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In order to further investigate dynamic characteristics of turbine runner blades under the
coupling effect of vibration and crack, in this article, a runner blade with a crack was taken
as the research object. The coupling effect of vibration and crack was analyzed, a nonlinear
dynamic model considering the coupling of the runner blade was developed, and the vibration
and fatigue characteristics were investigated. First, based on the contact characteristics of
the breathing crack surfaces in the runner blade under hydraulic excitation, a breathing crack
surface contact model was established. Subsequently, a nonlinear dynamic model considering
the coupling effect of vibration and crack was obtained. The crack surface contact force and
crack stiffness matrix were established and the vibration and fatigue characteristics were
analyzed. Finally, the feasibility of the dynamic model was verified by a case study, and
the dynamic and vibration fatigue characteristics under the coupling effect of vibration and
crack were revealed. The research results show that with propagation of the crack, the crack
surface contact force increases and the dynamic stress amplitude at the crack tip increases
as well. When the sum of the frequency of the hydraulic excitation and the crack surface
contact force acting on the runner blade is close to the natural frequency of the runner blade,
a combined resonance will occur. When the coupling effect of vibration and crack is taken
into consideration, the vibration fatigue crack propagation model is more accurate and can
provide a basis for fatigue strength and life prediction of runner blades.

Keywords: runner blade, vibration and crack coupling effect, dynamic model, nonlinear,
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1. Introduction

Runner blades are the main force bearing and transmitting components of hydraulic turbine
generator units. Under the action of long-term hydraulic excitation, runner blades often expe-
rience complex vibration phenomena, and long-term vibration can lead to generation of fatigue
cracks in different degrees and different ways. The generation of fatigue cracks can further ag-
gravate the vibration of runner blades, causing a significant decline in the dynamic performance
of the unit, and even affect its safety. In order to assess the operation efficiency and relia-
bility of hydraulic turbines, it is necessary to develop a dynamic model of runner blade with
cracks.

Currently, the available research on dynamic models of runner blades with cracks has
mainly considered the effect of fluid-solid coupled as well as the effects of hydraulic param-
eters, structural parameters, and crack parameters and has developed dynamic models of
runner blades through simulation and theoretical analysis. For instance, Yang et al. (2014)
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used a singular element of the Ansys software to simulate the tip effect of cracks. A two-
-dimensional finite element analysis model of the crack was developed, and then, a dynamic
model of a blade with crack was constructed. In another study, Fernandes et al. (2016) con-
structed a finite element model of a crack by using mixed-type finite elements, and devel-
oped a dynamic model of a cracked blade with different crack angles. However, under hy-
draulic excitation, the runner blade crack can expand changing the stiffness and resulting in
a change of the dynamic response and the crack propagation rate. The dynamic response and
crack propagation rate affect each other. This phenomenon is called the coupling effect be-
tween vibration and crack propagation. This coupling relationship can affect vibration char-
acteristics and lead to crack arrest and instability propagation of the runner blade. In order
to better reveal the vibration and fatigue characteristics of the runner blades, it is neces-
sary to take the coupling relationship between vibration and fatigue cracks propagation into
consideration.

At present, the research on the coupling of vibration and crack has been mainly focused on
two aspects: crack stiffness and crack surface contact force. In terms of crack stiffness, scholars
have considered changes in the stiffness during crack opening and closing, and have developed
breathing crack models. For example, Chondros et al. (2001) used a nonlinear model to simulate
crack stiffness and investigate vibration characteristics of a cracked beam. Liu and Chen (2010)
studied the coupling problem between vibration and fatigue crack propagation of cracked beams
using a single degree-of-freedom spring vibrator model and a nonlinear breathing crack stiffness
model. Nevertheless, the study ignored the opening-closing phenomenon of the breathing crack,
which is local contact behavior. Andreaus and Baragatti (2011) developed a contact finite el-
ement model to investigate forced vibration of structures containing cracks. The contact finite
element breathing crack model considered elastic deformation when simulating the opening and
closing of cracks, increasing the accuracy of the simulated stiffness changes. However, during
the opening and closing process of the breathing crack, contact forces are generated on the
crack surface, thus, it is necessary to study the contact forces on the crack surface in depth.
For instance, Kucher et al. (2007) considered the contact on a blade breathing crack surface as
a friction-free contact problem, introduced nonlinear contact stiffness at the crack as a penalty
factor, and obtained an approximate expression of the contact force on the crack surface. To
solve the convergence problem, Duan and Singh (2007) introduced a tangent smooth function
into the Kucher equation, combining the Lagrange multiplier and penalty function methods in a
contact problem. Bednarz (2017) considered the effect of crack parameters such as the crack gap
on the crack surface contact force of a blade structure, and established an expression for the crack
surface contact force using the penalty stiffness method. Although the crack stiffness and surface
contact force models constructed in the above research included structural material parameters
and crack parameters, the effect of vibration characteristics on the crack stiffness and surface
contact force was not taken into consideration. The vibration characteristics affect the crack
opening-closing cycle as well as the gap size of the crack during each cycle, which in turn affect
the crack stiffness and contact force characteristics on the crack surface. Therefore, it is necessary
to take into account the effect of vibration characteristics and develop a mathematical model
able to reflect the internal relationship between crack stiffness and crack surface contact force
characteristics.

Taking a turbine runner blade with cracks as the research object, this paper constructs
a breathing crack contact model of a runner blade, develops a crack stiffness model includ-
ing structural parameters, material parameters, crack parameters and vibration characteristics,
formulates an analytical equation of the crack surface contact force, and obtains a nonlinear
dynamic model which couples the vibration and crack propagation characteristics of the runner
blade. The dynamic characteristics are obtained by decoupling the dynamic model, and then,
the fatigue crack propagation model of the runner blade is obtained.
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2. Breathing crack contact model

The blade can be considered as a shell structure. In order to develop an analytical model for the
surface contact of breathing cracks in the blade excited by hydraulic excitation, the following
assumptions need to be introduced:
(1) It is assumed that the surface contact behavior of the breathing crack is based on a gradual
opening and closing process, the change trend of which is linear.

(2) When the crack surfaces contact with each other, the effect of axial displacement is rela-
tively small and can be ignored, and only the effect of the radial displacement along the
contact surfaces of the crack on the contact force is taken into consideration.

(3) According to the opening closing behavior characteristics of breathing cracks, the contact
between corresponding point pairs on the crack surfaces can be used to simulate this
behavior.

Based on the above assumptions, a breathing crack surface contact model of a runner blade
was developed, as shown in Fig. 1. According to the third assumption of the breathing crack
contact model, two groups of corresponding crack contact point-pairs were: point a to point b
(upper surface), and point a′ to point b′ (lower surface). During the actual movement of the
runner blade, two forms of contact behavior on the crack surface of the runner blade can occur.
The first form is displayed in Fig 1 (II) and the second in Fig. 1 (III).

Fig. 1. The breathing crack surfaces contact model of the turbine runner blade

3. Coupling effect of vibration and crack

3.1. Crack surface contact force

Based on the shell-like mechanical model of the breathing crack surface of the blade shown
in Fig. 1. When the crack opens, the surface contact force of the breathing crack in the local
coordinate system can be expressed as (Luo et al., 2019)

f ′a = −K
∗(ua − ub − bc)δ(ua − ub − bc) f ′b = −f

′

a (3.1)
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and

f ′a′ = −K
∗(ua′ − ub′ − bc)δ(ua′ − ub′ − bc) f ′b′ = −f

′

a′ (3.2)

Equation (3.1) is the crack surface contact force in the first contact form, f ′a and f
′

b, represent
the crack surface contact force acting on points a and b, respectively. Similarly, Eqs. (3.2) is the
crack surface contact force in the second contact form, fa′ and fb′ represent the crack surface
contact force acting on points a′ and b′, respectively. In addition, δ(ua−ub− bc) is the unit step
function, which expressed as

δ(ua − ub − bc) =
{
1 for ua − ub − bc ­ 0
0 for ua − ub − bc < 0

Moreover, ua and ub represent the radial displacement of points a and b, respectively, along the
x-axis in the local coordinate system, ua′ and ub′ represent the radial displacement of points a

′

and b′, respectively, along the x-axis in the local coordinate system, bc is the crack gap width,
and K∗ is the contact stiffness of the shell element, also called penalty stiffness, which can be
expressed as

K∗ =
EA2c

3(1− 2ν)V
(3.3)

where V is the volume of the crack contact area of a plane shell element, Ac is the crack contact
area of a plane shell element, ν is Poisson’s ratio of the runner blade material, and E is its elastic
modulus.
Subsequently, ua and ub in Eqs. (3.1) and ua′ , ub′ in Eqs. (3.2), can be calculated based on the

neutral surface of the crack, and the distance between the contact-point pair can be transformed
into the displacement of the corresponding points A and A′ on the neutral surface. When the
first contact form is expressed in the local coordinate system of the crack in Fig. 1 (II), ua and
ub in Eqs. (3.1) can be expressed as follows

ua = uA +
h

2
θyA ub = uA′ +

h

2
θyA′ (3.4)

where uA and uA′ represent the lateral displacement of points A and A
′ along the x-axis, θyA and

θyA′ represent the angular displacement of points A and A
′ around the y-axis, and h denotes

the thickness of the shell element.
When the second contact form is expressed in the local coordinate system of the crack in

Fig. 1 (III), ua′ and ub′ in Eqs. (3.2) can be expressed as follows

ua′ = uA −
h

2
θyA ub′ = uA′ −

h

2
θyA′ (3.5)

For the first contact form, the contact force acting on the crack surface of points a and b can be
obtained by substituting Eq. (3.4) into Eqs. (3.1)

f ′a = −K
∗

[
uA − uA′ +

h

2
(θyA − θyA′)− bc

]
δ
[
uA − uA′ +

h

2
(θyA − θyA′)− bc

]

f ′b = −f
′

a

(3.6)

For the second contact form, the contact force acting on the crack surface of points a′ and b′

can be obtained by substituting Eqs. (3.5) into Eqs. (3.2)

f ′a′ = −K
∗

[
uA − uA′ −

h

2
(θyA − θyA′)− bc

]
δ
[
uA − uA′ −

h

2
(θyA − θyA′)− bc

]

f ′b′ = −f
′

a′

(3.7)
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The radial and angular displacement of points A and A′ in the local coordinate system of
the crack in Eqs. (3.6) and (3.7) can be expressed by a displacement interpolation function.
Therefore, the contact force acting on the crack surface of points a and b in the first type of
contact can be expressed as

f ′a = −K
∗(ψ1Pu− bc)δ(ψ1Pu− bc) f ′b = −f

′

a (3.8)

where ψ1 is 1 × 20 row vector, and (ψ1)1 = bc/(2a), (ψ1)3 = [3h/(8a3)](2lcbc + b2c),
(ψ1)5 = (2abch − 3b2ch − 6bclch)/(8a2), (ψ1)16 = −bc/(2a), (ψ1)18 = −[3h/(8a3)](2lcbc + b2c),
(ψ1)20 = −(−2abch− 3b2ch− 6bclch)/(8a2), and the rest are zero, which is related to the struc-
tural parameters and crack parameters of the shell element. In addition, lc is the length of the
crack from the left end of the plane shell element.
Similarly, the crack surface contact force in the second type of contact can be expressed as

f ′a′ = −K
∗(ψ2Pu− bc)δ(ψ2Pu− bc) f ′b′ = −f

′

a′ (3.9)

where ψ2 is 1 × 20 row vector, and (ψ2)1 = bc/(2a), (ψ2)3 = −[3h/(8a3)](2lcbc + b2c),
(ψ2)5 = −(2abch − 3b2ch − 6bclch)/(8a2), (ψ2)16 = −bc/(2a), (ψ2)18 = [3h/(8a3)](2lcbc + b2c),
(ψ2)20 = (−2abch − 3b2ch − 6bclch)/(8a2), and the other elements are zero, which is related to
the structural parameters and crack parameters of the shell element.
According to Eqs. (3.8) and (3.9), the contact force on the crack surface is affected by

vibration characteristics, which are related to material parameters, such as the elastic modulus
and Poisson’s ratio, structural parameters such as length and thickness of the shell element,
crack parameters such as crack length, gap width, crack angle, contact area and contact area
volume, vibration characteristics including radial displacement along x-axis and the angular
displacement around the y-axis.

According to Eqs. (3.8) and (3.9), the crack surface contact force of a shell element includes
two step functions, (ψ1Pu−bc)δ(ψ1Pu−bc) and (ψ2Pu−bc)δ(ψ2Pu−bc), which are nonlinear
terms, thus, the crack surface contact force is a nonlinear force.

3.2. Crack stiffness matrix

According to deformation characteristics of plane shell elements with cracks under the action
of crack propagation, strain energy is released. In addition, according to the stress characteristics
of runner blades with cracks, considering only the strain energy released by type I (open type)
and type II (sliding type) cracks, the strain energy Pc released due to crack propagation can be
expressed as

Pc =
1

E

∫

Ac

(K2I +K
2
II) dAc (3.10)

where KI and KII correspond to mode I and II stress intensity factors at different crack inclina-
tion angles, which can be expressed as follows

KI = FI(α)σαλI(l)
√
πl KII = FII(α)ταλII(l)

√
πl (3.11)

where α is the crack propagation angle, σα is the normal stress along the crack propagation angle
direction at any time, τα is the shear stress along the crack propagation angle direction at any
time. FI(α) and FII(α) are the propagation angle correction coefficients of mode I and II cracks,
respectively, which can be determined based on the crack propagation angle α, λI(l) and λII(l)
represent the stress intensity factor correction functions of mode I and II cracks, respectively,
which can be determined based on relative length of the crack.
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Considering large geometric deformation of the runner blade and ignoring the effect of bend-
ing deformation of the y-axis, the displacement-strain relationship for the crack section of the
plane shell element can be expressed as

εlx =
∂u

∂x
+ z
∂2w

∂x2
+
1

2

(∂w
∂x

)2
εy = 0

γlxy =
∂u

∂y
+
∂v

∂x
+ 2z

∂2w

∂x∂y
+
∂w

∂x

∂w

∂y

(3.12)

Equation (3.12) can be transformed into a matrix form as follows

εc = S̃0u+
1

2

3∑

j=1

kju
TS̃ju (3.13)

where

εc =



εlx
0
γlxy


 S̃0 =




∂
∂x
0 z ∂

2

∂x2

0 0 0
∂
∂y

∂
∂x
2z ∂

2

∂x∂y


N

N =


Nu1 0 0 0 0 Nu2 0 0 0 0 Nu3 0 0 0 0 Nu4 0 0 0 0
0 Nv1 0 0 0 0 Nv2 0 0 0 0 Nv3 0 0 0 0 Nv4 0 0 0
0 0 Nw1Nθx1Nθy1 0 0 Nw2Nθx2Nθy2 0 0 Nw3Nθx3Nθy3 0 0 Nw4Nθx4Nθy4




and Nui, Nvi, Nwi, Nθxi, Nθyi (i = 1, 2, 3, 4) are form functions, kj (j = 1, 2, 3), where

k1 = [1, 0, 0]
T, ,k2 = [0, 1, 0]

T, k3 = [0, 0, 1]
T, S̃j (j = 1, 2, 3) is 20× 20 matrix, where

S̃1 =
[
∂NT
3

∂x
O20×1 O20×1

]



∂N3
∂x

O1×20
O1×20


 S̃2 =

[
O20×1 O20×1 O20×1

]



∂N3
∂x

O1×20
O1×20




S̃3 =
[
∂NT
3

∂y

∂NT
3

∂x O20×1

]



∂N3
∂x

O1×20
O1×20




and

N3 = [0, 0, Nw1, Nθx1, Nθy1, 0, 0, Nw2, Nθx2, Nθy2, 0, 0, Nw3, Nθx3, Nθy3, 0, 0, Nw4, Nθx4, Nθy4]

The relationship between stress and strain is

σc = Dεc (3.14)

where σc = [σlx , 0, τlxy]
T, D is the elastic matrix of the shell element, which can be expressed as

D =
E

1− ν2



1 ν 0
ν 1 0
0 0 1−ν

2


 (3.15)

By substituting Equations (3.11)1 to (3.14) into Eq. (3.10), the following expression can be
obtained

Pc =
1

2
uTkcu+

πl

4E

∫

Ac

3∑

j=1

3∑

k=1

uTkTj uh̃jku
Tkku dAc

+
πl

2E

∫

Ac

3∑

j=1

(uTg̃ju
Tkju+ u

TkTj ug̃
T
j u) dAc

(3.16)
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where

g̃j = S̃
T
0D
TλS̃j h̃jk = S̃

T
j D
TλDS̃k λ =



F 2I (α)λ

2
I 0 0

0 0 0
0 0 F 2II(α)λ

2
II




Subsequently, the shell element stiffness matrix kc caused by crack propagation can be ob-
tained

kc =
2πl

E

∫

Ac

S̃T0D
TλDS̃0 dAc (3.17)

According to Eq. (3.17), the crack-stiffness-matrix is affected by the vibration characteris-
tics, which are related to material parameters, such as the elastic modulus and Poisson’s ratio,
structural parameters such as length and thickness of the shell element, crack parameters such as
crack length, crack propagation angle, crack contact area and contact area volume, and vibration
characteristics such as normal and shear stress amplitudes.

4. Dynamic coupling model of vibration and crack

The relationship between the generalized coordinate vector i of element ui and the generalized
coordinate vector U of the shell structure in the global coordinate system can be expressed as

ui = RiBiU (4.1)

where Bi is the coordinate matrix between the unit number and system number, and Ri is the
conversion matrix between the coordinates unit i and the global coordinates.
For large geometric deformation and the crack surface contact force, the dynamic equation

of a runner blade with a crack can be written as follows

(Mt +Mp)Ü+CU̇+ (K−Kc)U = F+ F′ −MdÜd

+
3

2

n∑

i=1

3∑

j=1

∫

V

(GjiU
TkjU+ 2U

TGjikjU) dV

−
n∑

i=1

∫

Aci

3πli
2E

3∑

j=1

(G̃jiU
TkjU+ 2U

TG̃jikjU) dAci

−
n∑

i=1

πli
E

∫

Aci

3∑

j=1

3∑

k=1

kTj UH̃jkiU
TkkU dAci +

1

2

n∑

i=1

3∑

j=1

3∑

k=1

∫

V

kTj UHjkiU
TkkU dV

(4.2)

where Gji = B
T
i R
T
i gji, G̃ji = B

T
i R
T
i g̃ji, Hjki = B

T
i R
T
i hjkiRiBi, H̃jki = B

T
i R
T
i h̃jkiRiBi.

In addition, U, U̇ and Ü correspond to the generalized coordinate vector, velocity vector, and
acceleration vector in the global coordinate system of the blade with crack, Üd is the rigid body
acceleration vector, MdÜd is the self-excited inertial force of the system, Mt and Mp are the
mass matrix and additional mass matrix, respectively, C is the damping matrix,K is the stiffness
matrix, F and F′ are the hydraulic excitation and crack surface contact force, respectively.
According to Eq. (4.2), the dynamic equation of the blade with the crack includes the nonlin-

ear crack surface contact force, a nonlinear term representing the large geometric deformation of
the blade

∑n
i=1

∑3
j=1

∫
V (GjiU

TkjU+ 2U
TGjikjU) dV , and a nonlinear term representing the

crack strain energy of the blade −
∑n
i=1

∫
Aci
[πli/(2E)]

∑3
j=1(G̃jiU

TkjU + 2U
TG̃jikjU) dAci,
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therefore the dynamic equation of the blade with the crack is a nonlinear equation. In the dy-
namic equation of the blade, the F′ (nonlinear crack surface contact force) and KcU (elastic
restoring force) terms caused by the crack as well as the nonlinear terms generated by crack
strain energy of the blade include not only crack parameters, but also vibration parameters.
Consequently, this is a coupling relationship between vibration and the crack.

5. Vibration and fatigue characteristics of runner blades

5.1. Dynamic characteristics of runner blades

By solving Eq. (4.2) using the multi-scale method, the dynamic response of the blade with
the crack can be obtained

U = ϕη U̇ = ϕη̇ Ü = ϕη̈ (5.1)

where ϕ is the regular modal matrix and η is the corresponding modal coordinate array of the
blade. Subsequently, the approximate solution of the displacement response U of the blade with
the crack can be expressed as

U =
n∑

r=1

ηrϕ
(r) (5.2)

Based on the developed finite element model of the blade, the relationship between displace-
ment and strain is as follows

ε = S0u+
1

2

3∑

j=1

Sju
Tkju (5.3)

where ε = [εx, εy, γxy]
T, can be expressed as

εx(x, t) =
∂u

∂x
+ z
∂2w

∂x2
+
1

2

(∂w
∂x

)2
εy(x, t) =

∂v

∂y
+ z
∂2w

∂y2
+
1

2

(∂w
∂y

)2

γxy(x, t) =
∂u

∂y
+
∂v

∂x
+ 2z

∂2w

∂x∂y
+
∂w

∂x

∂w

∂y

(5.4)

where Sj (j = 1, 2, 3) is 20× 20 matrix, and

S1 =
[
∂NT
3

∂x
O20×1 O20×1

]



∂N3
∂x
∂N3
∂y

O1×20


 S2 =

[
O20×1

∂NT
3

∂y
O20×1

]



∂N3
∂x
∂N3
∂y

O1×20




S3 =
[
∂NT
3

∂y

∂NT
3

∂x
O20×1

]



∂N3
∂x
∂N3
∂y

O1×20




The relationship between stress and strain is

σ = Dε (5.5)

Refer to Eq. (3.15) for theDmatrix above. By combining Eqs. (4.1), (5.3) and (5.5), the dynamic
stress at any position of the blade with the crack can be obtained as follows

σ = DS0RiBiU+
1

2

3∑

j=1

DkjU
TBTi R

T
i SjRiBiU (5.6)
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5.2. Vibration fatigue characteristics of blades with cracks

According to the Pairs fatigue crack propagation model, the fatigue crack propagation rate
of a runner blade with a crack can be expressed as

dl

dN
= C0(∆K)

m (5.7)

where l is the crack length of the member with the crack, N is the number of cycles of dynamic
stress, m and C0 are material constants of the members with the crack, and ∆K is the stress
intensity factor amplitude. Considering the contact and vibration characteristics of the crack
surface, the amplitude of the stress intensity factor can be expressed as

∆K =
1

2
cos
α

2
[∆KI(1 + cosα)− 3∆KII sinα] + F (l)

∆f(U)√
πl

(5.8)

where F (l) is the crack shape correction factor, which is related to the crack size and which
can be obtained from the stress intensity factor manual, ∆KI and ∆KII are the amplitudes of
KI and KII, respectively, and ∆f(U) is the amplitude of the contact force acting on the crack
surface, which can be determined by combining Equations (3.8), (3.9) and (5.2).

By substituting Eq. (5.8) into Eq. (5.7), the crack propagation rate model of the runner
blade with the crack can be expressed as

dl

dN
= C0

(1
2
cos
α

2
[∆KI(1 + cosα)− 3∆KII sinα] + F (l)

∆f(U)
√
πl

)m
(5.9)

According to Equations (5.6) and (5.9), due to the coupling effect between vibration and the
crack, the contact force on the crack surface and the crack stiffness change continuously with
propagation of the crack, resulting in a continuous change of the dynamic stress characteris-
tics. Consequently, the crack propagation model of the runner blade is related not only to the
amplitude of dynamic stress, but also to the amplitude of the contact force on the crack surface.

6. Case study

In this Section, a large Francis turbine in Guangxi is taken as an example. The main param-
eters of the runner are as follows: rated speed of 75RPM, rated head of 59.4m, rated flow of
Q0 = 580m

3/s, rated working condition of 302.5MW, maximum runner diameter of 8.33m,
height of 5.19m, upper crown and lower ring mass of 101.4 · 103 kg and 68 · 103 kg, respectively,
and upper crown and lower ring moment of inertia of 8.52 · 105 kg·m2 and 1.15 · 106 kg·m2, re-
spectively. In total, 13 blades are evenly distributed in the runner. A single blade has mass
of 7.7 · 103 kg, width of 1.65m, thickness of 0.62m, elastic modulus of E = 210GPa, material
density of 7.85 · 103 kg/m3, and Poisson’s ratio of ν = 0.3.
In actual operation, due to the thin water outlet edge of the blade and the stress concentration

phenomenon at the “T-shaped” connection between the blade and upper crown, penetrating
cracks often appear at the water outlet edge of the blade. Table 1 lists the statistical values
of through cracks found on the outlet edge of the blade of a hydropower station. The runner
blade material is ZG0Cr13Ni5Mo, the material constant is m = 3.65, C0 = 3.46 · 10−10 and its
allowable stress is σ = 43.27 · 107 Pa.
In order to verify the correctness of the developed model, No. 3 blade under rated working

conditions was taken as the research object. Based on the characteristics of hydraulic excitation
acting on the blade, a crack 100mm away from the upper crown was analyzed. It was assumed
that the blade contained only a single crack. Two different crack lengths of 100mm and 150mm
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Table 1. Statistical table of through cracks on the water outlet edge of blades of a hydropower
station

Blade number Crack location Crack type Crack size

3 100mm from upper crown Through crack 150mm

8 20mm from lower ring Through crack 90mm

9 30mm from upper crown Through crack 140mm

11 50mm from lower ring Through crack 130mm

Table 2. Each node direction displacement representation symbols of the crack blade

Displacement in each
Representation symbol

node direction

Lateral displacement U1, U6, U11, U16, U21, U26, U31, U36,
along X-axis U41, U46, U51, U56
Lateral displacement U2, U7, U12, U17, U22, U27, U32, U37,
along Y -axis U42, U47,? U52, U57
Lateral displacement U3, U8, U13, U18, U23, U28, U33, U38,
along Z-axis U43, U48, U53, U58
Angular displacement U4, U9, U14, U19, U24, U29, U34, U39,
around Z-axis U44, U49, U54, U59
Angular displacement U5, U10, U15, U20, U25, U30, U35, U40,
around Y -axis U45, U50, U55, U60

Fig. 2. Finite element model of the runner blade with cracks

and crack gap widths of 1.6mm and 2mm were investigated. In order to simplify the simulation
model, the runner blade was divided into 9 rectangular elements, each blade had 60 degrees-of-
-freedom, the element number was represented by 1○, 2○, A1, A2,..., indicated the crack number,
the node numbers were represented by 1, 2, . . . (Table 2). The finite element model of the blade
with the crack is illustrated in Fig. 2.
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Time-domain simulation diagrams of the contact force on the crack surface and dynamic
stress at the crack tip were obtained according to Eqs. (3.8), (3.9) and (5.6), for a crack length
of 100mm and crack gap width of 1.6mm. The results are shown in Figs. 3a and 3b, respectively.
For a crack length of 150mm and crack gap width of 2mm, the results are shown in Figs. 4a
and 4b, respectively.

Fig. 3. (a) Simulation curve of the crack surfaces contact force and (b) time domain simulation curve
crack-tip dynamic stress when the crack length was 100mm and the crack gap width was 1.6mm

Fig. 4. (a) Simulation curve of the crack surfaces contact force and (b) time domain simulation curve
crack-tip dynamic stress when the crack length was 150mm and the crack gap width was 2mm

According to Figs. 3a and 4a, the contact force on the crack surface increases with prop-
agation of the crack. In addition, as the crack gap width increases, the period of the contact
force on the crack surface increases as well. According to Figs. 3b and 4b, the dynamic stress
amplitude at the crack tip increases with propagation of the crack.

As shown in Figs. 5a and 5b, the correctness of the developed model is verified. The fracture
module in Ansys workbench was used to establish the crack, the surface unit surface body was
inserted at the crack location and the grid was divided, dynamic load was applied and transient
dynamic analysis was carried out. The results show that the closer the crack position is, the
greater is the dynamic stress. Among them, the dynamic stress at the crack is 32.7MPa and the
mean dynamic stress in Fig. 3b is 30.1MPa, the error is 2.6MPa, and the error rate is 7.9%.

According to Eq. (3.17), the crack stiffness increases due to propagation of the crack, which
leads to a continuous reduction of the natural frequency of the runner blade with the crack.
Moreover, width of the crack gap increases due to propagation of the crack, and the period
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Fig. 5. (a) Blade crack model, (b) crack position force diagram

of the contact force on the crack surface increases as well. When the sum of the frequency
of hydraulic excitation and the crack surface contact force acting on the blade is close to the
natural frequency of the blade, a combined resonance of the runner blade will be caused. Based
on the characteristics of hydraulic excitation acting on the blade, when the crack extends to
132mm, the combined resonance will occur. By comparing Figs. 3b and 4b, it can be observed
that when the crack length is 150mm, the dynamic stress at the crack tip was more irregular
than that when the crack length was 100mm, which also provides a theoretical basis for unstable
propagation of the crack under resonance.

Fig. 6. Simulation curve of fatigue crack propagation

In Fig. 6, when only dynamic stress is considered without considering the coupling effect of
vibration and crack, the crack propagation life curve is the blue line; and when the contact force
and dynamic stress on the crack surface are considered, taking the coupling effect of vibration
and crack into consideration, the crack propagation life curve is the one red. It can be observed
that when the working condition was only the rated load, the crack expanded to the length of
150mm after 4.53 ·107 s (524.3 days). When the coupling effect of vibration and crack was taken
into consideration, the crack propagation to 150mm took 4.42 · 107 s (511.6 days). According to
(Yang et al., 2014)], the turbine blades are mainly operated near the rated working conditions
and are stopped for inspection every 4.25 · 107 s (491.7 days). When considering the coupling
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effect of vibration and crack, the error between the simulation and test results is 4.04%, while,
without considering the coupling effect of vibration and crack, the error is 6.63%. This indicates
that the vibration fatigue crack propagation model considering the coupling effect of vibration
and crack is more accurate, and provides a basis for fatigue strength and life prediction of blades.

7. Conclusions

• With propagation of the crack, the contact force on the crack surface increases, its period
increases, and the dynamic stress amplitude at the crack tip increases as well.

• The propagation of the crack increases the crack stiffness, which leads to a continuous
reduction in the natural frequency of the blade. When the sum of the frequency of hydraulic
excitation and the crack surface contact force acting on the blade is close to the natural
frequency of the blade, amd a combined resonance occurs, which also provides a theoretical
basis for unstable propagation of cracks under the resonance.

• When the coupling effect of vibration and crack is taken into consideration, the developed
vibration fatigue crack propagation model is more accurate, and can provide a basis for
prediction of the fatigue strength and life of the blades.

Acknowledgments

The research was supported by a doctoral start-up fund of Guangxi University of Science and Technol-

ogy (No. 03210126) as well as National Natural Science Foundation of China under grants No. 22262005.

The supports are gratefully acknowledged.

References

1. Andreaus U., Baragatti P., 2011, Cracked beam identification by numerically analysing the
nonlinear behaviour of the harmonically forced response, Journal of Sound and Vibration, 330, 4,
721-742

2. Arvin H., Bakhtiari-Nejad F., 2011, Non-linear modal analysis of a rotating beam, Interna-
tional Journal of Non-Linear Mechanics, 46, 6, 877-897

3. Bednarz J., 2017, Operational modal analysis for crack detection in rotating blades, Archives of
Acoustics, 42, 1, 105-112

4. Chondros T.G., Dimarogonas A.D., Yao J., 2001, Vibration of a beam with a breathing
crack, Journal of Sound and Vibration, 239, 1, 57-67

5. Cui W., Wang J., 2014, Coupling analysis of vibration and crack propagation for a cracked beam
at resonant state (in Chinese), Journal of Propulsion Technology, 10, 1404-1411

6. Duan C., Singh R., 2007, Dynamic analysis of preload nonlinearity in a mechanical oscillator,
Journal of Sound and Vibration, 301, 3, 963-978

7. Fernandes R., El-Borgi S., Ahmed K., et al., 2016, Static fracture and modal analysis simula-
tion of a gas turbine compressor blade and bladed disk system, Advanced Modeling and Simulation
in Engineering Sciences, 3, 1, 1-23

8. Guangxi Electric Power Experimental Research Institute, Guangxi University, Datang Yantan Hy-
dropower Plant. Dynamic stress test and crack cause analysis report of runner blade of No. 3 unit
in Yantan power plant, Nanning: Guangxi Electric Power Experimental Research Institute, 1998

9. He Q., Peng H., Zhai P., Zhen Y., 2016, The effects of unbalance orientation angle on the
stability of the lateral torsion coupling vibration of an accelerated rotor with a transverse breathing
crack, Mechanical Systems and Signal Processing, 75, 330-344



88 Y. Wang et al.

10. Kang J.W., Zhang J.F., Liu B.C., Huang T., 2008, Improved thermal stress analysis for
castings, International Journal of Cast Metals Research, 21, 1-4, 324-329

11. Khorrami H., Rakheja S., Sedaghati R., 2017, Vibration behavior of a two-crack shaft in a
rotor disc-bearing system, Mechanism and Machine Theory, 113, 67-84

12. Kucher O., Kharyton V., Laine J.P., et al., 2007, Harmonic balance method implementation
for crack breathing process simulation, Aerospace Technique and Technology, 44, 8, 150-156

13. Li Z.J., Wang Y.J., Li T.H., Ma X., Ji J., 2019, Effect of crack surface contact forces on
vibration fatigue characteristics of beam structure, Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 41, 12, 560

14. Li Z.J., Wang Y.J., Liu F.X., et al., 2020, The hydrodynamic pressure characters acting on
a turbine runner blade under the vortex rope in draft tube (in Chinese), Journal of Guangxi
University (Natural Science Edition), 45, 6, 1351-1358

15. Liu W.G., Barkey M.E., 2018, The effects of breathing behaviour on crack growth of a vibrating
beam, Shock and Vibration, 3, 2579419.1-12

16. Liu W.G., Chen G.P., 2010, Coupling analysis of vibration fatigue crack propagation for breath-
ing cracked beam (in Chinese), China Mechanical Engineering, 21, 23, 2798-2802

17. Luo Y., Presas A., Wang Z., Xiao Y., Wang H., Jiang X., 2019, Operating conditions
leading to crack propagation in turbine blades of tidal barrages. Influence of head and operating
mode, Engineering Failure Analysis, 104254

18. Paris P., Erdogan F., 1963, A critical analysis of crack propagation laws, Journal of Basic
Engineering, 85, 4, 528-534

19. Saito A., Castanier M.P., Pierre c., Poudou O., 2009, Efficient nonlinear vibration anal-
ysis of the forced response of rotating cracked blades, Journal of Computational and Nonlinear
Dynamics, 4, 1, 53-63

20. Wang Y.J., Li Z.J., Li T.H., Liu F., Fu A., 2021, A mathematical model of the hydrodynamic
pressure acting on a turbine runner blade under the rotor-stator interaction based on the quasi-
-three dimensional finite element method, Mathematical Problems in Engineering, 2021, 3, 1-11

21. Yang L.F., Xu H., She Z.P., et al., 2014, Stress intensity factor for mixed mode cracks by
Williams element (in Chinese), Journal of Ship Mechanics, 18, 1, 115-124

22. Yang X.F., Swamidas A.S.J., Seshadri R., 2001, Crack identification in vibrating beams using
the energy method, Journal of Sound and Vibration, 244, 2, 339-357

23. Zhao J.S., 2003, Fracture Mechanics and Fracture Physics (in Chinese), Wuhan, Huazhong Uni-
versity of Science and Technology Press

24. Zhu D., Tao R., Xiao R.F.A., Pan L., 2020, Solving the runner blade crack problem for a
Francis hydro-turbine operating under condition-complexity, Renewable Energy, 149, 298-320

Manuscript received June 21, 2023; accepted for print October 13, 2023


