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The Harmonic Balance Method (HBM) is one of the most often applied semi-analytic approx-
imation methods in nonlinear dynamics. In earlier publications, the two coauthors already
observed for the softening Duffing oscillator and other systems that especially low ansatz
order HBM solutions may contain larger errors for some solution branches, and called this
artifacts. In the present work, this problem is studied systematically with a new implemen-
tation of the method and applied again to the example of the softening Duffing oscillator.
In conjunction with a mathematical definition for HBM artifacts we discuss and present
possible a posteriori and a priori HBM error measures.
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1. Introduction

In 1918, German engineer Georg Duffing published his seminal work (Duffing, 1918) exploring the
dynamics of forced nonlinear oscillations. The considered system, nowadays called the Duffing
oscillator, is represented by the second-order differential equation

x′′(t) + δx′(t) + αx(t) + βx2(t) + γx3(t) = û cos(Ωt) (1.1)

This equation describes the displacement x of a system subjected to a linear damping force
(parameter δ) as well as linear (α), quadratic (β) and cubic (γ) restoring forces, along with
a harmonic driving force defined by its amplitude û and frequency Ω. The first and second
order time derivatives of x are denoted by x′ and x′′, respectively. Thereby and in the following,
all parameters and variables, including time, are considered to be dimensionless. Whilst Eq.
(1.1) may be interpreted as a nonlinear extension of the standard harmonic oscillator (recovered
when β = 0 and γ = 0), its dynamics is vastly more complex (Ueda, 1991). In the book by
Kovacic and Brennan (2011), many details about history, applications, solution methods and
phenomena of the Duffing equation can be found. Due to its simple form and the ability to
display a plethora of nonlinear phenomena like multiple coexisting solutions, subharmonic and
superharmonic components in the system response, bifurcations (Holmes and Rand, 1976) as
well as chaotic behavior for certain parameter choices (Novak and Frenlich, 1982), the Duffing
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oscillator rapidly became a model of significant theoretical and practical interest and was covered
in introductory textbooks on nonlinear dynamics, e.g. Nayfeh and Mook (1979) or Strogatz
(1994).

In the context of analyzing the Duffing oscillator, it is important to note that closed-form
solutions in general are not available. Therefore, it becomes necessary to apply alternative meth-
ods, such as numerical integration or approximate analytical techniques, to explore the system
behavior. While applying numerical integration, one starts from a given set of initial conditions
and may end up in an asymptotically stable stationary periodic solution, quasiperiodic, chaotic
or in general irregular behavior, or drifting to ±∞. Compared to this, semi-analytic approxima-
tion methods like Lindstedt-Poincaré perturbation analysis or the Harmonic Balance Method
(HBM) applied here, calculate stationary solutions without transients, while other methods like
Multiple (Time) Scales are also able to calculate transient behavior (Hagedorn, 1981). Nonlinear
systems may have multiple stationary periodic solutions (some of them being stable and some
unstable) for one excitation frequency, which is easily recognized, when methods are directly
applied to calculate them. To get the variety of multiple stationary solutions while applying
numerical integration, initial conditions have to be varied.

In scenarios where the focus is solely on stationary periodic solutions, the HBM can be
applied with great benefit. It was introduced in Urabe (1965) as an application of the Galerkin
method with harmonic ansatz functions, and nowadays is widely known under the name HBM.
In the HBM, a finite Fourier series representation is used to approximate the exact solution of
the nonlinear system under consideration.

In general, in the HBM, the accuracy of a solution can be improved by increasing the trun-
cation order of the series. Below certain truncation orders, the solution behavior may differ
largely from the real solutions. Some examples of such anomalous solutions produced by the
HBM at lower approximation orders are e.g. documented in previous articles of the coauthors
(von Wagner and Lentz, 2016, 2018, 2019) or in the book of Krack and Gross (2019). Corre-
sponding error estimates were first derived by Urabe (1965) and the associated error bounds
were later improved upon by Garćıa-Saldaña and Gasull (2013), Kogelbauer Brennan (2021) and
Woiwode and Krack (2023). For further considerations, we refer to the book by Krack and Gross
(2019).

As considered e.g. in von Wagner and Lentz (2016, 2018), applying the HBM to the soft-
ening Duffing oscillator results in the occurence of high amplitude solutions for low excitation
frequencies with the shape of a “nose” with large residua for small ansatz orders. The increasing
of the ansatz order results in a significant change of the shape and frequency range of occurence
of these solutions. This was called artifact behavior by the authors but a comprehensive inves-
tigation of a rigorous definition and possible critera of their a priori or a posteriori detection is
yet missing. Therefore, in the present work this problem is studied systematically by discussing
error measures for the error in the HBM. Hereby, the object of study is again the softening
Duffing oscillator where we restrict the problem to one with solutions with a vanishing mean
value with the consequence of a vanishing constant, and even terms in the HBM ansatz. As
shown in von Wagner and Lentz (2016, 2018) solutions with the non-vanishing mean value exist
for the softening Duffing oscillator but are inconspicuous with respect to artifacts. Instead, we
consider mainly the already mentioned “nose” shaped solution branch.

The paper is structured as follows. In Section 2, we provide a description of the HBM and its
implementation performed by the first author. A test case is considered showing the problems of
HBM as discussed in the following. In Section 3, a definition for the artifact solution is provided
and then error measures based on numerical and geometrical considerations are introduced, and
in Section 4 applied to the considered case of the softening Duffing oscillator. The paper ends
with corresponding conclusions in Section 5.
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2. Harmonic Balance Method (HBM)

In this Section, we present the theoretical basics required to obtain the frequency response of
the softening Duffing system (1.1) by means of the HBM and numerical continuation methods.
Let a range of excitation frequencies Ω ∈ F := [Ω,Ω], the system parameters δ, α, β, γ and the
harmonic excitation û cos(Ωt) be given. We denote the system frequency response as the set

Γ (F) :=
{
(Ω, ‖x‖) ∈ R

2 | x(t) = x(t+ T ) solves (1.1), Ω ∈ F

}
(2.1)

with the period T = 2π/Ω and a later to be specified solution amplitude ‖x‖. Computing an
approximation of (2.1) requires to find approximations to x by means of the HBM over samples
of the frequency range F.

2.1. Fundamentals

The HBM is a mean weighted residual method that comprises of two approximation steps. As
preliminaries, consider a time domain T := [0, T ], an ansatz or approximation order n ∈ N as
well as a real Fourier space

Fn(T, Ω) :=
{
xn : T→ R | xn(t) = c0φ0(t) +

n∑

j=1

(
c2j−1φ2j−1(t) + c2jφ2j(t)

)}
(2.2)

with the basis functions φ0(t) = 1, φ2j−1(t) = cos(jΩt) and φ2j(t) = sin(jΩt), j = 1, . . . , n.
For convenience, we define the vector of Fourier coefficients cn := [cj ]

2n
j=0 ∈ R

2n+1 which also
allows to identify xn ∈ Fn with cn ∈ R

2n+1. Finally, consider the residual function of the Duffing
system (1.1)

r(t, x) = x′′(t) + δx′(t) + αx(t) + βx2(t) + γx3(t)− û cos(Ωt) = 0 (2.3)

The first step of the HBM is inserting the ansatz x ≈ xn ∈ Fn into the Duffing residual from
which we obtain r(t, x) ≈ r(t, xn) = r(t, cn). Since residual (2.3) is a third-degree polynomial in
the trigonometric polynomial xn, and the excitation u ∈ F1 is a simple harmonic, the convolution
theorem yields that r(t, cn) can be expressed as a truncated Fourier series of the order 3n, i.e.

r(t, cn) = Rn(t, cn) := R0(cn) +
3n∑

j=1

(
R2j−1(cn) cos(jΩt) +R2j(cn) sin(jΩt)

)
(2.4)

The second approximation step of the HBM requires that the first 2n+ 1 Fourier coefficients of
(2.4) vanish, i.e. Ri(cn) = 0. This is imposed by the 2n+ 1 conditions

〈Rn(·, cn)φi〉Fn =
1

T

T∫

0

Rn(t, cn)φi(t) dt = 0 ∀i = 0, 1, . . . , 2n (2.5)

In fact, by the definition of Fourier coefficients the equality Ri(cn) = 〈Rn(·, cn)φi〉Fn = 0 holds
for all i = 0, 1, . . . , 2n (Herman 2016). The conditions (2.5) basically ensure that the error
introduced in the residual only comprises of higher order harmonics since for all t ∈ T it holds
that

Rn(t, cn) = R0(cn) +
n∑

j=1

(
R2j−1(cn) cos(jΩt) +R2j(cn) sin(jΩt)

)

︸ ︷︷ ︸
=0

+
3n∑

j=n+1

(
R2j−1(cn) cos(jΩt) +R2j(cn) sin(jΩt)

)
(2.6)



438 H. Dänschel et al.

The 2n+ 1 equations (2.5) define the algebraic equation system

Fn(cn, Ω) := [Rj(cn, Ω)]
2n
j=0 = 0 (2.7)

that can be solved for cn. In order to compute the frequency response Γ (F), we explicitly
include Ω as a parameter in (2.7). Finally, if cn solves (2.7) we refer to cn, xn and Rn as HBM
coefficient vector, HBM solution and HBM residual, respectively.

2.2. Solvers

In the following, we discuss how to compute the frequency response Γ (F) by solving the
parameter-dependent algebraic system (2.7).

2.2.1. Determining Fourier coefficients

Solving the algebraic system (2.7) in order to obtain the Fourier coefficients cn one requires
to evaluate Fn for which the integrals (2.5) must be determined. Since the Duffing nonlinearities
are polynomials in x, the evaluation can be done by obtaining the integral closed form as well as
via the discrete convolution or discrete Fourier transform (Krack and Gross, 2019; Woiwode et
al., 2020). However, since we also want to investigate the influence of the algebraic structure on
the solution artifacts we opted for an equivalent approach of obtaining an algebraic expression of
the truncated Fourier series of the residual (2.4) in the Fourier coefficients cn. The algorithmic
implementation used in this work is a pure Python implementation without the use of computer
algebra tools. A publication about the associated theoretical details as well as the source code
is planned.

2.2.2. Newton’s method

The next step is to solve (2.7). Let Ω ∈ F be fixed, an approximation order n ∈ N be given
and assume the Jacobian of F w.r.t. cn is regular. Then, for any initial guess c

0
n ∈ R

2n+1 “close
enough” to cn, the algebraic system (2.7) can be solved iteratively by Newton’s method for an
approximated solution cn ≈ c

k
n ∈ R

2n+1 subject to a prescribed iteration error tolerance ε > 0
s.t. for some k ∈ N, we have ‖ckn − c

k−1
n ‖ ¬ ε (Deuflhard, 2011).

2.2.3. Displaying the results

For error measures and visualization of the HBM results, the amplitude of xn ↔ cn must
be measured. One option of computing the amplitude of xn is the maximum-norm ‖xn(cn)‖∞.
However, in order to compute this in a robust manner one needs to compute the roots of x′n.
Determination of the derivative x′n is trivial. The roots of the trigonometric polynomial x

′
n can

be interpreted as the eigenvalues of the associated Frobenius companion matrix (Edelman and
Murakami, 1995). However, obtaining these eigenvalues is accompanied by typical numerical
challenges of this type of problem (De Terán et al., 2013). Instead, we use the readily available
Euclidean norm of the HBM coefficient vector ‖cn‖2 to measure the system’s amplitude.

2.2.4. Numerical continuation

At this point, we want to discuss how to compute an approximation of the frequency re-
sponse Γ (F). In principal, in analogy to (2.1) we could formulate the problem of computing an
approximation to Γ (F) by the set

{
(Ω, ‖xn(cn)‖∞) ∈ R

2 | xn(cn, t) = xn(cn, t+ T ) solves (1.1), T > 0, Ω ∈ F

}
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However, the implication

cn solves (2.7) ⇒ xn(cn, t) = xn(cn, t+ T ) solves (1.1) for T > 0

and the choice of ‖cn‖2 over ‖xn(cn)‖∞ as an amplitude measure suggests the alternative prob-
lem: Compute an approximation of Γ (F) by an approximated frequency response that is the
set

Γn(F) :=
{
(Ω, ‖cn‖2) ∈ R

2 | cn solves (2.7), Ω ∈ F

}
(2.8)

The nonlinearity of the Duffing system allows for multiple solution branches of the (approxi-
mated) frequency response Bin ⊂ Γn(F), i = 1, 2, . . ., where Γn(F) = {B

1
n, B

2
n, . . .}. With this,

computing Γn(F) reduces to finding each solution branch B
i
n individually. In advanced imple-

mentations of the HBM this is typically done by numerical continuation methods (Krack and
Gross, 2019; Woiwode et al., 2020). The basic idea behind these methods is simple: Fix the
parameter Ω, solve Fn(cn, Ω) = 0 for cn via Newton’s method by starting at c

0
n, compute the

increment Ω ← Ω + ∆Ω for an “optimal” choice of ∆Ω, perform the update cn ← c
0
n and

repeat. Here, determining an “optimal” choice of ∆Ω depends on F as well as a prescribed error
tolerance ε. Additionally, the solvability of (2.7) is only given if the Jacobian of F w.r.t. cn is
regular. Both topics are addressed by the specific algorithmic implementation of a numerical
continuation method. A popular choice for these methods is the pseudo-arclength method since
it can follow turning points of the solution branch and it has a robust implementation in the
code AUTO (Deuflhard, 2011). However, it relies on empirically-based control of the stepsize ∆Ω
which happened to fail on several of the authors’ examples. A noteworthy alternative is the
asymptotic numerical method (ANM). Woiwode et al. (2020) provide a thorough comparison of
the pseudo-arclength method and the ANM. However, in order to avoid the drawbacks of the
pseudo-arclength method we opted to use the global quasi-Gauss-Newton method (GQGNM)
as proposed by Deuflhard et al. (1987). Similar to the pseudo-arclength method, the GQGNM
constitutes a predictor-corrector scheme in which, first, starting at the current point, a predic-
tion step is made, scaled by a stepsize s, in the direction of the solution branch tangent. The
thereby introduced error is then corrected via a quasi-Gauss-Newton iteration s.t. a prescribed
iteration tolerance ε > 0 is fulfilled. The GQGNM employs an error estimate-based control of
the stepsize s and can deal with turning points. To different capabilities it is implemented in
the codes ALCON1 and ALCON2 (Deuflhard et al., 1987; Deuflhard, 2011) in Fortran. As to the
best knowledge of the authors, a Python version of said codes is not publicly available. However,
since in this work the evaluation of F is implemented in a Python routine, we implemented our
own version of ALCON1 in Python of which the source code is planned to be published as well.

2.2.5. Generating initial guesses

As it is often the case in nonlinear dynamics, the task of finding “good” initial guesses for
Newton’s method in order to find all system frequency responses can be challenging. Fortunately,
the Duffing system (1.1) allows for a systematic generation of certain initial guesses c0n ∈ R

2n+1

for arbitrary approximation orders n in order to compute certain branches of its frequency
response. The required approach involves two steps:

• Let n = 1 and determine all solutions x1,i, i = 1, 2, 3, analytically at Ω = 0. From this,
obtain the associated HBM vectors c1,i. Then, starting at c1,i for each i = 1, 2, 3 compute
the associated branch B1,i ⊂ Γ1(F) by the above introduced global quasi-Gauss-Newton
method.

• Next, increase the ansatz order to N = n +∆n. Then compute cN,i at Ω = 0 by solving

(2.7) via Newton’s method and take c0N,i =
[
cTn,i, 0

T
]T
∈ R

2N+1 as the initial guess for each



440 H. Dänschel et al.

i = 1, 2, 3. Then compute the branches BN,i ⊂ ΓN (F) accordingly. In fact, since two of the
three solutions cn,i are elements of the same branch, only two instead of three solution
branches have to be computed.

• Repeat the previous step until each branch Bi is “sufficiently well” approximated by the
approximated branch Bn,i for some n.

Remark. The approach of computing the approximated frequency responses Γn as described
above appears to be quite robust. In particular, the employed GQGNM required barely
any tweaks of the user-adjustable parameters. However, the approach of generating initial
values as described above does not yield all existing frequency responses of the Duffing
system (1.1), cf, von Wagner and Lentz (2016). It only allows for a robust computation
of the solution types already occurring for n = 1. In order to not over-complicate the
problem, we did not endeavor to compute additonal solutions.

2.3. Test case and reference solution

Fig. 1. Frequency response of the Duffing equation (1.1) with the test case parameters (2.9) for several
approximation orders n as obtained by the solvers described in Section 2.2. The system exhibits two
types of solution branches: A branch with small- respectively medium (“standard”) and a branch with
large-amplitude (“nose”) responses. The nose solutions differ strongly in frequency range and amplitude
for different ansatz orders n: (a) fequency response Γn(F) for F = [0, 1.6], (b) “nose” branch of

frequency response Γn([0, 0.6])

We consider the parameter set

δ = 2Dω = 0.4 α = ω2 = 1 β = 0

γ = −0.4 û = 0.3 Ω ∈ [0, 1.6]
(2.9)

with D = 0.2 and ω = 1 as the test case of the Duffing system (1.1) for this study. As already
mentioned in the introduction, all parameters are considered to be dimensionless which also
holds for the displacement x and time t. Solver-wise we used an iteration error tolerance of
ε = 10−14 throughout this study. Corresponding results are shown in Fig. 1 for different ansatz
orders n. The system exhibits the — for the softening case — well known types of solution
branches: One small-, respectively medium- and two large-amplitude responses which we refer to
as “standard” and “nose” branches or responses. For the resonance peak of the standard response
at Ω ≈ ω = 1, there are for the parameter set (2.9) no multiple solutions due to moderate
damping. The standard response covers the entire considered frequency range F = [0, 1.6] with
amplitudes in the range of ‖cn‖2 ∈ [0.19, 0.87]. Our special focus in the following is on the
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nose responses, however. These nose responses cover only the frequency range from zero to the
characteristic turning point marked by +, which differs largely for different ansatz orders n.
This behavior has been denoted as “artifacts” by the second and third author of the present
paper and investigated in several papers, e.g. von Wagner and Lentz (2016, 2018, 2019). In
these prior publications certain solutions are considered as artifacts that exceed a maximum
amplitude threshold w.r.t. the neglected higher order terms of the HBM method, i.e., in the
Duffing equation, the terms with harmonics of order n+ 1 to 3n.

Fig. 2. Convergence of the amplitude ‖ctp‖ and excitation frequency Ωtp of the turning point

In contrast, in the present paper we consider new suitable aspects for defining and identifying
artifact solutions as presented in Sections 3 and 4. Thereby, several numerical and geometrical
measures, e.g. the position of the turning point of the nose response and its convergence w.r.t.
the ansatz order n of the associated HBM solution x, are investigated. As will be seen, not all of
the examined measures are useful with respect to the task of determining artifacts. As the first
attempt, we consider in Fig. 2a and 2b for our test case the convergence of the nose solutions
turning point denoted as (Ωtp, ‖ctp‖2). It can be observed that both the solution amplitude
‖ctp,n‖2 and the excitation frequency Ωtp,n appear to converge for increasing ansatz orders n.
Nevertheless, as can be observed in Fig. 1, convergence of the turning point does not necessarily
imply convergence of all other solution points of the nose branch, where in general larger ansatz
orders are necessary. The iteration error of the ansatz orders n = 75, 91 yields

∣∣‖ctp,91‖2 −
‖ctp,75‖2| ≈ 6.67 · 10

−7 and |Ωtp,91 − Ωtp,75| ≈ 2.48 · 10
−4 which we deem to be small. Hence

we assume that the HBM solution x91 converged sufficiently close to the exact solution x of
(1.1) at least at the turning point. Although for n = 19 the iteration error at the turning point
is similiar to the one for n = 91, sufficient convergence is not yet achieved in a large part of
the frequency range of the nose branch. This is why we consider x91 over a potential lower
order solution as the reference solution with the associated ansatz order n = 91 of the test
case (2.9).

Next, in Fig. 3, the frequency response of the ansatz order n = 1 is compared to the reference
response of the ansatz order n = 91 in more detail. The frequency values of the turning points
of the nose branches for n = 91 and n = 1 are found to be approximately Ωtp,91 = 0.21 and
Ωtp,1 = 0.47, respectively. The two turning points at Ωtp,91 and Ωtp,1 can be considered to
divide the entire frequency range into the sub-intervals FA := [0, Ωtp,91], FB := [Ωtp,91, Ωtp,1]
and FC := [Ωtp,1, 1.6] s.t. F = FA ∪ FB ∪ FC . Now note that the reference nose response only
covers FA but the lower order nose response of n = 1 covers FA and also FB . Apparently, the
solutions of the response of n = 1 for all frequencies in FB “vanish” upon an increase of the
ansatz order to n = 91. From this, we conclude that the solution of the frequency response of
n = 1 in the frequency range FB are artifact solutions as defined in more detail in Section 3.
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Fig. 3. Approximated frequency response Γn(Ω) for ansatz orders n = 1, 91 of the case (2.9). Solutions
in the range FB are denoted as artifact solutions, cf. Definition 1 in Section 3

3. Error measures

As can be seen from the results in Fig. 1 and 3, HBM solutions of low ansatz orders exhibit,
especially for the nose solutions, a deviation from the reference solution (n = 91). This deviation
is considered to be an error due to HBM and is divided into two types of errors. The first refers
to the amplitude error which we refer to as quantitative error which can be measured, e.g., by
the convergence error ‖cn− cnref ‖. The second error type is the artifact behavior which we refer
to as qualitative error. In order to be able to measure the qualitative error, a mathematical
definition of the artifact behavior is required. The definition is presented and discussed in the
following. After that we discuss potential qualitative error measures based on the residual as
well as algebraic, geometric and solver-related properties.

3.1. Artifact definition

In the following, we provide and discuss a mathematical definition of the artifact behavior
which we base on the turning points of the solution branches. We start by providing the required
mathematical lingua. Let n, nref ∈ N be two HBM ansatz orders with n < nref as well as
Bn ⊂ Γn(F) and Bnref ⊂ Γn(F) two computed solution branches, respectively. Again, we refer to
the solutions of the ansatz order nref as reference (solutions). Recall that Bn = {P1, . . . , PN} and
Bnref = {Q1, . . . , PM} are ordered point sets with points Pi = (Ω

i
n, (‖cn‖2)

i) ∈ R
2, i = 1, . . . , N ,

and Qj = (Ω
j
nref
, (‖cnref ‖2)

j) ∈ R
2, j = 1, . . . ,M , where N,M ∈ N are the number of points

of the solution branches Bn and Bnref , respectively. We assume that Bn and Bnref each exhibit
a turning point denoted as Ptp ∈ Bn and Qtp ∈ Bnref and we denote the associated excitation
frequency as Ωn,tp and Ωnref ,tp, respectively. In order to compare the similarity of the turning
points Ptp and Qtp, we consider their local curvature w.r.t. the frequency component. For this, let
X be a turning point on a curve B ∈ R

2 and let Bs(X) ⊂ B denote an arclength-parameterized
neighborhood1 of B at X with arclength s > 0. With this, we define the signed normalized
curvature w.r.t. Ω at X as

1That is, all points Y that lie on B and that are closer to X than the arclength s > 0.
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κΩ(X) :=

{
+1 ∀Y ∈ Bs(X) : (Y )Ω > (X)Ω

−1 ∀Y ∈ Bs(X) : (Y )Ω < (X)Ω
(3.1)

where (X)Ω , (Y )Ω denote the Ω-component of X,Y ∈ B, respectively. In (3.1), κΩ(X) = ±1
basically means that at the turning point X the curve B “opens” to the right (resp. left). With
this, we can present the following

Definition 1 (Artifact solution). Let two solution branches Bn and Bnref be given. Assume they
each exhibit a single turning point Ptp ∈ Bn and Qtp ∈ Bnref . If κ(Ptp) = κ(Qtp) = ±1
and Ωnref ,tp ≷ Ωn,tp then all points P ∈ Bn with frequency components Ω in the frequency
range [Ωn,tp, Ωnref ,tp] (respectively [Ωnref ,tp, Ωn,tp]) are called artifact solutions.

Two possible situations for artifact solutions to occur as given in Definition 1 are depicted
in Fig. 4a and 4b.

Fig. 4. Three representative cases of artifact solutions ( ) on solution branches as identified by
applying Definition 1: (a) and (b) single turning point per solution branch Bn and Bnref ; (c) multiple
turning points per solution branch Bn and Bnref , however artifact solutions are only existent between

the turning points P2,tp and Q2,tp

In case both solution branches Bn and Bnref exhibit multiple turning points then the above
definition may be applied in succession according to the following scheme:

1. Assume that Bn and Bnref exhibit the same number H ∈ N of turning points denoted
as Ptp,1, . . . , Ptp,H ∈ Bn and Qtp,1, . . . , Qtp,H ∈ Bnref , respectively. Further assume that
the aforementioned turning points ordering coincides with the ordering of the points of
Bn and Bnref , i.e. Bn = {. . . , Ptp,1, . . . , Ptp,H , . . .} and Bnref = {. . . , Qtp,1, . . . , Qtp,H , . . .},
respectively.

2. If now κ(Ptp,i) = κ(Qtp,i) for all i = 1, . . . ,H, then Definition 1 can be applied to each
pair of the turning point (Ptp,i, Qtp,i) successively in order to identify artifact solutions.

Figure 4c shows an exemplary case of two turning points per solution branch where the above
scheme can be applied. Although there are two turning points per branch, there is only a
single frequency region in which solution artifacts occur. For an algorithmic detection of artifact
solutions based on Definition 1, a robust detection of turning points is critical. This can be
done within the employed GQGNM by means of a readily available cubic Hermite interpolation
(Deuflhard et al., 1987). An alternative approach of robust computation of the turning points
would be available upon implementation of the ANM (Woiwode et al., 2020).

The objective in the following is to consider a number of error measures in general and
at its best to find a way to distinguish between artifacts and other types of errors, and to
avoid both of them. To this end, various methods of measuring the error of an HBM solution
will be introduced and applied to the test case described in Subsection 2.3. Of course, other
classifications of errors are possible, e.g. errors due to the HBM itself, comparing the HBM
solution with the exact solution and numerical errors while applying the HBM. These errors
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have been studied in detail in e.g. Urabe (1965), Kogelbauer and Breunung (2021), Garćıa-
-Saldaña and Gasull (2013), Woiwode and Krack (2023). These studies do not investigate the
qualitative error type, i.e. the artifact behavior described above is not considered. However we
want to point out that in the work of Woiwode and Krack (2023), the suggested n-adaptive error
measure appears to us to be a potential tool of detecting artifacts. Within their approach of a
numerical continuation method, the HBM ansatz order is adaptively refined or coarsened based
on an error measure. The adaptive switching of the ansatz order could possibly speed up the
detection of turning points which is a mandatory step to successfully apply the solution artifact
Definition 1. To our understanding, this approach could, in principle, avoid the computation
of possible artifact solutions, although a confirmation of this hypothesis would require further
research.

3.2. Residual

An obvious way to measure the error of a HBM solution is to consider the terms neglected
in equation (2.6), which are evaluated in the following. As can be inferred from the definition of
this expression, the value of this residual must be zero if the HBM solution exactly satisfies the
underlying differential equation. The residual thus represents a measure of the non-fulfillment
of the differential equation, but does not provide direct information about the extent to which
the HBM solution deviates from the exact solution. Nevertheless, it has been shown in previous
works, e.g. Ferri and Leamy (2009), von Wagner and Lentz (2018, 2019), Lentz and von Wagner
(2020), that the residual can be used to determine whether the approximation order of an HBM
solution needs to be further increased to achieve the HBM solution that accurately represents
the exact solution. A drawback of this procedure, as shown e.g. in von Wagner and Lentz (2018,
2019), Lentz and von Wagner (2020) is that the residual is not suitable for distinguishing between
the quantitative and qualitative error type. A high value merely indicates that the examined
HBM solution has a high error. Therefore, the solution might be an artifact, or it could be
a solution that exists but provides a poor approximation of the exact amplitude due to an
insufficient order of approximation. Therefore, as the residual was considered in several earlier
publications of the authors, it is not further considered in the subsequent analysis in the present
paper.

3.3. Algebraic measures

Another approach to investigate the error associated with a solution involves a direct exami-
nation of the underlying algebraic system of equations. The approach consists of searching within
the algebraic system equations Fn for indications that finding a solution will be problematic.
If such indications are present, it is reasonable to assume that the solutions found are flawed.
Therefore, various methods will be enumerated in the following, which can be used to estimate
the quality of a solution based on the solved system of equations. Since the properties of the
algebraic equation system are largely determined by the linear component, the Jacobian matrix
— in short Jacobian — at the solution point is used for this purpose. Since the equation system
can be considered as a function of the coefficients or the excitation frequency, the following three
Jacobian can be defined

Jc,n(c, Ω) := DcFn(c, Ω) JΩ,n(c, Ω) := DΩFn(c, Ω)

Jn(c, Ω) :=
[
Jc,n(c, Ω), JΩ,n(c, Ω)

]

Here, Jc,n(c, Ω) denotes the Jacobian of Fn w.r.t. c, JΩ,n(c, Ω) denotes the Jacobian of Fn w.r.t.
Ω and Jn(c, Ω) denotes the full Jacobian of Fn.
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3.3.1. Condition number

Before starting to assess the qualitative error of solutions, we investigate the ill- or well-
-posedness of the problem of solving the system Fn(cn, Ω) = 0 in the scope of Newton’s method
as required in the solvers described in Section 2.2. For A = Jc,n(c, Ω) or A = Jn(c, Ω), this is
measured by the condition number of A

cond2(A) := ‖A‖2‖A
−1‖2 (3.2)

where ‖ · ‖2 is the matrix norm induced by the Euclidean vector norm. An upper bound for the
relative error amplification made during solving of the linear equation system within Newton’s
method is given by the factor cond2(A) · δ, where δ is the relative error in cn (Deuflhard and
Hohmann, 2019). Since in Newton’s method linear systems are solved iteratively, the cummula-
tive relative error is proportional to cond2(A) · δ ·M , where M is the number of iterations. In
our case, δ = ε = 10−14, and typically M = 12, . . . , 20. Consequently, this problem is said to be
well- or ill-conditioned, if cond2(A) is small or large, respectively. Furthermore, A being singular
is equivalent to cond2(A) =∞. This is the case for the turning point of the nose solution branch
at which Jc,n(c, Ωtp) is singular. Hence, in numerical practice, large condition numbers can be
used as an indicator for singularities of the associated matrix. To illustrate this concept, Fig. 5
depicts values of the condition number for the range (c1, c2) ∈ [−2.4, 2.4]

2 and for excitation
frequencies Ω = 0.0, 0.2, 0.4, 0.6. Additionally, the standard branch solution ( H#) as well as the
two nose branch solutions (larger amplitude: , smaller amplitude: ) existing at each frequency
are marked. Based on these graphs, it is possible to assess the values that the condition number
of the Jacobian matrix takes in the vicinity of the solutions. As can be seen, solutions with a
large amplitude (i.e. , ) are located in a region with high values, while the solutions with a
low amplitude (i.e. , ) is in a region with low values.

Fig. 5. Condition number cond2
(
Jc,1(c, Ω)

)
for n = 1 for four different excitation frequencies of test

case (2.9). Values greater than ten are color-coded to white. The symbols , and H# denote the two

nose solutions and the standard solution, respectively
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3.3.2. Jacobian angle

Another possibility is to consider the angles between the columns of the Jacobian. The
motivation for this is that these angles can be used as a measure of the linear independence
of the linearized equations. For example, an angle of 90◦ means that the equations are linearly
independent, while an angle of 0◦ means that the equations are linearly dependent. With regard
to the solvability of the equation system, it is therefore assumed that small angles may indicate
difficulties in computing the solution. For a more precise definition, let (Jc,n(c, Ω))i ∈ R

1,2n+1

denote the i-th row vector of Jc,n(c, Ω) for all i = 0, 1, . . . , 2n. In particular, for n = 1 and c0 := 0
let J1,J2 ∈ R

1,2 denote the first and second row vector of the Jacobian matrix Jc,1(c, Ω). Then

θ := arccos
J1J
T
2

‖J1‖‖J2‖
∈
[
0,
π

2

]
(3.3)

is referred to as the Jacobian angle. To illustrate this concept as well, the same method as
described above is employed. The corresponding graphs can be found in Fig. 6. These graphs

Fig. 6. Jacobian angle θ for n = 1 for four different excitation frequencies of the test case (2.9),
symbols as in Fig. 5

also demonstrate that nose solutions with large amplitude ( , ) are located in regions with
poor solution properties, characterized by small Jacobian angles, while the standard solution
with a small amplitude ( H#) is situated in a region with good solution properties, characterized
by a large Jacobian angle. In order to extend the concept of the Jacobian angle to ansatz orders
n > 1, we consider to find the minimal Jacobian angle over all pair-wise distinct row vectors
Ji ∈ R

1,2n+1 which we define as

θmin := min
i6=j=0,1,...,2n

arccos
JiJ
T
j

‖Ji‖‖Jj‖
∈
[
0,
π

2

]
(3.4)

and refer to it as the minimal Jacobian angle. Here, we consider the minimum as the measure of
choice since of all row vectors of the two associated to the minimal Jacobian angle are the pair
closest to be linearly dependent. And, of course, for n = 1, the two definitions (3.3) and (3.4)
are equivalent.
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3.3.3. Number of solutions

As the final algebraic measure, we consider the number of real solutions of x of (1.1) for a
given excitation frequency Ω. In the context of the HBM, this requires to investigate the number
of real solutions of Fn for a given ansatz order n and excitation frequency Ω, which we denote
as #Fn. In general, there exists no a priori way of determining #Fn expect for computing all
real solutions cn,i, i = 1, . . . ,#Fn. However, this is impractical since Bézout’s theorem provides
#Fn ¬

∏2n
i=0 deg(Ri) as the upper bound for the number of solutions of Fn where deg(Ri) is

the degree of the multivariate polynomial Ri which is the i-th equation of Fn (Basu et al.,
2006). Fortunately, in this work we only consider the standard and nose solution branch as
a subset of the entire frequency response of the Duffing system. This reduces the complexity
of the problem of determining #Fn drastically to simply counting the number of solutions of
Γn({Ω}) for each Ω ∈ F, i.e. #Fn(Ω) = |Γn({Ω})|, where | · | denotes the cardinality of Γn({Ω}).
Considering only the standard and nose branch, this yields maxΩ∈F |Γn({Ω})| = 3. With this,
the number of solutions can be compared for different ansatz orders and different frequencies. In
fact, this procedure can be applied to any combination of two ansatz orders n1 < n2 for which
the difference |Γn2({Ω})| − |Γn1({Ω})| needs to be determined for every Ω ∈ F. Intuitively, the
main disadvantage of this approach is that the two frequency responses Γn1 and Γn2 need to be
computed beforehand, i.e. it is not an a priori measure that identifies artifacts for a requested
ansatz order — it needs the frequency response of the second, higher ansatz order as a reference.

3.4. Geometric measures

Next, we want to investigate two geometric measures. In order to be able to compare the
“resemblance” of two solution branches of the frequency response, an adequate measure is re-
quired. We already discussed the convergence of the nose branch turning point in Section 2.3
and its disadvantage of not being able to capture the entirety of the solution branches. Instead,
we consider two normalized distance measures that measure the distance between the solution
branch of the ansatz order n and the corresponding reference solution branch of the ansatz
order nref .

3.4.1. Arclength distance

First, straightforwardly, consider the arclength or length L(B) > 0 of the solution branch
B ∈ Γ (F). The approximated solution branch Bn can be interpreted as a polygonal curve —
or polyline — represented by N points of the ordered set {(Ω, ‖cn‖2)i}

N
i=1 ⊂ R

2. A simple
approximation L(B) ≈ L(Bn) for the approximated solution branch Bn ⊂ Γn(F) is obtained by

L(Bn) :=
N−1∑

i=0

‖di+1 − di‖ di :=

[
Ω
‖cn‖2

]

i

∈ R
2 (3.5)

i.e. the line segments of the polygonal curve Bn. With this, we introduce the arclength distance
between the solution branch of the ansatz order n and nref as

dL(Bn, Bnref ) := |L(Bn)− L(Bnref )| (3.6)

Furthermore, in order to be able to compare multiple arclength distances, we introduce the
normalized arclength distance

dL(Bn, Bnref ) :=
dL(Bn, Bnref )

L(Bnref )
(3.7)

where L(Bnref ) is the arclength of the reference solution branch. The arclength is computationally

inexpensive and, therefore, dL, dL readily available. However, both variants are not invariant
under translation and rotation of the polygonal curves Bn, Bnref .
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3.4.2. Fréchet distance

An improved but computationally more expensive distance measure is the Hausdorff distance.
However, it does not consider the course of two compared curves. Fortunately, the so-called
Fréchet distance circumvents the disadvantages of both distance measures at the expense of
higher computational costs. Let a, b be parametrizations of two polylines A,B, respectively.
Then the Fréchet distance between A and B is defined as

dF (A,B) := inf
a,b
max
t∈[0,1]

{‖A(a(t)) −B(b(t))‖2} (3.8)

This distance measure captures the similarity between A and B while it takes into account
the ordering and position of the curves points. An intuitive understanding of (3.8) might be
obtained by the following analogy (Alt and Godau, 1995): “A person is walking a dog on a
leash: the person can move on one curve, the dog on the other; both may vary their speed, but
backtracking is not allowed. Then the Fréchet distance of the two curves is the minimal required
length of the leash”. In practice, we are actually interested in computing an approximation of
the Fréchet distance for two approximated solution branches Bn1 , Bn2 . A “good” approximation
of dF (Bn1 , Bn2) is given by the so-called discrete Fréchet distance (DFD) (Alt and Godau, 1995)
which we denote by dDF (Bn1 , Bn2). In order to compute the DFD, we utilize the Python code
discrete-frechet by Figueira (2023). Finally, we introduce the normalized DFD

dDF (Bn, Bnref ) :=
dDF (Bn, Bnref )

L(Bnref )
(3.9)

in order to be able to compare it to the normalized arclength distance.

3.5. Solver measures

In addition to the aforementioned residual, algebraic and geometric measures, we also in-
vestigate measures obtainable from the employed solvers in order to test whether information
available by the solvers can indicate artifact behavior or not. For this, we consider the number
of correction steps k per prediction step as well as the computation time per prediction step.
Since both measures correlate strongly, we only present the number of correction steps k as a
representative quantity of the solver behavior. Additionally, in order to benchmark the perfor-
mance of the employed numerical continuation method we also provide data on the following
solver-related quantities:

• The computation time in seconds tcomp required to obtain each solution branch per given
ansatz order n.

• The number of prediction steps kpred of each solution branch per given ansatz order n, i.e.
the number of points that constitute each solution branch.

• The total number of correction steps kcorr in order to compute each solution branch per
given ansatz order n, i.e. the sum of the number of correction steps over all prediction
steps.

• The average number of required correction steps kcorr = kcorr/kpred per prediction step.

4. Error measures applied to test case

In this Section, the error measures described in Section 3 are applied to the test case given in
Section 2.3. This is intended to assess the extent to which these error measures are suitable for
identifying artifacts and errors in general. As clarified in Section 2.3, regarding the test case,
it is known that all nose solutions, i.e. those with large amplitudes, for an excitation frequency
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Ω > 0.21 are artifacts. Hence, an error measure that is suitable for distinguishing artifacts
from regular solutions is expected to yield significantly different values for solutions with large
amplitudes for excitation frequencies Ω > 0.21 (FB in Fig. 3) compared to excitation frequencies
Ω ¬ 0.21 (FA Fig. 3). Consequently, we expect a discontinuity at Ω = 0.21 of such an error
measure. Recall that in the present work, the focus is on ansatz functions xn with a vanishing
mean value, i.e. c0 = 0, and thus cn ∈ R

2n.

4.1. Algebraic measures

4.1.1. Condition number

The first algebraic measure results we present are the condition numbers cond2(Jc,n(cn, Ω))
and cond2(Jn(cn, Ω)) given in Fig. 7a and 7b, respectively. Both figures plot the respective
condition number over the excitation frequency for the standard and nose response for ansatz
orders n = 1, 7, 91. We first discuss Fig. 7a. First of all, the expected increase of the condition
number for an increase of the ansatz order can be observed. For n = 1 the nose response exhibits
a condition number of one to three orders of magnitude larger than the condition number of the
standard response. In particular, towards the turning point of the nose the condition number
rapidly increases towards values of cond2(Jc,1(c1, Ωtp,1)) ≈ 10

3. Similar behavior can be observed
for the ansatz order n = 7, 91 with a maximum condition number towards the turning point at
around 105, 107, respectively. For the largest condition number associated with n = 91, we have
cond2(Jc,91(c91, Ωtp,91)) · ε ≈ 10

7 · 10−14 = 10−7 ≪ 1 for a single Newton step. Consequently,
with a typical value of around N = 15 Newton steps until convergence we may extrapolate to
cond2(Jc,91(c91, Ωtp,91)) · ε ·N = 5 · 10

−6 ≪ 1. From this we conclude that, from the numerical
practical standpoint, the problem of solving the linear system within Newton’s method is still
considered to be well-conditioned. However, note that in case the numerical continuation method
reaches an excitation frequency that is numerically close to the turning point of the system, the
condition number becomes unbounded and the problem ill-conditioned.

Fig. 7. Condition numbers cond2(Jc,n(cn, Ω)) and cond2(Jn(cn, Ω)) of the system Fn for approximation
orders n = 1, 3, 91 for the test case (2.9)

Next, we discuss Fig. 7b. It shows a similar qualitative behavior for the condition number of
the extended Jacobian matrix cond2(Jn(cn, Ω)). However, the largest condition number values
at the turning points of the nose branch of ansatz orders n = 1, 7, 91 are approximately 7.21, 52.4
and 1.16 · 104, respectively. A comparison of the condition number of Jc,n to Jn yields that the
values of the condition number of the extended Jacobian are three orders of magnitude smaller.
This can be explained by the additional information due to the existence of the additional
matrix column JΩ,n, i.e. additionally considering the derivative w.r.t. the excitation frequency
improves the conditioning of the original problem. This is in fact used by the pseudo-arclength
method or the GQGNM, as presented in Section 2.2. Interestingly, near the standard branch
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resonance peak at Ω = 0.8, the condition number of the extended Jacobian cond2(Jn(cn, Ω))
for n = 7, 91 is three (respectively two) times larger. However, upon returning to the question
of artifact solutions, for n = 1, 7 in the frequency range around the turning point Ωtp,91 = 0.21
no noticeable change in the condition numbers cond2(Jc,n(cn, Ω)) and cond2(Jn(cn, Ω)) can be
observed. This is why we do not consider either of these two condition numbers to be indicative
of artifact behavior.

4.1.2. Jacobian angle

The second algebraic measure result we discuss is the minimal (extended) Jacobian angle
θmin(Jc,n) (resp. θmin(Jn)) given in Fig. 8a and 8b as an extension of the Jacobian angle for an
ansatz order n  1.

Fig. 8. Minimal (extended) Jacobian angle θmin(Jc,n) (resp. θmin(Jn)) per excitation frequency for
ansatz orders n = 1, 7, 91 for the test case (2.9)

The two figures plot the angles over the excitation frequency for the standard and nose
response for ansatz orders n = 1, 7, 91. We start by discussing Fig. 8a. The curves are mostly
close to π/2 and have minimal values around π/4 close to the small amplitudes resonance peak.
The minimum angles over all frequencies can be found close to the respective standard branch
resonance peak with values of 41%, 56% and 55% of π/2 for n = 1, 7, 91, respectively. As could
be expected, the minimal Jacobian angle for standard branches for n = 7 appears to be mostly
converged against the reference solution branch of nref = 91. On the other hand, the nose
branch minimal angles are 6.3%, 50% and 55% for n = 1, 7, 91, respectively, and are observed
to be close to the respective turning points. Note, that there is a noticeable difference in the
angles of roughly 30◦ when comparing the nose branch of ansatz orders n = 1 to n = 7, 91.
Next, we turn our focus to Fig. 8b. The curves look mostly similar, expect for two noticeable
outliers. First, for all three ansatz orders the standard solution branches exhibit a similar but
somewhat remarkable increase of the angle close to the resonance peak of the standard frequency
response curves. However, in contrast, when comparing the respective nose solution branches
only for n = 1, a noticeable increase at the turning point can be observed. Similar to the
case of the condition number of the extended Jacobian, we attribute these two frequency-wise
“local” increases of the Jacobian row vector angles to including the additional column vector
of JΩ,n in the extended Jacobian. However, it would require further investigation in order to
answer why this is only observed in such a local manner for the standard solution branch. Upon
returning to the original question of artifact detection capabilities, we conclude that neither of
the two discussed measures is suitable for detecting artifacts since for n = 1 or n = 7 there is
no observable change of the minimal (extended) Jacobian angle at Ω = 0.21, i.e. the frequency
value of the turning point of the reference solution branch.
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4.1.3. Number of solutions

Next, we investigate the number of solutions, as defined in Section 3.3, as a potential artifact
measure. For this, consider the frequency range partition F = FA ∪ FB ∪ FC , as introduced in
Section 2.3, which we obtained by identifying the turning points of the frequency response curves
of the ansatz order n = 1 and the reference ansatz order nref = 91. Upon counting the number
of solutions over each frequency range, FA,FB ,FC yields for n = 1

|Γ1(FA ∪ FB)| = 3 and |Γ1(FC)| = 1

and for nref = 91

|Γ91(FA)| = 3 and |Γ91(FB ∪ FC)| = 1

Comparing the number of solutions of both ansatz orders, yields the differences

|Γ91(FA)| − |Γ1(FA)| = 0 |Γ91(FC)| − |Γ1(FC)| = 0 |Γ91(FB)| − |Γ1(FB)| = 2

That is, on FA and FC the number of solutions matches, but not on FB since there is a difference
of two. This is exactly where the above introduced artifact solutions can be observed. However,
this approach has two disadvantages. First, it is an a postiori measure, i.e. computation of two
frequency responses of different ansatz orders is required. Second, the way we presented the
counting of solutions requires to count for all frequencies Ω ∈ F which is, of course, not feasible
in finite precision. Instead, either a sampling of the frequency range F or a comparison of the
frequency components of all points of the two sets Γ1(F) and Γ91(F) subject to a given frequency
tolerance εΩ > 0 would be required. However, this approach is not likely to be numerically robust,
which is why we consider it to be of rather academic nature.

4.2. Geometric measures

In this part, we discuss if the two normalized distance measures introduced in Section 3.4
applied to the test case can be used as artifact solution identifiers. Since both the normalized
arclength distance and the normalized discrete Fréchet distance require the arclength of the
solution branches we start by considering convergence of the arclength, as depicted in Fig. 9a. It
shows the arclength of the standard and nose branch over the approximation order n. Apparently,
the arclength of the standard branch Bsn converged quite quickly to a value of L(B

s
91) = 2.16

with an error |L(Bs91)− L(B
s
75)| < ε = 10

−14. In contrast, the arclength of the nose branch Bn91
converged noticeably slower to a value of L(Bn91) = 0.77 with an error |L(B

n
91) − L(B

n
75)| ≈

1.03 · 10−2.
Next, we discuss the results of the normalized arclength distance dL and the normal-

ized discrete Fréchet distance dDF plotted over the approximation order n, as depicted in
Fig. 9b. For both distance measures, it can be observed that, again, the standard branch
converges noticeably faster than the nose branch. For this reason, we choose a linear scale
of the diagram for both distance measures in order to be able to better compare the quali-
tative behavior of each of the curves. Upon comparing the standard branch of ansatz orders
n = 75, 91, the distance measures yield dL(B

s
75, B

s
91) < 10

−14 and dDF (B
s
75, B

s
91) = 1.14 · 10

−13.
However, for the nose branch, the two distance measures yield noticeably larger errors of
dL(B

n
75, B

n
91) = 1.32 ·10

−2 and dDF (B
n
75, B

n
91) = 8.08 ·10

−3. Note that for n = 1, the value of the
two distance measures of the nose branch are noticeably larger compared to the values of the
standard branch, i.e. dL(B

n
1 , B

n
91) = 0.49 versus dL(B

s
1, B

s
91) = 0.003 and dDF (B

s
1, B

s
91) = 0.65

versus dDF (B
s
1, B

s
91) = 0.03. This amounts to a difference of roughly one order of magnitude.

Since both distance measures are normalized by the arclength of the respective reference solution
branch, this difference is noticeable. However, it is not yet clear if this is characteristic behavior
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Fig. 9. Geometric measures for the test case (2.9): (a) arclength L(Bn), (b) normalized arclength
distance dL(Bn, Bnref ) and normalized discrete Fréchet distance dDF (Bn, Bnref )

of the artifact solutions. At this point, further studies for different parameter sets for the Duff-
ing system might provide deeper insight. Additionally, consideration of rather large deviations
in the amplitudes for frequencies Ω < Ω1,tp (cf. Fig. 1) suggests that this is also contributing
to somewhat large normalized distance measures of the nose. One would have to filter out the
amplitude part of the errors w.r.t. the normalized distances in order to better assess if these
distance measures are suitable artifact solution identifiers. A possible way to get the frequency
part of the difference of two curve points A−B w.r.t. the Fréchet distance would be to modify
the Euclidean norm ‖A−B‖2 to a weighted norm, i.e. ‖W(A−B)‖2 with the diagonal matrix

W =

[
1 0
0 ǫ

]

for 0 < ǫ ¬ 1. Computing either of the above distance measures might be more

expensive than identifying artifact solutions by the turning points of two compared solution
branches within Definition 1. However, a conclusive complexity analysis is yet missing.

4.3. Solver measures

In this last part, we seek to investigate if the solver-related quantities allow for a detection of
artifact solutions. For this, we focus on the number of correction steps k per prediction step of
the employed numerical continuation method which is depicted in Fig. 10. This figure shows the

Fig. 10. Number of correction steps k per excitation frequency for the test case (2.9)

number of correction (Newton iteration) steps k over the entire frequency range of test case (2.9).
Here, we only plotted the curves for the ansatz order n = 1, 3 to not clutter the diagram. For the
ansatz order n = 1, 3, the nose branch exhibits values of k in the range 0 to 20 and 0 to 31, and
the standard branch values of 0 to 17 and 0 to 18, respectively. Since the employed numerical
continuation method starts at Ω = 0 with pre-computed initial guesses c0n, the canonical values
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of k = 0 at this frequency can be observed. Additionally, the smallest, largest and average
number of correction steps over all ansatz orders n = 1, 3, . . . , 91 and excitation frequencies are
0, 15.2 and 41, respectively. Similar to the diagrams of the condition number in Fig, 7a and 7b,
there is a noticeable peak in the number of correction steps at the nose branch turning point.
However, in the characteristic frequency range around the turning point of the reference solution
at Ω = 0.21, neither for n = 1 nor for n = 3, there is a noticeable change of the number of
correction steps. Hence, this measure is also not indicative for the studied artifact solutions. We
end this Section by presenting the solver-related quantities computation time tcomp in seconds as
well as the number of prediction steps kpred, the total number of correction steps kcorr and the
average number of correction steps kcorr, all per solution branch and against the approximation
order n in Fig. 11. All computations were performed on a 64 bit Ubuntu 22.04.03 LTS operating

Fig. 11. Computation time tcomp, number of prediction steps kpred, total number of correction
steps kcorr and average number of correction steps kcorr for the test case (2.9)

system with an AMD Ryzen 7 Pro 4750U CPU and 32 GB of RAM. For the computation time, an
expected exponential increase upon the increase of the ansatz order n is observed. The noticeable
outliers of the nose branch at n = 1, 59 are attributed to an additional computational load of
the operating system. The number of prediction steps kpred and the total number of correction
steps kcorr of the nose branch exhibit an almost exponential increase as well. However, for
the standard branch, the number of prediction steps kpred and the total number of correction
steps kcorr already converged for n  3 around values of 31 and 350, respectively. Finally,
consider the average number of correction steps kcorr. For the nose and standard branch, this
value converges to values around 12.4 and 11.2, respectively. Interestingly, for lower ansatz
orders, both solution branches exhibit a larger average number of correction steps compared to
the value for the reference ansatz order of n = 91. In particular, over the course of the ansatz
order increase from n = 7 to n = 91, the nose branch exhibits a decrease of kcorr by about a
third.
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5. Conclusions

In this work, we discuss several qualitative error measures in order to characterize the so-called
artifact behavior that occurs during computation of HBM solutions for the softening Duffing
oscillator. In particular, we provide a mathematical definition of artifact solutions in which the
turning points of two solution branches of different ansatz orders are compared. This allows for
an a posteriori identification of artifact solutions based solely on a robust computation of turn-
ing points. Additionally, of the residual, geometric, algebraic and solver-related error measures,
investigating only the approach of counting the number of computed solutions, yields the de-
sired discontinuity at the frequency value Ω = 0.21 of the turning point of the reference solution
branch. However, this a posteriori approach is of rather academic nature and expected to be
not robust in the numerical practice. Furthermore, unfortunately, none of the examined error
measures potentially showed to be a priori indicative of artifact behavior but only a posteriori.
A possible explanation for the lack of an artifact-related characteristic behavior of the investi-
gated measure lies in the fact that up to now, static error measures have been considered. This
means that the value of quantities under examination was always evaluated for a specific order of
development only. What remained unconsidered is the dependence of the error measures on the
rate of change of the truncation order. Additionally, further studies are required to connect the
concept of artifact solutions with the existing error measures such as, e.g., Urabe (1965), Kogel-
bauer and Breunung (2021), Woiwode and Krack (2023). Consequently, the following question
may be raised: Do artifact solutions exist for truncation orders that can be deemed “sufficiently
large” as by the measures of the aforementioned authors? Furthermore, the authors plan to
publish further studies on their Python codes for the HBM algebraic system generation and the
employed numerical path continuation solver. Among others, the presented definition of solution
artifacts as a theoretical foundation as well as the Fréchet distance between solution branches of
different truncation orders should be further studied as a posteriori artifact identifiers. In this
context, application to different Duffing parameter sets as well as other nonlinear systems needs
investigation to further assess the robustness in numerical practice.
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