
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

61, 4, pp. 819-831, Warsaw 2023
https://doi.org/10.15632/jtam-pl/172966

APPLICATION OF THE FOREST CLASSIFIER METHOD FOR

DESCRIPTION OF MOVEMENTS OF AN OSCILLATOR FORCED BY

A STOCHASTIC SERIES OF IMPULSES

Marek Sulewski, Agnieszka Ozga
AGH University of Krakow, Faculty of Mechanic Engineering and Robotics, Krakow, Poland

e-mail: sulewski@agh.edu.pl; aozga@agh.edu.pl

The article discusses the analysis of motion of an oscillator forced by a sequence of stochastic
impulses with the use of decision tree algorithms and a random forest classifier. The aim of
this paper is to verify the accuracy of distinguishing distributions in the desired time period
and to check whether the length of the time interval affects the accuracy of data classifica-
tion. Moreover, the statistical parameters directly influencing classification of distributions
are presented. The analysis has been performed in Python environment, the data were ob-
tained in computer simulation. The results of classification for two classification algorithms
with regard to two divisions of the test and training set sizes are presented. In case of the de-
cision tree classifier, it has been observed that for each time interval this algorithm classifies
the data achieving a high level of accuracy, but for the purpose of data classification for each
time period it selects different statistics, which makes it impossible to unequivocally deter-
mine which statistic influences the recognition of distribution. In case of the random forest
classification algorithm, the importance and influence of the parameters on the distribution
between the three distributions are the same both in 5-minute and 10-minute intervals. The
differences between significance of the parameters depending on length of the interval are
not significant.
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1. Introduction

The theory of random dynamical systems is an interdisciplinary domain (Sobczyk, 1983;
Iwankiewicz and Kotulski, 2009; Zembaty, 2009; Socha and Soong, 1991; Liu et al., 2023; Banks
et al., 2023). It is applied in mechanics (Litak et al., 2008; Bozzoni et al., 2011; Hračov and
Náprstek, 2017; Weber et al., 2021; Smolnicki et al., 2013; Rączka et al., 2013) where, like in the
present paper, the idea of research refers to non-deterministic mechanics. The state of a system
observed at any given moment does not univocally determine the states of the system at consec-
utive moments, which issues from the random character of stimulaton. It is worth mentioning
that in Poland the studies on random dynamic systems flourished in the third quarter of the
20th century (Piszczek, 1982; Skalmierski and Tylikowski, 1972) when, by means of a complex
mathematical apparatus, a series of stochastic equations describing various kinds of dynamic
mechanical systems have been determined. Having reached a certain level of knowledge, the
studies have not been continued.
The research on systems forced by a random series of impulses also started in the second half

of the 20th century (Roberts, 1966, 1972; Roberts and Spanos, 2003) and have been continued
ever since. The first attempts at verification of properties of a stochastic model by means of
simulation methods were presented by Professor Iwankiewicz (Iwankiewicz, 1993). The research
was also conducted by (Mazur-Śniady and Śniady, 1986; Jabłoński and Ozga, 2008) in Poland.
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By introducing machine learning into the analysis of dynamic mechanical systems, we are
starting the next level of research. In this original approach, thousands of samples have been
analyzed for different parameters of random forcing in order to examine usefulness of developed
algorithms.
In this study, the developed algorithms are aimed at solving an inverse problem, namely

recognition of the distribution of size of impulses forcing vibrations of an oscillator. Although
there exists a mathematical model that allows one to calculate the impulse distributions, its
applicability, however, is limited. Thus, other solutions of this problem are searched for, and
this stage of research is described in this paper.

2. Mathematical model of an oscillator forced by a random series of impulses

The random forest classifier discussed in this paper was carried out for a one-dimensional physical
system (Jabłoński and Ozga, 2013) the state of which was described by random variable x(t).
The equation of vibrations of an oscillator with damping was presented in a dimensionless form

d2x

dt2
+ 2b
dx

dt
+ a2x = f(t) (2.1)

At this stage of research into the possibility of recognizing random distributions of excitation
impulses, it is difficult to assess whether the oscillator will be in the form of a mechanical or
electronic system. Since the value of x(t) is accepted as dimensionless, consequently, the units
occurring with coefficients a, b, and f(t) are referred to time only.
The f(t) is a series of random impulses with random strength ηi occurring at random instants

of time ti

f(t) =
∑

ti<t

ηiδ(t− ti) (2.2)

where δ(t− ti) – Dirac distribution.
The time intervals between impulses τi = (ti − ti−1) are independent continuous random

variables for which the function of probability density assumes the form of an exponential func-
tion

t(τ) =

{

λe−λτ for τ ­ 0
0 for τ < 0

(2.3)

where the constant λ is the impulse occurrence frequency.
For the random variable described by Eq. (2.3), the mean distance between impulses is 1/λ s,

standard deviation also amounts to 1/λ s, while the median interval between impulses equals
ln 2/λ.
The values of the ηi impulse are independent discrete random variables with a finite expected

value. When intervals between the impulses and strength of the impulses are independent random
variables, then the solution of this problem for zero initial conditions is

x(t) =
1
c

∑

0<ti<t

ηie−b(t−ti) sin[c(t− ti)] (2.4)

where c =
√
a2 − b2.

The article examines mi(t) – estimators of the k-th stochastic raw moments of the random
variable x(t) calculated using the equation

mk =
1
t/h

∑

n<t/h

xk(nh) (2.5)

where h is the period of sampling, t is time.
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3. Designing of experimental studies using the qualitative method of analysis

Studies on the stochastic model described by Eqs. (2.1)-(2.5) should be appropriately designed
so that step changes do not occur in the computed ordinary moments some time after the start.
Earlier analyses have shown (Jabłoński and Ozga, 2010, 2012; Ozga, 2019) that oscillators with
strong damping should be used, and that impulses should occur frequently enough for values
of estimators of ordinary moments calculated from Eq. (2.5) to change to the least extent. The
rate of the oscillator own vibrations should be selected appropriately for the impulse occurrence
frequency λ. The last step consists in checking whether the value of random impulses is sufficient
to force vibrations of the oscillator.
The research is carried out in order to solve the inverse problem, namely to discern the

distribution of impulses forcing vibrations of an oscillator at a shortest possible period of time.
There is an infinite number of possible cases for which simulation or experimental studies could
be developed. Taking into account previous experiences as well as the time necessary to generate
one trial, and applying the principle that simple systems will allow for clear presentation of the
solution of the research problem, the authors selected an oscillator with damping b = 10 and
the frequency of vibrations c = 20 for λ = 10 and h = 10−3 (Fig. 1). In the presented simulation
investigations, vibrations of the oscillator evoke three distributions Φi of the pseudo-random
variable ηi

1. Φ1 : p(η1 = 80) = 0.5 p(η2 = 70) = 0.5

2. Φ2 : p(η1 = 130) = 0.5 p(η2 = 20) = 0.5

3. Φ3 : p(η1 = 140) = 0.5 p(η2 = 10) = 0.5

The parameters of the distributions were selected so that:

• the expected value of the distributions forcing vibrations in all three cases was the same
and amounted to 75,
• the distribution Φ1 was characterized by two impulses η1 and η2 of a similar force influ-
encing the oscillator,
• the distributions Φ2 and Φ3 were characterized by two events of different forces of the
impact. The value of η1 symbolizes an impulse of a great force of impact while the value
of η2 an impulse of a little force of impact on the oscillator,
• the differences in statistics (Table 1) of the three discrete random variables are distributed
as follows: between Φ1 and the remaining distributions, the differences are significant. The
parameters of the distributions Φ2 and Φ3 are similar.

Table 1. Parameters of distributions of the random variables Φi

Distribution
Parameter

Φ1 Φ2 Φ3

Expected value 75 75 75
Standard deviation 5 55 65
Changeability coefficient 0.0667 0.7383 0.8667
Second raw moment 5 650 8 650 9 850

Figure 1 represents execution of a single movement x(t) and the raw moments computed on
the basis of this single execution. Thanks to strong damping occurring in the system at a certain
time after the start (see Fig. 1 after 500 s), subsequent impulses do not cause step changes at
the computed moments. Distributions were selected so that the mean value was the same in
all three cases, hence the estimators of the first ordinary raw moment have similar values after
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Fig. 1. The movements x(t) of vibrations of an oscillator forced by a random series of impulses
for one second; below the first stochastic raw moment and the second one computed on

the basis of x(t) for 900 s

1800 s. Stochastic raw moments of the second order (and subsequent orders) are different. It
should be emphasized, however, that the presented results were obtained in the simulation that
was organized in a specific way. In all three cases, the impulses worked at the same random time,
and, what is more, if the strongest impulse was randomly chosen in the first distribution, the
impulses selected in the second and third distributions were also the strongest ones. Similarly,
the same pertains to the weakest impulses.
It should be taken into account that there exists an infinite number of possible movements,

and the possibility of differentiating between the distributions when impulses occur at different
random times and have different random values should be checked. In order to visualize this
problem, thousand samples were generated for each of the discussed distributions. As it has
already been mentioned, it is the estimators of the second raw moments computed on the basis
of moments (2.5) that are used in the analysis. Calculations include all values of x(t) since the
very beginning till the moment when the values are recorded in the file. Movement (2.4) and
moments (2.5) were determined with the sampling frequency of 103 s, and the values of moments
were saved in the file every second. The analyzed time series of the second order raw moments
were presented as tunnels (Fig. 2) covering all recorded samples. The tunnel was created by
determining the maximum and minimum values of each of the thousand samples separately for
each second. The mean value of all the calculated estimators was also computed.
Visualization of the research in the form of tunnels shows that for the second moment the

samples generated for the distribution Φ1 differ significantly from the others. In further analysis,
this distribution will act as a control group, and the research questions will concern the Φ2
and Φ3 distributions.
Based on the second diagram, we can also state that we have to do with three time-dependent

phenomena. During the start, up to the 600th second, the distributions Φ2 and Φ3 are distin-
guishable in approximately 50% of cases. Between the 600th and 1800th second, the number
of samples in which time series have similar statistical parameters decreases. After the 1800th
second all three distributions are distinguishable. The time at which the tunnels formed from
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Fig. 2. The second stochastic raw moment calculated from the location x(t) for a thousand different
samples presented as tunnels

the generated samples for two similar distributions split up is an approximated value – this
is how the samples were randomly distributed. It should be expected, however, that the time
series of the subsequent samples will split up within an approximated time interval. These initial
exploratory investigations allow for posing two research questions:

1. How precise differentiation of the distributions Φ2 and Φ3 before the 1800th second is
possible?

2. Does the duration of the analyzed time interval influence the accuracy of classification
using the decision tree algorithm and random forest classifier?

In order to answer the research questions posed above, further exploratory investigations
should be carried out. It is necessary to check the distributions for single samples in two intervals
from 600th second to 2000th one and after 2000th second, presenting the values that occur in the
time series in the form of a frequency distribution. The conducted analysis shows that depending
on the time interval, statistical parameters describing discrete distributions are different – they
differ in the mean value, dominant, variance, etc. All distributions represented in Fig. 3 are
multimodal.

On the basis of Fig. 3 it can be assumed that for any several minutes, the long interval starting
after the 1800th second, no matter whether we take its mean value, median or dominant, all three
distributions will be distinguishable. We can take into consideration either all three statistical
parameters or just one of them. Before the 1800th second, the situation is more complicated,
hence it seems necessary to use supervised learning algorithms to discern the distributions which
force vibrations on the basis of analysis of one sample. Moreover, neither the parameters that
could be used for classification of the distribution nor the length of the time interval that should
be taken into consideration are known. From the point of view of its application in engineering
designs, the sooner we know what distribution we are to deal with, the better. Therefore, nine
time intervals presented in Fig. 4 were assigned for further analysis. The intervals are five minutes
long while the length of the time intervals with even indices is ten minutes.
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Fig. 3. Distribution of the second raw stochastic moment calculated from the location x(t) for two
samples generated from Φ2 and Φ3 distributions

Fig. 4. Time intervals selected for further analysis, represented as tunnels composed from 1000 samples

We will answer the research questions using the following supervised machine learning algo-
rithms. They are the decision tree classifier and the random forest classifier, later described as
DTC and RFC, respectively. Along with the indicated time intervals, an analysis was performed
using the previously prepared code. At least about 300 impulses were randomly selected during
five-minute time intervals, which for the exponential distribution given by Eq. (2.3) allowed one
to obtain the λ imposed in the simulations with an accuracy of 0.1%. The tests carried out for
shorter values of the time interval indicated the obtaining of less accurate classification results
than those presented in the next Section.
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4. Data analysis using the decision tree classifier and random forest classifier

algorithms

Machine learning (ML) algorithms find patterns, information links in data sets, and then help
making decisions and forecasts based on shared data. Out of the logistic regression, elements
like naive Bayes, k-nearest neighbors, decision tree, random forest and support vector machine
algorithms have been considered. The decision tree classifier and random forest tree algorithms
(Szeliga, 2019) have been chosen.

The first one is a decision tree classifier which is a supervised learning algorithm that is
dedicated for classification problems. It is a solution which works as a flow chart. It divides the
data points into a finite number of categories. This algorithm automatically selects the variables
that differentiate the variable the most.

The second one is a random forest algorithm. It is an expansion of the decision tree classifier.
First, it builds multiple decision trees based on training data. Then it matches the new data
from the test set to one of the trees as a random forest. It averages the data to combine it
with the closest random tree on the data scale. The random forest models are useful because
they solve the decision tree algorithm problem of unnecessarily forcing data points within a
category.

4.1. Determination of the most important statistical parameters describing the time series

of the second raw moment estimators

The analysis started with the calculation of basic statistical parameters (Bąk et al., 2020) such
as amplitude, one percent above the standard deviation, minimum, mean, and maximum value,
maximum slope, percent close to the median, median, median absolute deviation, skewness,
standard deviation and weighted mean. Statistical parameters have been defined for the second
raw moment, separately for each of the considered samples. Using the same algorithm, the
influence of a given parameter on the classification of distributions for two-time intervals was
determined (Fig. 5).

Using machine learning methods, it was possible to determine basic statistics that make it
possible to recognize the distribution. Figure 5 shows these statistics for nine time periods. In
addition, a parallel classification was devised for divisions of the training and test sets in ratios
30/70 and 50/50. The proposed division of the test and training sets results from the typical
division in the 30/70 ratio (Szeliga, 2019). One thousand trials is used in the classification. To
obtain as many test cases as possible in the area belonging to both tunnels (Fig. 4), the division
of 50/50 was also made.

Focusing on Fig. 5, it should be noted that there is a problem with determining the basic
statistics that allow one to distinguish the distributions. For odd (300 s) and even (600 s) intervals
using the DTC algorithm, each time interval shown in Fig. 5 (marked as TPx, where x is the
next time interval) is described by different statistics. Moreover, it should be observed that the
significance of the statistics changes for each time period. For this reason, this algorithm is not
suitable for this type of analysis.

A similar verification was conducted for the same intervals with the use of a random tree
classifier (Fig. 6).

From this analysis (Fig. 6), it can be seen that in the case of the intervals with a duration
of 300 s, the standard deviation (24%), skewness (20%), amplitude (15%) and median absolute
deviation (11%) have the highest impact on classification. The minimum value (1%) and the
maximum slope (1%) have the lowest impact.
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DTC for 30/70
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Amplitude 0.03 0.01
Maximum slope 0.45 0.48
Maximum
Mean 0.37
Median 0.34 0.09
Median absolute deviation 0.65 0.01 0.50 0.02 0.51
Minimum
Percent beyond 1 std 0.63
Percent close to median
Skew 0.49 0.49 0.48 0.49
Std 0.42 0.51 0.01 1 1
Weighted average 0.01

DTC for 50/50
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Amplitude 0.27 0.51 0.51 0.51
Maximum slope
Maximum 0.04 0.57
Mean 0.30
Median 0.10 0.75
Median absolute deviation 0.05 0.50
Minimum 0.03 0.65 0,01
Percent beyond 1 std 0.07 1
Percent close to median 0.02
Skew 0.42 0.49 0.43 0.20 0.49
Std 0.10 0.49 0.49
Weighted average

Fig. 5. Representation of basic statistics determined for the second raw moments using DTC algorithms
for the indicated time intervals considering division of the harvest in the proportion of 30/70 and 50/50

RFC for 30/70
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Amplitude 0.15 0.11 0.15 0.11 0.15 0.11 0.15 0.11 0.15
Maximum slope 0.01 0.07 0.01 0.074 0.01 0.07 0.01 0.07 0.01
Maximum 0.09 0.04 0.09 0.04 0.09 0.04 0.09 0.04 0.09
Mean
Median 0.05 0.07 0.05 0.07 0.05 0.07 0.05 0.07 0.05
Median absolute deviation 0.11 0.15 0.11 0.15 0.11 0.15 0.11 0.15 0.11
Minimum 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
Percent beyond 1 std 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05 0.10
Percent close to median
Skew 0.20 0.29 0.20 0.29 0.20 0.29 0.20 0.29 0.20
Std 0.24 0.19 0.24 0.19 0.24 0.19 0.24 0.19 0.24
Weighted average 0.03 0.03 0.03 0.03 0.03

Fig. 6. Representation of basic statistics for the second raw moments determined using RFC algorithms
for the indicated time intervals considering division of the harvest in the proportion of 30/70

In terms of the 600 s time intervals, the largest percentage was for skewness (29%), standard
deviation (19%) and median absolute deviation (15%). The smallest share was that of the
minimum value (2%). Additionally, in the case of RFCs, the percent close to median and mean
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value is not included in the classification. The statistics presented in Fig. 6 are the same for both
divisions. The importance and influence of the parameters on the distribution between the three
distributions is the same both in the 5-minute and 10-minute intervals. The differences between
the significance of the parameters depending on the length of the interval are not significant.
Since in particular time intervals, the statistical parameters responsible for the classification

do not change only in the case of random forest algorithms, only these algorithms will be used
for the research presented in the following Sections of this article.

4.2. Definition of the best RFC parameters

For the time series generated during simulation tests, the selection of hyperparameters was
performed using the grid search function.
Hyperparameters are the parameters that cannot be learned directly from estimators. It is

recommended to search the hyperparameter space for the indicated time intervals to obtain the
best cross-validation result. It allows one to find the best parameter values for a given estimator
and the parameters which can be used to define the classification algorithm. Definition of these
parameters reduces the time of the classification process.
In the case of DTC algorithms from the attributes like splitter, max depth, min samples split,

min samples leaf, max features, max leaf nodes, class weight, we decided to define max depth,
min samples leaf, min samples split and splitter. The max depth attribute defines the maximum
depth of the tree. The min samples leaf attribute signifies the minimum number of the samples
required to be at a leaf node. This parameter may affect the smoothing of the model. The min
samples split determines the minimum number of samples that is required for internal division
in the case of classification.
In the case of RFC algorithms, we need to mention the n estimators, criterion, max depth,

min samples split, min samples leaf, max features, max leaf nodes, random state, verbose, max
samples parameters. For the analysis we choose the following parameters: n estimators, that is
the number of trees in the random forest classifier algorithm, and max depth attribute.

4.3. Evaluation of the classification algorithms

In the first step, classification of the downloaded data was conducted and classifier evaluation
measures, such as precision, recall, f1-score and support, were determined.
The precision measure is responsible for recognizing a class, for example which part positively

predicted elements are of all those marked as a part of this register.

Fig. 7. Precision parameter for RFC for two splits

Figure 7 shows the precision parameter for nine-time intervals for two divisions 30/70 and
50/50 (test set/training set). It should be noted how this parameter changes depending on the
recognized distribution. In the case of division, where there is 70% of the training set, we can
see that for all time intervals the precision is 100% for the first distribution, which in the case
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Fig. 8. Recall parameter for RFC for two splits

of these specifically analyzed data may be a determinant of proper operation of the algorithm
(Fig. 8). There are slight differences when the test set is 50%. The level is between 98% and 100%,
which means that the test set in the case of these variables should have more than five hundred
samples. Expected difficulties exist with the second and third distributions. The precision in
the case of the 30/70 division only for the 8th and 9th time interval is flawless for all three
distributions. In the case of the 50/50 division, it was not possible to obtain 100% precision in
the rare of the analyzed time intervals.
The next parameter was recall. This parameter called in some publications sensitivity or true

positive rate informs how many elements from a given class have been correctly recognized.
The recall on the tested splits was also on high level. We can see that in the case of the 30/70

split, the first and third to seventh time periods did not reach the 100% recall level for the three
distributions. Only for the eighth and ninth time periods was the 100% recall level reached.
For the 50/50 split, no time intervals except the eighth one, achieved the 100% recall level.
The last parameter is an F1-score determined according to equation

F1 = 2
precision · recall
precision + recall

(4.1)

In statistical rating of classification, it is a harmonic mean of the precision and recall. Figure 9
presents the F1-score for nine time periods for 30/70 and 50/50 splits.

Fig. 9. F1-score parameter for RFC for two splits

All these tree parameters allow us to evaluate the RFC for the mentioned time periods.

4.4. Summary of the classification algorithms in nine time periods

Figure 10 shows the accuracy of the RFCs on the test and training sets when their split
is 30/70 and 50/50, respectively, for the three distributions. It should be emphasized that for
this analysis, the search for the best hyper parameters was conducted in order to classify the
appropriate class in the best possible way. The accuracy of classification using RFCs on training
sets for all time intervals and both division is 100%.
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RFC for 30/70
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Accuracy using DTC on training set 1 1 1 1 1 1 1 1 1
Accuracy using DTC on test set 0.989 1 0.989 0.994 0.989 0.989 0.989 1 1

RFC for 50/50
TP1 TP2 TP3 TP4 TP5 TP6 TP7 TP8 TP9

Accuracy using DTC on training set 1 1 1 1 1 1 1 1 1
Accuracy using DTC on test set 0.987 0.987 0.980 0.999 0.987 0.993 0.987 0.997 0.987

Fig. 10. Representation of accuracy on training and the test set for second raw moments using RFC
algorithms for the indicated time intervals considering division of the harvest in

the proportion of 30/70 and 50/50

Accuracy for 30% of the test set ranged from 98.9% to 100%. For a 50% of the test set, the
accuracy ranged from 98% to 100%.

5. Conclusion

After the analysis of the distributions of the second raw stochastic moments for the indicated nine
time intervals, using the algorithm of random decision trees and the random forest classifier,
the second algorithm was selected for further work based on the achieved results. It can be
concluded that the algorithm RFC allows for recognition of distributions and determination of
statistical parameters, which have the highest impact on distinguishing distributions.
When answering the question how it is possible to precisely differentiate the distributions

Φ2 and Φ3 before 1800 s, it should be noted that high precision was achieved in fitting the data
to a given distribution. For the RFC classifier, for the case where a 30% test set was considered,
for 5-minute intervals an average of 100% for Φ1, 100% for Φ2 and 97% for Φ3 was achieved.
In the case of 10-minute intervals, 100% was achieved for Φ1 and Φ3 and 98.5% for Φ2. Thus,
the differences in the precision of classification depending on the length of the intervals are not
significant.
Based on the results obtained for the decision trees algorithm, it should be stated that it

is not suitable for the analysis of this type of technical problems because despite the positive
results of the classifier operation, the share of individual statistics and their significance changes
with each time interval.
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