustness, it tends to the steepest-descent
algorithm near eventual singularities to improve its robustness. This latter characteristic can then
balance between the aim of convergence and the robustness to the singularities. The Levenberg-
-Marquardt algorithm is fully implemented in the MATLAB software, which is widely employed
in optimization problems. The results of this algorithm are presented in Fig. 8. The parameters
were firstly calibrated by CI and validated by CII (Fig. 8a) and vice versa (Fig. 8b). The
parameters were also calculated for the FCT, as shown in Fig. 9. The obtained B-W parameters
are reported in Table 3.

Fig. 8. Differences among experimental and simulated CI and CII by involving the B-W model:
(a) CI employed to calculate the constants of the B-W model and CII utilized to validate the obtained
constants, (b) CII employed to calculate the constants of the B-W model and CI utilized to validate the

obtained constants. This latter approach introduces higher errors

Fig. 9. Comparison between the experimental and the predicted force-controlled test by using the
Bouc-Wen model
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Table 3. Calculated constants of the B-W model

Extracted α β γ
n

δ
c

k1 k2 k3
from [MPa] [MPa1−n] [MPa1−n] [MPa] [MPa] [MPa] [MPa]

CI 28.7 14.8 −13.7 0.860 −0.139 0 0.738 0 0

CII 40.6 37.7 −34.8 0.681 1.12 0 0 0 0

Force-
-controlled 15.5 0.068 0.036 1.290 −0.026 0 0.479 0 0
test

After critically considering the obtained values of the B-W parameters reported in Table 3, it
can be observed that this model collapses for all the investigated cases into equations (4.2), given
that from the optimization algorithm it was found out that k2 = k3 = c = 0, δ ≈ 0 and n ≈ 1.
A null value of k1 was identified only when the optimization was carried out on CII , while it
was considerably not null in the other cases. According to Eqs. (4.2), the output variable Y was
obtained by the sum of z and Y1, which resemble nonlinear and linear backstress components,
respectively. Therefore, under these circumstances, the B-W model collapsed into the CKH
model with two backstress components in which one was nonlinear and the other was linear. In
addition to this, the term γ + sgn (x) sgn (z), which is the equivalent of γ of in the CKH model,
varies during the loading due to the sign of x and sign of z, while γ in the CKH model remains
constant during the loadings

Y = z + Y1 Y1 = k1x Y2 = 1

dz = dx
(

α− [γ + β sgn (dx) sgn (z)]z
) (4.2)

5. Conclusions

In this research, the cyclic-plastic behaviour of plain specimens made of 42CrMo4 (Q+T) was
analyzed with the Chaboche kinematic hardening model and, for a comparative purpose, also
with the Bouc-Wen model. The main findings of this research are reported below:

• The employed novel procedure to identify the Chaboche kinematic hardening model pa-
rameters is based on the global properties, such as the gradient at the EPOC, the HA, the
AS, the SR, the PSR and the APS of the stabilized cycles obtained from the SCTs and on
the ratcheting rate obtained from the FCT.

• The parameters of the Chaboche kinematic hardening model with three backstress compo-
nents were tuned, and the fourth backstress was eventually added to improve the prediction
accuracy near the elastic limit regions. The procedure allowed one to obtain a good pre-
diction accuracy as highlighted in Fig. 5 for the Chaboche model with three backstress
components, in Fig. 6 for the ratcheting rate and in Fig. 7 for the Chaboche model with
four backstress components. In this latter figure, CIII was used as an independent validator
given that it was only employed to calculate the values of C3 and χ3,0. The utilized pro-
cedure makes use only of explicit formulas, and it avoids the use of complex optimization
algorithms.

• Given that cyclic plasticity introduces a hysteretic phenomenon, the Bouc-Wen model was
also engaged to reproduce the cyclic-plastic behaviour of the investigated steel. The Bouc-
-Wen parameters were tuned by CI and validated by CII and vice versa. For comparison,
the parameters were also calculated from the FCT. In Fig. 8, it is shown that the Bouc-
-Wen model can accurately reproduce the stabilized cycle from which the parameters were
obtained, but a lack of accuracy was observed when they were employed to reproduce
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the stabilized cycle of the SCT not accounted for calibration. More precisely, the model if
calibrated by CI and validated by CII , see Fig. 8a, provided a better prediction accuracy
than in, vice versa, Fig. 8b. This latter behaviour can be explained just considering that
the strain range of CI was wider than that of CII .

• By observing the obtained numerical results for the Bouc-Wen parameters reported in
Table 3, it can be noted that this model collapsed for the investigated data into some-
thing very similar to the Chaboche kinematic hardening model with nonlinear and lin-
ear backstress components. It is reasonable to obtain k2 = k3 = 0, given that these
two parameters can change the sign of concavity of the quantity Y during the ten-
sile loading phase or during the compressive loading phase, as shown in (Neri and
Holzbauer, 2023). This mentioned change of concavity makes no sense if contextualized
for cyclic-plastic phenomena where the concavity has a positive sign during the entire
compressive loading phase, and it has a negative sign during the entire tensile loading
phase. It is also reasonable to obtain a low value of δ, if compared to the obtained
value of α, given that generally there is not an evident asymmetry between the two
EPOC in the cyclic plastic behaviour. However, rather than the Chaboche, the Bouc-
-Wen model misses the equivalent of the term σL, which allows one to model the elastic
limit stress of the material.

• The Bouc-Wen model did not provide an accurate description of the ratcheting rate even if
the model parameters search were optimized in a force-controlled test, as shown in Fig. 9.
As explained in (Santus et al., 2023a), the relationship between the SR and the PSA per
cycle ∆εap in a force-controlled test is equal to the relationship between the SR and the
PSA for a stabilized cycle obtained from a SCT test (Eqs. (3.4)). During determination
of the Chaboche model parameters, according to our procedure, the SCTs are primarily
employed to calculate the parameters and then the FCT is employed to calculate just
the value of γ2 of the slightly nonlinear backstress component. Following this approach,
when calculating the value of γ2, the relationship between the SR and the PSA per cycle
is generally satisfied due to the previous tuning of the backstress with the most rapid
dynamics. Reconsidering the equivalent CKH model, if only a slightly nonlinear backstress
component is employed, Eq. (3.8) can be used to calculate the value of γ2, but Eqs. (3.4)
cannot be satisfied in general, since another nonlinear backstress component is required to
provide an accurate reproduction of the FCT.
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