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The objective of the paper is to demonstrate the potential of the localizing gradient dam-
age model in size effect simulations. Three different gradient activity functions for variable
internal length scale are considered. Numerical simulations for an unnotched beam under
three-point bending are referred to the experiment performed by Grégoire et al. (2013).
A confrontation with the conventional gradient damage model as well as mesh sensitivity
studies are also presented. It is proved that the localizing gradient damage model with differ-
ent variants of the gradient activity function can reproduce the size effect quite reasonably.
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1. Introduction

The size effect is connected with a change of the material response, which is observed for struc-
tural elements or laboratory specimens with different volumes. In quasi-brittle materials like
concrete, it is observed that the nominal strength decreases when the size of the considered
specimen enlarges. An analogical relation is also observed for equilibrium paths in the post-peak
regime, taking into account material brittleness. In fact, the size of the fracture process zone
(FPZ) in quasi-brittle materials like concrete does not correspond to the dimensions of structural
elements, instead it is related to the material length scale. The main cause of the size effect is
deterministic and related to the rate of energy dissipation in FPZ and evolving cracks, see e.g.
(Bažant and Planas, 1998).

The above statements are proven in many experiments, hence the deterministic size effect is
one of crucial features examined for quasi-brittle materials. Together with the development of
fracture and damage theories, the knowledge about the size effect laws has also been improved,
see e.g. (Bažant and Le, 2017; Bažant and Planas, 1998). When the size effect is analyzed numeri-
cally, standard local models are not able to capture it properly. Therefore, correct computational
models for concrete should be equipped with a localization limiter, i.e. contain an internal length
scale. There are several approaches to ensure mesh-objective results for continuum models. The
first option, followed in this paper, is to use a non-local formulation via integral or gradient-type
averaging. The second concept is to introduce a rate-dependence into the constitutive relation.
The simplest approach is the crack band theory, proposed first by Bažant and Oh (1983), which
however is not a proper localization limiter since it alleviates only the mesh sensitivity of load-
-displacement diagrams. A complementary overview of these issues can be found, for instance,
in (Bažant and Jirásek, 2002).

In this paper, the damage model is enhanced by the presence of higher-order gradients via
an averaging equation in the formulation based on continuum damage mechanics. The gradient
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damage model was first suggested by Peerlings et al. (1996). In the description of finite elements
(FEs), two types of degrees of freedom are distinguished, i.e. an averaged strain measure is ap-
proximated next to the standard displacement field. The zone of localization represents concrete
cracking in the model and it is controlled by a constant internal length scale. The interpreta-
tion of the internal length scale as constant in quasi-brittle materials can be connected with
the maximum aggregate size as a counterpart of the width of the FPZ, see e.g. (Bažant and
Planas, 1998). The conventional gradient damage (CGD) model ensures mesh-objective results,
but Geers (1997) demonstrated that artificially expanding damage zones could occur, hence ver-
sions of the gradient damage model with evolving internal length scale have been proposed as
more correct. In other words, the issue of spuriously widened damage zones is mitigated when
the internal length scale becomes a variable. In this case, the model needs a definition of the
so-called gradient activity function. The early concept is that the gradient activity increases as
a function of an equivalent strain, see e.g. (Geers, 1997; Saroukhani et al., 2013). However, if a
localization phenomenon is observed during the loading process, then the interaction region of
diffuse microcracks diminishes and tends to the formation of one macrocrack. From this point
of view, the localizing gradient damage (LGD) model, proposed first by Poh and Sun (2017),
where the gradient activity function decreases with damage growth, describes the change of the
internal length scale in a more proper way. Nowadays, the LGD model is employed in many
applications, e.g. it can be coupled with three-surface cap plasticity, as derived by Zhao et al.
(2023) or used for simulations with impact loading, see (Wosatko, 2022).

In this paper, attention is focused on simulations of the size effect for beams subjected to
three-point bending. Grégoire et al. (2013) performed experiments for unnotched (Type 1) and
notched (Type 2) concrete beams using four sizes of specimens, and next analyzed them numer-
ically by means of a non-local integral-type damage model. Other experimental tests of concrete
beams under three-point bending were studied by Hoover et al. (2013), where four different sizes
and five different options of notch depth were considered. Experiments for eccentrically notched
beams (the notch is not located directly under the load) together with corresponding simula-
tions using the discrete crack model with interface FEs were discussed by Garćıa-Álvarez et al.
(2012). The aforementioned experimental research on the size effect was comprehensively veri-
fied in computations. A phase-field damage model equipped with additional approximation to
regularize a crack surface was investigated by Feng and Wu (2018). An isotropic damage model
with the crack width determined by the so-called Irwin’s characteristic length was demonstrated
by Barbat et al. (2020). In the model, a mixed FE formulation with the interpolation of dis-
placement and strain fields as well as a stabilization strategy were employed. The size effect
has also been explored using different versions of gradient damage models. For example, the
size effect can help one to estimate characteristic parameters of the CGD model as shown by
Carmeliet(1999). Size effect simulations given by Zhang et al. (2021) in confrontation with the
experiments (Grégoire et al., 2013; Hoover et al., 2013) presented the applicability of the LGD
model. The analysis of the energy dissipation during the loading process for the CGD and LGD
models was highlighted there. The size effect can also be predicted using the stress-based LGD
model (Negi et al., 2021).

In this paper, the numerical analysis is limited to unnotched beams under three point bend-
ing, i.e. size effect Type 1 is simulated. The results are referred to the experiment (Grégoire
et al., 2013), where four different sizes of specimens were taken into account. The LGD model
with different functions of gradient activity is considered and additionally compared with the
CGD model. Both models are implemented by the authors in the FEAP package (Taylor, 2001).
Section 2 describes briefly both versions of the gradient damage model, but definitions of the
gradient activity function (including a new polynomial one) are characterized in detail. Section 3
shows the numerical analysis of the unnotched beam, where the simulation data, mesh sensitiv-
ity and size effect studies are respectively presented. The results for the LGD model with three
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different gradient activity functions are discussed in the context of its ability to determine the
size effect properly. A comparison with the results for the CGD model is also made. Conclusions
are summarized in Section 4.

2. Overview of applied gradient damage models

2.1. Essentials of conventional gradient damage (CGD)

The standard boundary value problem (BVP) for statics is considered, where the equilibrium
equation with corresponding boundary conditions is taken into account. Small strains are as-
sumed. The model employed in this paper is based on the continuum damage mechanics theory,
where in the nonlocal formulation an averaging equation with gradient terms is added to guar-
antee a mesh-independent solution, see (Peerlings et al., 1996). The thermodynamic framework
leads to weak forms of both the mentioned equations, and finally to a matrix system. More de-
tails of different variants of the gradient damage model can be found in many works, e.g. (Geers,
1997; Peerlings et al., 2004; Poh and Sun 2017; Negi et al., 2021; Wosatko, 2022). Below only
the most crucial elements of the theory are recalled. Voigt’s notation (called also matrix-vector
notation) is used.
The real and effective (fictitious) configurations of a damaging body are distinguished. The

concept of strain equivalence is adopted, i.e. the actual and effective strain tensors are equivalent
ǫ = ǫ̂. The effective stress tensor σ̂ (introduced in a vector form) affects the undamaged material
skeleton, so the stress tensor σ corresponding to the real material is reduced by the presence of
damage ω

σ = (1− ω)σ̂ σ̂ = Dǫ (2.1)

where D is Hooke’s operator. In the model, ω is a scalar measure which changes from 0 for the
undamaged material to 1 for its complete failure. This elastic stiffness degradation is a proper
description for quasi-brittle materials like concrete. The damage activation function F d is defined
in the strain space

F d(ǫ, κd) = ǫ̃(ǫ)− κd (2.2)

where κd is a damage history parameter and ǫ̃ is an equivalent strain measure. The function ǫ̃(ǫ)
describes the loading process and can be defined according to the modified von Mises formula
(de Vree et al., 1995)

ǫ̃(ǫ) =
(k − 1)Iǫ1
2k(1 − 2ν)

+
1

2k

√( k − 1
1− 2ν

Iǫ1

)2
+
12kJǫ2
(1 + ν)2

(2.3)

where Iǫ1 and J
ǫ

2 are strain invariants, ν is Poisson’s ratio and k = fc/ft is the ratio of uniaxial
compressive and tensile strengths, which enables different responses of the concrete model in
tensile and compressive regimes, even though the scalar description is employed. Damage ω is a
function of the history parameter κd and can be defined as (Mazars and Pijaudier-Cabot, 1989)

ω(κd) = 1−
κo
κd

(
1− α+ αe−η(κ

d
−κo)
)

(2.4)

where κo is the damage threshold. This formula holds when κ
d > κo, and then damage ω

asymptotically grows to 1 according to the exponential function, which has been observed in the
experiments by Hordijk (1991). The parameter α sets the level of the residual stress (1−α)Eκo,
where E is Young’s modulus. In this way, the total loss of material stiffness can be excluded.
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The parameter η defines material brittleness in the post-peak stage and is related to concrete
fracture energy Gf .

In the conventional gradient damage (CGD) model, the damage activation function defined
in Eq. (2.2) takes the following form

F d(ǫ, κd) = ǫ
(
ǫ̃(ǫ)
)
− κd (2.5)

and the averaged (nonlocal) strain ǫ is a function of the equivalent strain ǫ̃ via the following
differential equation (Peerlings et al., 1996)

ǫ− ϕ∇2ǫ = ǫ̃ (2.6)

The BVP problem becomes regularized by the presence of ǫ together with its second gradient in
this averaging equation. For a domain B, the natural boundary condition N T∇ǫ = 0 holds on
the boundary ∂B (N is the outward normal to the surface of domain B). It is assumed that the
gradient is scaled by ϕ > 0. This quantity is constant in the CGD model and denoted in this
paper by the parameter ϕs, which is equivalent to c and related to the square of internal length
scale l

ϕs = c =
1

2
l2 (2.7)

The internal length scale sets the localization band width (Geers, 1997; Peerlings et al., 1996).

2.2. Localizing gradient damage (LGD) and gradient activity functions

In the localizing gradient damage (LGD) model, originally given by Poh and Sun (2017),
the quantity ϕ becomes a variable and is called the gradient activity function. The averaging
equation is rewritten as follows

ǫ−∇(ϕ∇ǫ) = ǫ̃ (2.8)

The above equation can be derived from a microforce balance, but here additional effects of
micro-macro scale interaction, connected with the definition of a coupling stress, are not con-
sidered. The thermodynamic framework of the LGD model can be found e.g. in (Negi et al.,
2021; Poh and Sun, 2017; Wosatko, 2022). More detailed derivations and different aspects of
implementation of this model are discussed, for example, by Wang et al. (2002) and Wosatko
(2022). After discretization of the weak form and linearization of the BVP, it turns out that
an additional matrix operator has to be computed in the matrix system of equations, where
the derivative of ϕ is needed. Some proposals of gradient activity functions together with their
derivatives are listed below.

When the LGD model is employed, the gradient activity is a function of damage ω. It is
illustrated by Poh and Sun (2017), Wosatko (2022) that the influence of nonlocal interactions in
the localization region should decrease with the increase of damage. It is observed that the crack
band width gradually reduces and the model tends to the local one, so its localizing character
reveals. The first formula for the gradient activity function is defined by Poh and Sun (2017)
and includes exponential terms

ϕe(ω) = cmax
(1−R) exp(−nω) +R− exp(−n)

1− exp(−n)
(2.9)

In Eq. (2.9), cmax is the maximum internal length scale squared, R is the (minimum) residual
level of nonlocal interaction and n is the power which changes the rate of decrease of the inter-
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Fig. 1. Gradient activity functions and their derivatives for different values of n or m: (a) function ϕe,
(b) derivative ∂ϕe/∂ω, (c) function ϕc, (d) derivative ∂ϕc/∂ω, (e) function ϕp, (f) derivative ∂ϕp/∂ω

action, which can be shortly called the intensity parameter. This function is depicted in Fig. 1a
in diagrams with different n (cmax = 12.5mm

2 and R = 0.01). The derivative of function ϕe is

∂ϕe
∂ω
= cmax

(R − 1)n exp(−nω)

1− exp(−n)
(2.10)

Figure 1b presents diagrams of this derivative for analogical cases. There are possible alternative
definitions of the gradient activity function. The relation ϕ(ω) and its derivative can be defined
by means of cosine and sine functions as proposed by Wosatko (2022)

ϕc(ω) = cmax
[1
2

(
cos(πωn) + 1

)
(1−R) +R

]

∂ϕc
∂ω
=
1

2
πcmaxn(R− 1)ω

(n−1) sin(πωn)

(2.11)

Figures 1c and 1d illustrate both the definitions for cmax = 12.5mm
2 and R = 0.01. It should

be noticed that if n > 1.0 then the start of the decreasing interaction process is postponed.
For example, for intensity n = 5.0, the value of ϕc is effectively reduced only after ω > 0.5.
The intentional retardation of this reduction is introduced by Wang et al. (2022) using function
ϕe(ω) from Eq. (2.9), governed by an additional threshold for damage, so that the cracking in
fiber reinforced ultra-high performance concrete beams can be simulated. The change of the
interaction area within the localization region should be delayed for special concrete materials.
As shown in Fig. 1d, for each n, the derivative ∂ϕc/∂ω starts from the value 0.0 for ω = 0.0
as well as it is equal to 0.0 for ω = 1.0 at the end. It seems that the derivative should be
zeroed especially in the final stage of failure (ω = 1.0), when further damage increment is not
possible. Another formula comes from the phase-field approach (Borden, 2012; de Borst and
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Verhoosel, 2016), where the gradient activity function with polynomial terms is written based
on the so-called degradation function

ϕp(ω) = cmax{[(m− 2)(1 − ω)
3 + (3−m)(1− ω)2](1 −R) +R} (2.12)

where m is a weighting factor of the polynomials. The derivative of function ϕp is

∂ϕp
∂ω
= cmax(1−R)[(6− 3m)ω

2 + (4m− 6)ω −m] (2.13)

Figure 1e presents the function from Eq. (2.12) in diagrams for cmax = 12.5mm
2, R = 0.01 and

with different factors m, while in Fig. 1f the corresponding derivatives defined in Eq. (2.13)
are drawn. When the value of m is 0.1 or smaller (not presented here), then the function ϕp
is similar to ϕc with n = 1.0. In fact, it resembles a cosine function. On the other hand, when
m = 1.5 or larger, then the function ϕp is similar to the function ϕe given in Eq. (2.9). From
this point of view, it seems that the function ϕp has the most universal form. It should be noted
that red curves in Fig. 1 represent cases employed in the computations in the next Section.

3. Numerical study of unnotched beam under three point bending

3.1. Geometry and material model data

The numerical example discussed in this Section is based on the experiment conducted by
Grégoire et al. (2013). The left symmetric half of the domain is taken into account. Figure 2
depicts configuration of the beam subjected to three point bending. Mesh M3, which is applied
in the size effect study with identical density for each specimen, is also illustrated in Fig. 2. The
dimensions of four specimens are summarized in Table 1. The thickness T = 50mm is the same
for all considered cases. The following mesh densities are used: mesh M1 includes 1260 nodes
and 1065 FEs, M2 – 4610 nodes and 4230 FEs, M3 – 17615 nodes and 16860 FEs, M4 – 65153
nodes and 63740 FEs. Mesh M4 is prepared only for the LGD model. Four-noded FEs with
linear interpolation of the displacement field and the averaged strain measure are adopted.

Fig. 2. Configuration of the symmetric half of the unnotched beam in three point bending and mesh M3

Plane stress conditions hold. Young’s modulus E = 37000MPa and Poisson’s ratio ν = 0.21
are assumed for concrete. The threshold κo = 0.0000946 for the damage growth function in
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Table 1. Geometry of specimens

Specimen
Length L Height H Span S Measurement
[mm] [mm] [mm] base Lm [mm]

D1 1400 400 1000 400

D2 700 200 500 200

D3 350 100 250 100

D4 175 50 125 50

Eq. (2.4) corresponds to the tensile strength ft = 3.5MPa. The modified von Mises definition
given in Eq. (2.3) is determined with the ratio k = 12.086, which means that the compressive
strength is indirectly defined as fc = 42.3MPa. The parameter α = 0.99 is adopted for all
computations. It is known that the same value of parameter η provides different behaviour for
CGD and LGD models. The results for the LGD model give a much more brittle response, see
e.g. (Poh and Sun, 2017), so the value of η connected with the rate of damage growth should be
several times smaller than for the CGD model. Respectively, values 300 and 85 are applied. All
the cases considered in the computations are listed in Table 2. Acronyms are connected with the
CGD or LGD models and the choice of the gradient activity function ϕ. The parameters R and n
or m are suitable for the given function. The internal length scale squared cmax = 12.5mm

2 is
used in each case, but as a constant in the CGD model or as the maximum in the LGD model.
For the CGD model, it simply means that l = 5mm. The options mentioned in Table 2 for the
LGD model coincide with the red curves depicted in Fig. 1.

Table 2. Computational cases for size effect analysis

Case
Model

η Function ϕ Gradient activity R n or m

CGD 300 ϕs constant – –

LGD-e 85 ϕe(ω) exponential 0.01 5.0

LGD-c 85 ϕc(ω) cosine 0.01 1.0

LGD-p-01 85 ϕp(ω) polynomial 0.01 0.1

LGD-p-25 85 ϕp(ω) polynomial 0.01 2.5

3.2. Mesh sensitivity study

Firstly, the numerical analysis is focused on the demonstration of the mesh-objective solu-
tion for both versions of the gradient damage model. Only specimen D3 is considered in this
study. Figure 3 presents the diagrams of force F applied to the beam versus horizontal displace-
ment uhor, called also a pseudo-CMOD (crack mouth opening displacement), measured at the
bottom edge between two points specified over the base Lm. A half of this base together with
one point marked by a purple circle is illustrated in Fig. 2.

It is visible in Fig. 3a that all curves for the CGD model overlap, but simultaneously they
deviate from the experiment. The contour plots for damage ω at the final stage are depicted in
Fig. 4. It is seen that the same representation is obtained for each mesh. The most damaged
region, where ω → 1.0, is illustrated by the black colour. All distributions of damage for the
CGD model are quite spread. Therefore, the problem of too strongly broadened damage zone in
the CGD model is confirmed, see also (Geers, 1997; Poh and Sun, 2017; Wosatko, 2022; Zhang
et al., 2021).

Figure 3b shows the equilibrium paths only for case LGD-p-25 with ϕp(ω) and m = 2.5. The
mesh sensitivity study for the LGD model with functions ϕe and ϕc can be found in (Wosatko,
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Fig. 3. Load vs. pseudo-CMOD diagrams, mesh-sensitivity study: (a) CGD, (b) LGD-p-25

Fig. 4. Contour plots of damage ω for CGD, mesh-sensitivity study: (a) mesh M1, (b) mesh M2,
(c) mesh M3

2022). It can be noticed here that the diagrams differ from each other, but the responses for
M3 and M4 almost coincide. Starting from the diagram for mesh M1, next for M2, M3 and
finally M4, it is observed that the load peaks get smaller and tend to the load-carrying capacity
obtained in the experiment. An analogical order of the results is seen after the peak for softening.
The solutions are closer and closer to the experimental response. Moreover, together with the
mesh density growth, the differences between the diagrams decline. It is known that the LGD
model requires a well-refined discretization (Wosatko, 2022) or a smart mesh densification near
the expected cracking region (Negi et al., 2021). Indeed, three meshes are sufficient to show the
mesh-independent results for the CGD model. In the case of LGD model, the fourth mesh M4
has to be employed to prove that the consecutive solutions converge. Figures 5 and 6a depict
the final distributions of ω for case LGD-p-25. The crack patterns represented by damage have a
similar character. Now the damage zone is clearly narrowed, so artificial widening of the damage
distribution is eliminated, and the solution remains mesh-objective. Figure 6 contains enlarged
plots for M4 to provide a better visibility against the background of this very dense mesh.
Figure 6b shows the distribution of the gradient activity function ϕp in a reversed scale, i.e. the
black colour indicates the smallest values. The shape of this distribution is slightly wider, but
generally coincides with the damage distribution presented on the left in Fig. 6a.
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Fig. 5. Contour plots of damage ω for LGD-p-25, mesh-sensitivity study: (a) mesh M1, (b) mesh M2,
(c) mesh M3

Fig. 6. Results for LGD-p25 and mesh M4: (a) damage ω, (b) gradient activity ϕp(ω) (reversed scale)
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3.3. Size effect study

The results of the size effect study are discussed in this part of Section 3. Mesh M3 is selected
for the computations for different specimen sizes, see Table 1. It should be reminded here that
all experimental results are taken from Grégoire et al. (2013). Figure 7 juxtaposes the diagrams
of the force F against the pseudo-CMOD uhor for each beam, so that the confrontation between
the experiment and responses for the cases defined in Table 2 can be carried out. The diagrams
in Fig. 7a for the largest beam D1 are similar and differ only near the peak, however the curve
after the peak for CGD gives a more brittle response. These equilibrium paths are over the
limit of the gray zone coming from the experiment. The above observation changes together
with reducing specimen dimensions. In Fig. 7b for beam D2, the response for the CGD model
is more ductile than the others. The results for the LGD model are on the border of the gray
region from the experiment. It is shown in Figs 7c and 7d for specimens D3 and D4 that CGD
produces an exaggerated response, while the curves for options of the LGD model mostly fit the
experimental results. They are different only for the maximum value of F , but in the same order
for each beam size. Moreover, the cases LGD-c and LGD-p-01 overlap. The value of F for the
case LGD-p-25 is below the previous two. The smallest F is obtained for the case LGD-e.

Fig. 7. Load vs. pseudo-CMOD diagrams – comparison between the employed models and experiment:
(a) specimen D1, (b) specimen D2, (c) specimen D3, (d) specimen D4

Figures 8-11 present the FE meshes with final damage distributions for all cases given in
Table 2 and, respectively, for all analyzed beams from Table 1. The undamaged areas, where
ω ≈ 0.0, are represented by white colour, the gray scale shows the progress of cracking, and
the total damage ω → 1.0 is depicted by the black colour. It is illustrated for specimen D1 in
Fig. 8 that the active damage is limited to a quite narrow band along the symmetry axis of the
beam for each computed case, but the zone for CGD is slightly wider. It seems that the effect
of excessive broadening for the CGD model intensifies for smaller sizes of the beam. It should
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be noted that the crack zone widths should be similar, while the sizes of FEs change and are
proportional to the growing beam dimensions. In other words, the beam size should have minor
influence on the size of the FPZ. In fact, the issue of spuriously widened damage zone for the
CGD model is visible, see Figs. 10a and 11a. This drawback does not reveal for the LGD model.
Of course, the visualized crack band widths in the contour plots increase from specimen D1
(largest) to D4 (smallest), but the damage zone widths for the LGD model are relatively quite
small and the increase of the widths does not seem proportional to the size reduction. It can
be observed that the damage patterns for LGD-c and LGD-p-01 are almost identical, so it
is confirmed that the function ϕc(ω) with n = 1.0 conforms with the function ϕp(ω) with
m = 0.1. On the other hand, similar damage distributions are obtained for cases LGD-e and
LGD-p-25, i.e. the results for function ϕe(ω) with n = 5.0 and function ϕp(ω) with m = 2.5 are
comparable.

Fig. 8. Contour plots of damage ω for specimen D1: (a) CGD, (b) LGD-e, (c) LGD-c, (d) LGD-p-01,
(e) LGD-p-25

Fig. 9. Contour plots of damage ω for specimen D2: (a) CGD, (b) LGD-e, (c) LGD-c, (d) LGD-p-01,
(e) LGD-p-25

Figure 12 shows the diagrams of nominal stress σnom versus the horizontal strain ε for cases
CGD and LGD-p-25. Both quantities are calculated in the following way. The nominal stress is

σnom =
3

2

FS

TH2
(3.1)

and the horizontal strain is ε = uhor/Lm. It is seen that the value of the nominal stress grows
together with the decrease of the beam size. The response becomes also less brittle when the
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Fig. 10. Contour plots of damage ω for specimen D3: (a) CGD, (b) LGD-e, (c) LGD-c, (d) LGD-p-01,
(e) LGD-p-25

Fig. 11. Contour plots of damage ω for specimen D4: (a) CGD, (b) LGD-e, (c) LGD-c, (d) LGD-p-01,
(e) LGD-p-25

Fig. 12. Nominal stress vs horizontal strain diagrams – size effect study: (a) CGD, (b) LGD-p-25

specimen gets smaller. The CGD model demonstrates a much stronger size effect than the
LGD-p-25. The size effect can also be verified based on Fig. 13, which is prepared in logarithmic
scale for both axes. The nominal stress σnom is normalized by the tensile strength ft, while
the horizontal axis is determined by the proportion of beam heights H i to the height H for
specimen D4. The size effect is clearly visible for each case, but the results for CGD are over
the zone repesenting the experiment.
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Fig. 13. Size effect plot – comparison between the employed models and experiment

4. Conclusions

In general, non-local finite element models should be able to simulate the deterministic size effect,
because a localization limiter introduces an internal length scale which sets the size of the FPZ,
independent of the specimen size. Gradient damage models are equipped with such a internal
length scale, which can be a constant parameter as for the conventional gradient damage (CGD)
model, or a variable represented by a gradient activity function as for the localizing gradient
damage (LGD) model.

In the paper, three definitions of the gradient activity function are described and compared
in the simulations of the size effect. The function with exponential terms is known from Poh
and Sun (2017). The function defined by cosine terms is suggested by Wosatko (2022). The
function with polynomial terms, proposed by Borden (2012), de Borst and Verhoosel (2016), in
the context of the phase-field model as a degradation function, is used for the first time in the
LGD model. This function seems to have the most universal character.

The numerical analysis has been focused on a concrete beam under three point bending.
The mesh sensitivity study has confirmed that the CGD model exhibits an issue of spuriously
widened damage zone, and the LGD model is able to simulate a properly narrow localization
band. The results of the numerical size effect study are compared with the experimental results
provided by Grégoire et al. (2013). The obtained results are similar to those presented by Zhang
et al. (2021) and Negi et al. (2021) but here, the analysis is focused on the employment of various
gradient activity functions. Based on the results for the unnotched beam, it is demonstrated that
the LGD model properly simulates the size effect and, for carefully adopted model parameters,
the differences in the results for different gradient activity functions are small.
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4. Bažant Z.P., Oh B., 1983, Crack band theory for fracture of concrete, RILEM Materials and
Structures, 16, 155-177
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