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ESTIMATION OF STRESS INTENSITY FACTOR FOR SURFACE CRACKS
IN THE FIRTREE GROOVE STRUCTURE OF A TURBINE DISK USING
POOL-BASED ACTIVE LEARNING WITH GAUSSIAN PROCESS
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Calculation of the stress intensity factor K is a crucial and difficult task in linear elastic
fracture mechanics. With the capacity to solve complex input-output problems of an under-
lying system, machine learning is especially useful in the calculation of K. However, when
faced with complex systems, such as the firtree groove structure of a turbine disk, the data-
-consuming issue has always been a thorny problem in K-solutions combined with machine
learning studies for a long time. In this paper, a novel K-solution method called PA-GPR
(Pool-based Active learning with Gaussian Process Regression) for the calculation of the
stress intensity factor for surface cracks in the firtree groove structure of a turbine disk is
proposed. Using the pool-based active learning strategy, the proposed K-solution method
could make the GPR model have a great regression performance with a few samples re-
quired. In the pool-based active learning strategy analysis, the learning function based on
greedy sampling is proposed to select samples with a high contribution to the training of
the GPR model. The calculation of K for a semi-elliptical surface crack in the firtree groove
structure is evaluated to verify the accuracy and effectiveness of the proposed method. The
results show that this novel method is accurate, time-saving and effective.

Keywords: damage tolerance, stress intensity factor solutions, machine learning, active
learning

1. Introduction

Probabilistic damage tolerance analysis is essential for the assessment of integrity and reliabil-
ity in practical engineering applications such as high-temperature components in aero engines
(Basista and Węglewski, 2006; Huang et al., 2018, 2019; P. Li et al., 2018; Y. Li et al., 2019;
Rinaldi et al., 2006), high-speed railway components, etc. In the probabilistic damage tolerance
assessment of a turbine disk, it is necessary to carry out crack growth calculations in locally
complex structures (such as the firtree groove structure, etc.) many times (up to 106) under
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the assumption of the existence of an initial defect or crack, the convergence failure risk can be
obtained by a statistical method.

The firtree groove structure is one of the most critical and complicated regions of a turbine
disk (Yuan et al., 2021). In the aspect of structure, the firtree groove structure is composed of
many pairs of tenons with complex geometric characters. Meanwhile, the firtree groove structure
bears many complicated loads, such as the centrifugal force of the blade, aerodynamic bending
moment, thermal load and vibration load (Yang et al., 2017). The complexity of geometry
and load makes the firtree groove structure one of the most vulnerable parts of the turbine
disk.

Consequently, due to the complexity of geometry and load of the firtree groove structure,
it is difficult to evaluate the crack growth, especially the stress intensity factor K for (Cui and
Wang, 2011; Witek, 2012).

Up to now, lots of K-solution methods have been developed for cracks in the firtree groove
structure of a turbine disk, such as the finite element method (FEM) (Boulenouar et al., 2014;
Huang et al., 2021; Moustabchir et al., 2015, 2017; Shlyannikov et al., 2016) and machine learning
(ML). The finite element method usually becomes a reliable method to generate accurate K
solutions. However, the accuracy of the finite element method is greatly influenced by the number
of mesh elements of the model. When faced with a complex structure like the firtree groove
structure, this number must be large. That means, consequently, a high computational cost of
the finite element method.

Recently, K-solutions combined with ML have become a topic of growing interest (Keprate
et al., 2017; Liu et al., 2020; Muñoz-Abella et al., 2015; Xu et al., 2021). With the capacity to
solve complex input-output problems of an underlying system, ML is especially useful in the
calculation of K. These solutions proceed in three steps (in this paper, the method that follows
these steps is called the traditional ML method): (1) calculating the limit number of K data as
the training data set; (2) training an ML model using training the data set and (3) predicting
values of K using the trained ML model.

However, the data-consuming issue has always been a thorny problem in the K-solutions
combined with ML studies for a long time. For regression problems, the generalization ability of
a ML model is always related to a sample size of the training data set. A large quantity of data
is usually required to get accurate results in the calculation of K. This problem is particularly
acute in the face of complex structures, such as turbine disk grooves, etc. In some studies, the
sample size of the training data set has even reached 106.

The active learning strategy is an efficient solution to this data-consuming problem. This
strategy first uses the initial training data set T to train the regression ML model. Then the
initial training data set T is enriched by adding new sample points based on the defined learning
function. And finally, a new surrogate model is retained using the updated T , then the above-
mentioned steps are repeated till the convergence criterion is satisfied.

This study presents a novel K-solution method called PA-GPR (Pool-based Active learning
with Gaussian Process Regression) for the calculation of the stress intensity factor for sur-
face cracks in the firtree groove structure of a turbine disk. The paper is organized as fol-
lows. Firstly, some problems of K-calculation for surface cracks in the firtree groove struc-
ture will be described. Then, details and principles of the proposed PA-GPR are elabo-
rated, including the learning function and the convergence criterion. To demonstrate the
accuracy and effectiveness of the proposed method, a calculation of K case is presented,
i.e., calculation of K for a semi-elliptical surface crack in the firtree groove structure of
a turbine disk. Furthermore, the mechanism of the learning function of active learning is
discussed.
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2. Problem description

The firtree groove structure is one of the most critical and complicated regions of turbine disks.
As shown in Fig. 1, the geometry features include the number of firtree teeth n, flank length l,
contact angle α, flank angles β and γ, outer radius R0 and inner radius R1 (Meguid et al., 2000).
Moreover, different kinds of loads including the centrifugal force, the thermal load, vibration load
are applied to the firtree groove structure. The intricate structure and load conditions make the
stress and fracture analysis a hard task. Figure 2 shows a typical stress distribution of the firtree
groove structure.

Fig. 1. Schematic of the firtree groove structure

Fig. 2. An example of von Mises stress distribution of the firtree groove structure (the values on the
scale are von Mises stress values, unit: MPa)

Cracks may occur at the firtree groove structure (especially at the bottom) due to cyclic
loading or initial defects. Considering the requirement of the turbine disk failure risk, it is
necessary to develop an efficient and rapid method for calculation of the K for a large number
of repeated crack growth evaluations.

The effective K-solution method proposed in this paper focuses on the calculation of the
stress intensity factor for surface cracks in the firtree groove structure. As shown in Fig. 3,
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a semi-elliptical surface crack is located at the transition arc between the fifth teeth and the
bottom of the groove. It is assumed that the leading edge of the crack keeps an elliptical shape
during the propagation process. Key dimensional parameters of the crack are {a, c, ξ}, where
a and c mean the depth and half-length of the surface crack, respectively. The ξ denotes the
position of point P on the edge of the crack, ξ = |AC|/|AB|, as shown in Fig. 4.

Fig. 3. A semi-elliptical surface crack in the firtree groove structure of a turbine disk

Fig. 4. The geometry configuration of a semi-elliptical surface crack in the firtree groove structure of a
turbine disk

For a particular type of the firtree groove structure, the stress distribution and shape of the
crack are certain, but the initial crack size is random. That means the dimensional parameters
{a, c} are random variables. Meanwhile, in order to accurately evaluate the value of K, it is
necessary to calculate K at any point (point P as shown in Fig. 4) along the crack front, i.e.,
0 ¬ ξ ¬ 1.

3. Pool-based Active learning with Gaussian Process Regression (PA-GPR)

The proposed PA-GPR method includes two critical parts, the GPR algorithm and the pool-
-based active learning strategy. The GPR algorithm is adopted for the prediction ofK. The pool-
-based active learning strategy is used in the training progress of the GPR model, making the
trained GPR model have a great generalization ability with only a few training samples required.
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3.1. PA-GPR for calculation of K

The Gaussian process regression, belonging to supervised learning, is a non-parametric model
for regression analysis of data using Gaussian processes (Rasmussen, 2003). It can be written as

f ∼ GP (m(x), k(x, x′)) (3.1)

where m(x) and k(x, x′) represent the mean and covariance function, respectively. Equation
(3.1) means the function f is distributed as a Gaussian process with the mean function m and
covariance function k. More details could be seen in the literature (Rasmussen, 2003).
The flow diagram of the proposed PA-GPR method is shown in Fig. 5, and it is based on

the following steps:

(1) Generate a candidate sample pool S including NS samples. In the calculation process
of K, the input variables are parameters that affect the stress intensity factor results, such
as crack depth and dimensions of the cracked structure. The candidate sample pool S is
generated by random sampling based on the distribution or range of the input variables.

(2) S = L∪U, L∩U = ∅. L denotes the labeled data set and U is the unlabeled data set. The
labeled data set L consists of N samples picked from S. L = {X1,X2, . . . ,XN}. Compared
with the sample size of S, N is typically several orders of magnitude smaller.

(3) After definition of the labeled data set L, the corresponding response Y should be
computed, i.e., Y = {K1,K2, . . . ,KN}. Then a training data set T should be defined,
T = {L,Y}.

(4) Train the GPR model using T.

(5) If the convergence criterion (mentioned in Section 3.3) is not satisfied, the training data
set T should be enriched by the learning function (mentioned in Section 3.2). In detail,
the new sample Xnew could be selected from the unlabeled data set U using the learning
function. And the corresponding response Knew should be calculated. Then the train-
ing data set T becomes the new training data set Tnew by adding a new sample, i.e.,
Tnew = T ∪ {Xnew,Knew}.

(6) Retrain the GPR model using Tnew. Repeat steps (4) to (5) until the convergence criterion
is satisfied.

3.2. Learning function

Different sample points in the same sample pool have different degrees of contribution to
training of the GPR model. In the traditional machine learning method for regression, there are
often spatial overlaps or approximate overlaps among the sample points in the training data set,
which makes these samples a poor contribution to training of the GPR model. On the contrary, if
the selected samples can avoid spatial overlaps or approximate overlaps situations, these samples
will make a high contribution to training of the GPR model. A more detailed explanation could
be seen in Section 5. Consequently, the GPR model could have a great generalization ability
with only a few samples required, as long as samples with great contributions are selected by
the proposed learning function from the unlabeled data set U.
Inspired by the greedy sampling (GS) strategy, this paper proposes a GS-based learning

function to pick key samples with great contributions to training of the GPR model (Wu et al.,
2019; Yu and Kim, 2010). In different application situations, two different learning functions,
i.e., GS on the inputs and GS on the outputs are proposed.

3.2.1. GS on the inputs

To achieve diversity in the input space, GS on the inputs could be elaborated as follows.
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Fig. 5. Flowchart of the proposed PA-GPR

It is assumed that the labeled data set L consists of N samples Xi (i = 1, 2, . . . , N) picked
from S. For each of the remaining NS −N samples Xj (j = N + 1, N + 2, . . . , NS), its distance
to each of the labeled data set L could be calculated as

dXij = ‖Xi −Xj‖2 (3.2)

where i = 1, 2, . . . , N , j = N + 1, N + 2, . . . , NS . Then the shortest distance from the j-th
sample Xj to N labeled samples, dj could be written as

dXj = min(d
X
ij ) (3.3)

where j = N + 1, N + 2, . . . , NS .
The learning function based on GS on the inputs is proposed as

Xnew = argmax(d
X
j ) (3.4)

the new sample point (Xnew, to be added in T) could be chosen fromU by this learning function.

3.2.2. GS on the outputs

In some application situations, the learning function based on GS on the outputs is more
effective than GS on the inputs. Similar to the learning function based on GS on the inputs,
details of the learning function based on GS on the outputs could be explained as follows.
Similarly, it is assumed that the training data set T consists of N samples {Xi,Ki}

(i = 1, 2, . . . , N). The trained GPR model could predict the value of the corresponding response
for each of the remaining NS −N samples as

K̂j = f(Xj) (3.5)

where j = N + 1, N + 2, . . . , NS .
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Then the distance on the outputs from each of the remaining NS − N samples Xj
(j = N + 1, N + 2, . . . , NS) to each of the labeled data set L could be calculated by

dKij = ‖Ki − K̂j‖2 (3.6)

where i = 1, 2, . . . , N , j = N + 1, N + 2, . . . , NS . Then, the shortest distance on the outputs
from the j-th sample Xj to N labeled samples, dj, could be written as

dKj = min(d
K
ij ) (3.7)

where j = N + 1, N + 2, . . . , NS .
The learning function based on GS on the outputs is proposed as

Xnew = argmax(d
K
j ) (3.8)

the new sample point (Xnew, to be added in T) could be chosen fromU by this learning function.
For GS on the inputs or outputs, it is difficult to determine which method is more effective.

For validation cases in this research, two learning functions are both applied to find the learning
function with better performance.

3.3. Convergence criterion

In this study,NV labeled data (not belonging to the labeled data set L) are randomly selected
to make up the validation set. The GPR model has a good generalization ability when the mean
relative validation error reaches convergence, which could be written as

1

NV

NV∑

p=1

|K̂p −Kp|

Kp
¬ ε (3.9)

where ε means the convergence threshold.

4. K-solution using PA-GPR

In this Section, the PA-GPR method is applied to the calculation of K for a semi-elliptical
surface crack in a turbine disk firtree groove structure. The prediction accuracy of the PA-GPR
is firstly discussed. Then, two different K-solution methods, PA-GPR and the traditional ML
method are compared in order to evaluate which one requires fewer samples. Here, the traditional
ML model is also GPR, where the training data set is generated by random sampling from the
candidate sample pool S.
According to the surface crack in the firtree groove structure described in Section 2, the

input variables are X = (a, c, ξ), and the output variable is the stress intensity factor K. Each
of the input variable is defined as

c, a ∈ [0.1mm, 5mm]
a

c
∈ [0.1, 1] ξ ∈ [0, 1] (4.1)

105K samples for surface cracks in the firtree groove structure subjected to the centrifugal force
and temperature are calculated using the professional fracture analysis software FRANC3D to
make up the candidate sample pool S. The FEM crack mesh generated by FRANC3D is shown
in Fig. 6. In addition, NV = 200, ε = 1.62%. The mean relative validation error of this ML model
is 1.62%. So, the convergence threshold ε value is set to 1.62%, to evaluate the effectiveness of
the PA-GPR by comparing the sample size with the identical mean relative validation error. The
initial labeled data set consists of 100 samples. After the application of two learning functions
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Fig. 6. The FEM crack mesh generated by FRANC3D

(GS on the outputs or inputs) in this validation case, it is found that the sample size is smaller
when using the learning function based on GS on the inputs. Consequently, the learning function
based on GS on the inputs is adopted.

The plot of the predicted K using PA-GPR vs. true K calculated by FRANC3D is shown in
Fig. 7. It is shown that the 200 observation points are sited around the perfect prediction line.
The K results with different dimensional parameters calculated by the proposed PA-GPR are
compared with those calculated by FRANC3D (as shown in Fig. 8). It can be observed that the
K result driven by PA-GPR is very close to the result calculated by FRANC3D.

Fig. 7. Predicted K using PA-GPR vs. true K (calculated by FRANC3D) for a semi-elliptical surface
crack in a turbine disk firtree groove

When the convergence is reached, the numbers of required samples of PA-GPR and the
traditional ML method are shown in Table 1. That means, the proposed PA-GPR is two orders
of magnitude more efficient than the traditional ML method.

It should be noted that the proposed PA-GPR adds time for sample selection. However,
compared to the time to get the label of the reduced samples (calculating K by the finite
element method or other K-solution method), the time for sample selection is negligible.
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Fig. 8. K results with different dimensional parameters: (a) a = 0.53mm, c = 0.58mm,
(b) a = 0.65mm, c = 2.49mm, (c) a = 3.42mm, c = 3.47mm and (d) a = 0.65mm, c = 3.31mm

Table 1. The sample size required for PA-GPR and the supervised ML method

Traditional ML method PA-GPR

The number of
5E4

1135
required samples (including initial 100 samples)

5. Discussion

The ML-based method becomes an effective stress intensity factor solution in the recent linear
elastic fracture mechanics studies. However, for traditional ML regression problems, a good
regression performance always means a lot of labeled training samples. That causes a time-
-consuming issue.
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In traditional machine learning for regression, there are often spatial overlaps or approximate
overlaps between the sample points in the training data set. For example, there are two sample
points, (a, c, ξ,K) = (3.3738, 1.5372, 0.1961, 21.1314) and (3.4334, 1.3629, 0.8013, 21.1316) in the
training data set for the traditional ML model in Section 4. These two sample points approx-
imately overlap in Euclidean space, which makes the contribution of these two sample points
to training of the model equal to the contribution of only one sample point. This phenomenon
results in waste of sample points. Further, spatial overlaps or approximate overlaps of many
sample points make the training of the regression model time-consuming.
As mentioned in this paper, the pool-based active learning strategy could solve this time-

-consuming problem by selecting specific samples using the learning function. The purpose of
GS is to achieve diversity of sample space (inputs space or outputs space). Whether to choose
GS on the inputs or outputs space depends on a specific application situation.
Diversity of the sample space could avoid the waste of sample points. This is also the main

idea of the learning function based on GS. Specifically, the learning function based on GS
could pick only one sample point among samples with spatial overlaps or approximate overlaps
situations into the training data set. When the action of picking is done, sample points (picked
by the learning function) of the training data set could cover the range of the independent (or
dependent) variables. That achieves diversity of the sample space using a few sample points.
Further, the regression model would have a great regression performance using a few sample
points.

Fig. 9. The geometry configuration of a semi-elliptical surface crack in a finite plate

A calculation case is evaluated to visualize the diversity of the inputs space and the mecha-
nism of the learning function based on GS. In this case, the calculation of K for a semi-elliptical
surface crack in a finite plate is evaluated. The data for this validation case were obtained from
the literature (Newman and Raju, 1981). The geometry configuration of a semi-elliptical surface
crack in a finite plate is shown in Fig. 9, where the plate width is 2b = 50mm, and the plate
thickness is t = 10mm. The depth and half-length of the surface crack are represented by a
and c, respectively. The plate is subjected to a remote uniform tension load with the stress
ratio R = 0. This uniform tension load could be characterized by σ = 800MPa. The input
variables are X = (a, c), and the output variable is the stress intensity factor K. Each of the
input variables is defined as

ln a ≃ N(−1.346, 0.49)
a

c
∈ [0.2, 1] (5.1)

where the depth of the surface crack a is assumed to fit lognormal distribution (Liu and Mahade-
van, 2009), and its mean value and standard deviation are 0.33mm and 0.26mm, respectively.
105 samples are randomly sampled to make up the candidate sample pool S based on the distri-
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bution or range of input variables. as shown in Eq. (5.1). In detail, for a sample X0 = (a0, c0),
a0 is sampled based on the lognormal distribution in Eq. (5.1) using the Box Muller method.
Then, values of a0/c0 could be sampled by a uniform sampling method based on the distribution
in Eq. (5.1).

100 samples are selected by the learning function based on GS on the inputs and randomly
sampled, as shown in Fig. 10a and 10b, respectively. Meanwhile, a candidate sample pool in-
cluding 104 samples is given in Fig. 10c, which shows the range of inputs space as a control.

As Fig. 10b shows, there are many sample points with spatial overlaps or approximate
overlaps situations clustered in the dashed red line ellipse, while there are a few sample points
in the dashed blue line circle. If the regression model is trained using these 100 samples, the
imbalance situation will inevitably cause a bad regression performance.

Compared with Fig. 10b, Fig. 10a shows a good distribution of sample points in the sample
space. Sample points, selected by the learning function, are evenly distributed in the sample
space. That means the diversity of the sample space is achieved. If the regression model is
trained using these 100 samples selected by the learning function, the diversity of the sample
space would lead to a great regression performance using much fewer samples.

Fig. 10. Distribution of sample points in the inputs space: (a) samples selected by the learning function
based on GS, (b) samples selected by randomly sampling and (c) range of the inputs space

6. Conclusion

Based on this study, three conclusions can be drawn:

• A novel K-solution method for surface cracks in the firtree groove structure of a turbine
disk called PA-GPR (Pool-based Active learning with Gaussian Process Regression) is pro-
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posed in this paper. Combining active learning strategy and Gaussian Process Regression
(GPR), this novel method is accurate, time-saving and effective.

• Using the active learning strategy, the trained GPR model could have a great computa-
tional accuracy with only a few training samples required. For K calculation problems
of surface cracks in the firtree groove structure of a turbine disk, the proposed PA-GPR
is two orders of magnitude more efficient than the traditional ML method with almost
identical K results.

• The learning function based on GS, the core of the proposed method, could select samples
with a high contribution to the training of the GPR model by the achievement of diversity
of the sample space. Focusing on spatial overlaps or approximate overlaps situations, the
learning function picks only one sample point among samples with spatial overlaps or
approximate overlaps situations into the training data set. That makes the GPR model
have a great computational accuracy using a few samples only.
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