
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

62, 3, pp. 561-571, Warsaw 2024
https://doi.org/10.15632/jtam-pl/188373

PREDICTING THE TRAJECTORY OF A SPINNING PING PONG BALL

DURING FLIGHT USING THREE-DIMENSIONAL COORDINATES

Xinyue Li
Nanjing Forestry University, Department of Physical Education, Nanjing, Jiangsu, China

e-mail: y3z411@yeah.net

Predicting the trajectory of a spinning ping pong ball can improve the effectiveness of a
ping pong robot in daily training. In this study, the Vicon system was used to capture
three-dimensional coordinates of the spinning ping pong ball during flight. Then, a long
short-term memory (LSTM) neural network algorithm was improved by combining an adap-
tive particle swarm optimization (APSO) algorithm and the attention mechanism, and the
APSO-LSTM-attention method was obtained for predicting the trajectory of the spinning
ping pong ball. It was found through experiments that the APSO-LSTM-attention method
had average displacement errors of 6.01mm, 11.26mm, and 8.97mm in the X , Y and Z
axes, respectively, and the final point displacement errors were 15.64mm, 17.93mm, and
11.26mm, respectively, indicating that the method outperformed methods such as recurrent
neural networks. The time required to predict the complete trajectory by the APSO-LSTM-
-attention method was also short, only 0.0186 s. The results demonstrate reliability of the
proposed method in predicting the trajectory of the spinning ping pong ball and its potential
application in practical scenarios.
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1. Introduction

Ping pong, the national game of China, is popular with the public. China has won many medals
in various international competitions. For athletes, burying their heads in training can often
lead to a bottleneck in technique. How to breakthrough their skills is quite concerned by ath-
letes. With the development of intelligent algorithms and artificial intelligence, ping pong ball
robots have become a new tool for daily training players (Gomez-Gonzalez et al., 2019). In the
field of ping pong, predicting the trajectory of a ball can help athletes practice better, which
effectively reduces manpower costs and improves training efficiency. In other fields, the predic-
tion of missile trajectories in military operations (Mir, 2018), aircraft trajectories (Huang et al.,
2021), trajectories of human body motion during transport driving (Bertugli et al., 2021), driv-
ing trajectories (Amirloo et al., 2022), and trajectories of athletes during sports (Hauri et al.,
2021) can greatly improve research efficiency. With the advancement of intelligent algorithms,
research on trajectory prediction has become increasingly widespread worldwide. Kalatian and
Farooq (2022) developed a new multi-input network based on long short-term memory (LSTM)
and fully connected dense layers for predicting future pedestrian trajectories. The experimental
results showed small prediction errors with this method. Xi et al. (2021) designed a prediction
model for a target maneuvering trajectory, introducing the Levenberg-Marquardt and improved
particle swarm optimization (IPSO) algorithms mixed with k-means for optimizing parame-
ters of the radial basis function. Simulation experiments demonstrated high accuracy of this
model. Mirmohammad et al. (2021) investigated trajectory prediction of soccer balls on a soccer
field, proposed a method based on the K-nearest neighbor regression and autoregressive model,
and proved high accuracy of the method through simulation and practical testing. Chen et al.
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(2021) developed an end-to-end fully convolutional coding and decoding attention model based
on convolutional LSTM, which was found to have excellent performance in predicting future
trajectories of pedestrians through experiments on five crowded video sequences. Song et al.
(2022) proposed a bidirectional gated recurrent unit with an attention mechanism for predic-
tion of tropical cyclone trajectories. Experimental results on the best path data of Northwest
Pacific tropical cyclones from 1988 to 2017 demonstrated excellent performance of this model
in predicting future trajectories. Chen et al. (2020) introduced a method that utilized a genetic
algorithm to optimize the number of neurons and weights in a backpropagation neural network
(BPNN) for ship trajectory prediction. The experimental findings indicated that this approach
significantly enhanced the accuracy of predictions. Song et al. (2022) proposed a radar track pre-
diction method based on the BPNN, compared its result with the Kalman filter track, and found
that this method was highly accurate to forecast tracks. Rajini Selvaraj and Gurusamy (2023)
integrated an independent recursive neural network, Harris Hawk optimization algorithm, and
one-dimensional convolutional neural network autoencoder to forecast tropical cyclone trajec-
tories. Comparison with the existing methods revealed that the method had higher prediction
accuracy and efficiency. The trajectory prediction of spinning ping pong balls is the research
focus of this paper. By collecting three-dimensional coordinates, a method based on an LSTM
neural network was developed, and its performance was analyzed through experiments. This
paper provides some theoretical support for promoting the development of intelligent robots,
which is conducive to promoting the performance of table tennis robots and their application in
practical sports training.

2. Collection of three-dimensional coordinates for a ping pong ball

This paper used a Vicon motion capture system with functions of motion capture and position
tracking to measure the trajectory of ping pong balls (Rodrigues et al., 2019; Goldfarb et al.,
2021). In a space formed by six cameras, data was captured by attaching reflective markers on
ping pong balls, and the Vicon system was utilized to collect and calculate the three-dimensional
coordinate data of the reflective markers in real time. The collected data was processed using
the accompanying Tracker software to obtain information such as the velocity of the ping pong
ball. The Vicon system consisted of the following components.

(1) Vicon cameras: These cameras had a resolution of 2432 × 3048 pixels and a maximum
capture frequency of 420 Hz. The capture range was 12m.

(2) PoE switch: It was used to connect with the host personal computer for data analysis.

(3) Host personal computer: The Tracker software was installed in the host personal computer
for data capture, processing, and visualization.

(4) Calibration bar: It has applied to calibrate the Vicon cameras and establish the origin of
the coordinate system.

(5) Other accessories: Cables to connect the cameras with the switch, reflective markers for
capturing coordinates, and so on.

In the experiment, the environment for collecting the three-dimensional coordinates of the
ping pong ball is illustrated in Fig. 1.
During the experiment, the researchers threw the ping pong ball, and the three-dimensional

coordinates of the spinning flight of the ping pong ball were collected in real-time using the Vicon
system. As the ping pong ball was a sphere with three symmetrical axes, six reflective markers
were symmetrically attached to the ping pong ball along its symmetrical axes as reference points.
The data was collected at a frequency of 180 Hz. The ping pong ball was thrown 500 times.
Each trajectory started from the release and ended when it hit the ground. To further expand
the dataset, the collected coordinates of each trajectory were translated and rotated, resulting
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Fig. 1. Three-dimensional coordinate collection environment for a ping pong ball

in a total of 1500 trajectory data. The original three-dimensional coordinates of the ping pong
ball are denoted by L(x, y, z). After translating each coordinate by L(x, y, z) units, the new
coordinates are obtained as follows

L′(x′, y′, z′) =
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Assuming that each coordinate rotates by θ◦ around the Z axis, the following coordinates are
obtained
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Some of the ping pong ball trajectory data is shown in Fig. 2 and Table 1.

Fig. 2. Ping pong ball rotational flight trajectory data
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Table 1. Example of ping pong ball trajectory data

Number
Three-dimensional
coordinates [mm]

1 (233.56, 137.88, 354.02)

2 (345.77, 131.25, 341.22)

3 (455.26, 127.36, 322.15)

4 (556.25, 121.26, 311.25)

5 (667.62, 115.33, 296.37)

6 (764.25, 111.25, 256.36)

7 (864.22, 107.36, 241.85)

8 (958.67, 103.22, 222.87)

9 (1065.25, 99.52, 195.74)

10 (1174.52, 97.28, 161.07)

3. Long short-term memory-based trajectory prediction method

3.1. LSTM algorithm

The trajectory of a spinning ping pong ball during flight is a sequence with temporal prop-
erties. LSTM has demonstrated excellent performance in predicting time series (Kumar and
Gomathi, 2022), and it has been extensively used in various domains such as weather forecast-
ing and stock prediction (Gruet et al., 2018). Therefore, in this study, LSTM is chosen to forecast
the trajectory of the spinning ping pong ball during flight.
LSTM predicts data through three gates. First, let σ be the sigmoid activation function.

Let W and b be the weight and bias of each gate. In the LSTM, the forgetting gate is used to
determine how much information in the unit state value ct−1 from the previous moment needs to
be forgotten. The input includes input information xt from the current moment and output ht−1

from the previous moment. The output is

ft = σ[Wf (h
t−1, xt) + bf ] (3.1)

The input gate is used to determine how much information can be input to the cell state.
It includes two parts. The first part is to calculate how much information needs to be updated.
The output is

it = σ[Wi(h
t−1, xt) + bi] (3.2)

The other part is to calculate a new unit state candidate value ct. The calculation formula is

ct = tanh[Wc(h
t−1, xt) + bc] (3.3)

where tanh stands for the tangent function. Finally, the unit state value ct is updated as

ct = ftc
t−1 + itct (3.4)

The output calculates how much information can be output first. The corresponding formula is

ot = σ[Wo(h
t−1, xt) + bo] (3.5)

Then, the tanh function is combined to control the ct value between −1 and 1. The final output
of the LSTM is obtained after multiplication

ht = ot tanh c
t (3.6)
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The learning process of LSTM is as follows:

• By performing forward calculations on the three gates, the output values of each neuron
are obtained.

• The error between the output of each LSTM unit and the actual value is calculated, and
all errors are summed up to obtain the total error.

• The weights are continuously updated through backward propagation of the error.

• It is checked whether the total error meets the accuracy requirement. If not, it returns to
step one and repeats the calculation until the total error satisfies the accuracy requirement.

3.2. Attention mechanism

To further improve the effectiveness of LSTM on trajectory prediction, the attention mech-
anism (Zheng et al., 2018) is added to better learn the input three-dimension coordinates of the
ping-pong ball. The computational procedure of the attention layer is as follows:
— the attention probability distribution value at the t-th time is calculated using ht, the output
of the LSTM

et = v tanh(wht + b) (3.7)

— the normalized weight coefficient at is calculated

at =
exp(et)
∑t
j=1 ej

(3.8)

— the output of attention at the t-th is calculated

st =
i
∑

t=1

atht (3.9)

After passing the attention layer, the predictive trajectory value of the ping pong ball output at
the t-th time is

yt = σ(Wost + bo) (3.10)

3.3. Parameter optimization methods

In LSTM, some parameters are usually determined based on empirical knowledge and require
extensive experimentation for validation. This can significantly increase the training time of the
algorithm. Therefore, this study employs an adaptive particle swarm optimization algorithm
(APSO) to optimize the following parameters of LSTM:

• Learning rate: A value that is too small increases the learning time of the network, while
a too large value may cause oscillations around the optimal value.

• Number of iterations: A value that is too small may prevent the network from achieving
the best performance, while a value that is too large increases the training time.

• Number of hidden layer nodes: A value that is too small may result in underfitting, while
a value that is too large may lead to overfitting.

The PSO algorithm is a method based on the foraging behavior of birds (Amiri et al., 2023).
It is known for its few parameters and high precision, and finds extensive applications in multi-
objective optimization, industrial system control, and other fields (Bidyanath et al., 2023).
Assuming a particle population X = (x1, x2, . . . , xn) in a D-dimensional space, with initial

positions X = (Xi1,Xi2, . . . ,XiD) and initial velocities V = (Vi1, Vi2, . . . , ViD), individual and
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global best positions are denoted by PiD and PgD, respectively. The PSO algorithm updates the
positions and velocities of particles to find the optimal solution. The formulas are as follows

V k+1id = wV kid + c1r1(P
k
id −X

k
id) + c2r2(P

k
gd −X

k
gd)

Xk+1id = X
k
id + V

k+1
id

(3.11)

where w stands for the inertia weight, c1 and c2 are learning factors, r1 and r2 are random
numbers in [0, 1], and k denotes the number of iterations.
The value of w will affect the optimization performance of the PSO algorithm. The APSO

algorithm makes adaptive improvement on it

w =











wmin −
(wmax − wmin)(f − fmin)

favg − fmin
f ¬ favg

wmax f > favg

(3.12)

where wmin and wmax represent the maximum and minimum values of w, f is the current particle
fitness value, favg and fmin are the average and minimum values of the current particle fitness.
Finally, the flow of the proposed APSO-LSTM-attention method for the ping pong ball

trajectory prediction is depicted in Fig. 3.

Fig. 3. The APSO-LSTM-attention trajectory prediction method

As shown in Fig. 3, the parameters of the LSTM are first optimized using the APSO al-
gorithm. The optimized parameters are then input to the LSTM to learn from the three-
dimensional coordinates of the ping pong ball. Next, the output of the LSTM serves as the
input for the attention layer. By integrating the output of the attention layer, the final predic-
tion results for the ping pong ball trajectory are obtained.

4. Results

4.1. Experimental setup

The experiment was conducted in aWindows 10 operating system with an Intel(R) Core(TM)
i7-8550U processor and 8 GB of memory. The Python language was used, and the network model
was built on the Kears framework based on TensorFlow. In the APSO-LSTM-attention model,
the population size for the APSO algorithm was set to 50, the number of iterations was 500, and
c1 = c2 = 1.5. The optimal values of the LSTM parameters obtained by the APSO algorithm
were as follows: learning rate 0.001, number of iterations 200, number of nodes in the hidden
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layer 64. The three-dimensional coordinates of the i-th ping pong ball trajectory at time t were
denoted by pit(xt, yt, zt). A complete trajectory was represented by (p1, p2, . . . , pk, . . . , pT ). To
predict the three-dimensional coordinates of the ping pong ball at time k + 1, the trajectory
from time 1 to k was used. Then, the trajectory from time 2 to k + 1 was used to predict the
coordinates at time k + 2. This process was repeated until the entire trajectory was predicted.
A total of 1500 trajectories were used in the experiment. The ratio of the training set, the
validation set and to and test set was 5:3:2. The data was predicted 100 times for each entry.
The final result was obtained by taking the average.
Let p′t(x

′

t, y
′

t, z
′

t) denote the predicted three-dimensional coordinates of the ping pong ball
at time t, and pt(xt, yt, zt) represents the actual values. Similarly, pf (xf , yf , zf ) represents the
predicted three-dimensional coordinates of the endpoint of a trajectory, and p′f (x

′

f , y
′

f , z
′

f ) rep-
resents the actual values. The evaluation of trajectory prediction effectiveness was based on the
following two indicators:

(1) Average displacement error (ADE), which refers to the error between the predicted result
of the three-dimensional coordinates of the ping pong ball and the actual values

ADE =
1

N

k
∑

t=1

√

(x′t − xt)
2 + (y′t − yt)

2 + (z′t − zt)
2 (4.1)

(2) Final point displacement error (FDE), which refers to the error between the predicted
results of the three-dimensional coordinates of the endpoint of every trajectory and the
actual values

FDE =
1

N

k
∑

t=1

√

(x′f − xf )
2 + (y′f − yf )

2 + (z′f − zf )
2 (4.2)

4.2. Result analysis

Taking the x-axis coordinate prediction of a trajectory with 20 sample points as an example,
the prediction performance of the following methods were compared:

• recurrent neural network (RNN) (Inoue et al., 2018),

• LSTM,

• LSTM-attention,

• APSO-LSTM-attention.

Table 2 presents the percentage error of different methods on the X-axis.
From Table 2, it can be observed that both RNN and LSTM algorithms exhibited relatively

large prediction errors on the X-axis, with maximum percentage errors around 3%. In contrast,
the LSTM-attention algorithm demonstrated percentage errors below 3% on the X-axis. This
confirmed the effectiveness of the attention mechanism. Furthermore, the proposed method
achieved a maximum percentage error of only 1.20% and a minimum of 0.03%, showcasing the
reliability of optimizing LSTM parameters with the APSO algorithm and its ability to achieve
superior results in trajectory prediction.
Taking the 20 sampling points in Table 3 as an example, the results of the proposed method

for predicting the three-dimensional coordinates of ping pong ball trajectories are shown in
Table 3.
From Table 3, it can be observed that the APSO-LSTM-attention method yielded small

errors when compared to the actual values. Among the predictions for the 20 sampling points,
the maximum error was found in predicting theX-axis coordinate of sample point 8, with a value
of 10.29mm. The errors for all other sampling points were below 10mm, which demonstrated
the reliability of this method in trajectory prediction.
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Table 2. Percentage error of different methods

Actual RNN LSTM LSTM-attention APSO-LSTM-
value algorithm algorithm algorithm -attention method

1 565.38 1.15% 3.08% 1.75% 0.61%

2 662.90 2.85% 3.00% 0.69% 1.13%

3 692.35 3.58% 0.88% 1.84% 0.32%

4 757.02 1.15% 3.54% 1.55% 0.21%

5 810.51 1.11% −3.18% 0.24% 1.20%

6 826.31 0.57% 1.61% 1.86% 0.86%

7 949.32 −0.16% 1.67% 2.05% 0.43%

8 978.51 3.40% 1.98% 1.98% 1.05%

9 1037.46 3.01% 2.14% 1.97% 0.40%

10 1096.57 2.74% 2.49% 1.25% 0.31%

11 1133.80 1.92% 0.22% 1.38% 0.73%

12 1168.62 −3.38% 1.95% −0.37% 0.70%

13 1182.20 1.55% 0.81% 0.08% 0.49%

14 1235.44 2.99% 1.42% 0.66% 0.18%

15 1311.63 1.12% −2.08% 1.35% 0.46%

16 1439.78 −1.24% 1.67% −1.13% 0.20%

17 1489.86 2.36% 0.90% 0.92% 0.15%

18 1521.97 0.73% 0.76% 1.25% 0.63%

19 1591.20 1.06% 1.55% 0.11% 0.12%

20 1625.60 1.76% 0.48% 0.70% 0.03%

Fig. 4. Comparison of ADE

The comparison results of the ADE among different methods on the test set are presented
in Fig. 4.

Firstly, in terms of the prediction in the X-axis, the RNN, LSTM, and LSTM-attention
algorithms had ADE values above 10mm, while the proposed method achieved an ADE of
6.01mm, reducing the errors by 16.35mm, 12.96mm, and 6.2mm, respectively, compared to
the RNN, LSTM, and LSTM-attention algorithms. All methods exhibited high ADE values on
the Y -axis. Among them, the RNN algorithm had an ADE of 29.87mm, while the proposed
method showed an ADE of 11.26mm, significantly lower than the other methods. Finally, in
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Table 3. The prediction results of the APSO-LSTM-attention method for three-dimensional
coordinates

Actual value Prediction result Error

1 (565.38, 120.33, 321.56) (568.85, 122.36, 323.55) (3.47, 2.03, 1.99)

2 (662.90, 116.34, 305.12) (670.38, 114.25, 303.56) (7.48,−2.09,−1.56)

3 (692.35, 112.36, 300.12) (694.58, 114.25, 298.25) (2.23, 1.89,−1.87)

4 (757.02, 108.26, 297.36) (758.64, 105.36, 295.62) (1.62,−2.90,−1.74)

5 (810.51, 106.25, 294.33) (820.24, 104.22, 291.36) (9.73,−2.03,−2.94)

6 (826.31, 97.36, 284.26) (833.39, 100.03, 281.33) (7.08, 2.67,−2.93)

7 (949.32, 95.36, 281.32) (953.40, 91.26, 278.65) (4.07,−4.10,−2.67)

8 (978.51, 93.26, 278.25) (988.81, 91.26, 275.33) (10.29,−2.00,−3.79)

9 (1037.46, 89.97, 275.12) (1041.58, 87.21, 271.33) (4.12,−2.76,−3.79)

10 (1096.57, 86.25, 271.36) (1100.00, 84.33, 268.24) (3.43,−1.92,−3.12)

11 (1133.80, 83.26, 268.45) (1142.03, 80.26, 264.33) (8.24,−3.00,−4.12)

12 (1168.62, 81.22, 264.26) (1176.79, 78.66, 261.36) (8.17,−2.56,−2.90)

13 (1182.20, 78.64, 261.25) (1187.98, 75.33, 258.34) (5.78,−3.31,−5.91)

14 (1235.44, 76.12, 257.26) (1237.67, 74.21, 255.35) (2.23,−1.91,−1.91)

15 (1311.63, 74.22, 254.36) (1317.68, 71.26, 251.33) (6.05,−2.96,−3.03)

16 (1439.78, 71.15, 251.13) (1442.68, 68.26, 253.27) (2.90,−2.89, 2.14)

17 (1489.86, 68.21, 248.61) (1492.07, 66.33, 245.28) (2.21,−1.88,−3.33)

18 (1521.97, 65.12, 245.36) (1531.56, 61.26, 247.36) (9.59,−3.86,−2.00)

19 (1591.20, 61.42, 241.33) (1593.18, 59.33, 238.64) (1.98,−2.09,−2.69)

20 (1625.60, 57.64, 237.52) (1626.06, 56.97, 235.61) (0.46,−0.67, 1.91)

the comparison in the Z-axis, the proposed method had an ADE of 8.97mm, reducing the
errors by 16.67mm, 12.36mm, and 4.7mm, respectively, compared to the RNN, LSTM, and
LSTM-attention algorithms.

Next, a comparison of the FDE among the different methods is presented in Fig. 5.

Fig. 5. Comparison of FDE

From Figure 5, it can be seen that the APSO-LSTM-attention method exhibited smaller
FDE compared to the RNN, LSTM, and LSTM-attention algorithms. This indicated that the
proposed method provided more accurate predictions of the three-dimensional coordinates of
the endpoint trajectory of the ping pong ball. This high accuracy is crucial for meeting the
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precision requirements in practical applications, such as in human-robot ping pong matches,
where accurate prediction of the three-dimensional coordinates is essential for higher training
efficiency.
Finally, the prediction time between the different methods was compared. The time required

for each method to predict a complete trajectory is presented in Fig. 6.

Fig. 6. Comparison of prediction time

From Fig. 6, it can be observed that the prediction time for all the methods was less than 1 s.
Comparatively, the RNN algorithm required the longest prediction time, with 0.0655 , while the
proposed method had the shortest prediction time of 0.186 s, which was 71.6% less than the RNN
algorithm, 60.92% less than the LSTM algorithm, and 20.51% less than the LSTM-attention
algorithm. These findings demonstrate that the proposed method does not only exhibit good
prediction accuracy but also provides real-time performance.

5. Conclusion

In this study, a trajectory prediction method, the APSO-LSTM-attention algorithm, was de-
signed based on the three-dimensional coordinates of a ping pong ball during rotational flight.
The results demonstrated that compared to methods like the RNN and LSTM algorithms, the
APSO-LSTM-attention algorithm achieved smaller prediction errors with ADEs of 6.01mm,
11.26mm, and 8.97mm in the X, Y and Z axes, respectively. The FDEs were also smaller, and
the time required to predict a complete trajectory was only 0.0186 s, indicating good accuracy
and efficiency. These findings support the further application of the proposed method in practical
scenarios.
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