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A theoretical analysis of synchronization of inertial vibrators of a vibratory conveyor with a
dynamic damper is presented in this paper. It is shown that for the over-resonance regime
and counter-running drive vibrators, there is only one stable state of the system warranting
formation of necessary sectional vibrations of the trough. The analytical form of the moment-
-synchronizing vibrators is also determined, and on the basis of this, the influence of angular
vibrations of the body on the synchronizing process of the drive vibrators is determined.
Due to the differences in the participation of angular vibrations in the self-synchronizing
process in relation to classical solutions, the presented results fundamentally influence the
design of long antiresonance conveyors.
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1. Introduction

Among vibratory conveyors, antiresonance conveyors have become increasingly popular in recent
years (Surówka and Czubak, 2021; Czubak and Gajowy, 2022; Gajowy, 2019). Such conveyors
use dynamic dampers (Asami, 2019; Ascari, 1980; Fasana and Giorcelli, 2010) based on Frahm’s
patent from 1911 (Frahm, 1911) to decrease vibrations of drive frames as well as related harmful
effects on the surrounding environment. The solution shown in Fig. 1, which is presently under
prototype investigation, is one of the newest solutions of this type.

Fig. 1. Patent application No P.434041. Antiresonance vibratory conveyor (application drawing Fig. 2 in
P. 434041 document). KMC Global Europe (2020), Opole, PL. Author: Jerzy Michalczyk, Cracow

It is written in the patent description that “This antiresonance vibratory conveyor is char-
acterized by the fact that its body (2) is of a stiff structure, while trough (1) (functioning as
a mass of the dynamic eliminator) is of a self-supporting structure and in its central segment
is suspended inside body (2) with a clearance allowing for its effect on vibratory motion. The
mass centres of trough (1) and of body (2) with vibrators (5) and leaf springs (3) overlap each
other and – in addition – trough (1) is suspended inside body (2) on leaf springs (3), which are
mounted in pairs symmetrically relative to the conveyor axial plane of symmetry, near the nodal
points of the first form of the natural trough vibrations (1)”.
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The author of this solution aimed to build a long conveyor (several metres), which due
to construction difficulties (mainly related to maintaining sufficient stiffness of the frame and
trough) is not an easy task.

In addition to structural problems, issues arise related to the vibrator drive and self-
-synchronization processes of vibrators. When length of the conveyor is increased, its mass
moment of inertia is also increased, which in turn leads to decreasing angular vibrations of the
body and decreasing the synchronizing moment of the vibrators.

Knowledge concerning self-synchronization of unbalanced masses is very wide and includes
problems of deterministic (Paz and Cole, 1992) and chaos theory (Chedjou et al., 2008). Fun-
damental works in this area were published by Blekhman (1971, 2000). He formulated, among
other concepts, the stability criterion for synchronized motion of unbalanced masses and, on its
basis, developed detailed rules for constructing drive structures of inertial vibrators, which were
cited later in papers by several authors (Michalczyk and Cieplok, 2014; Hou et al., 2017; Li et
al., 2020).

Analyses concerning nonlinear systems are especially interesting. The conditions of synchro-
nizing systems of two vibrators installed on a common platform and the criterion of global
stability of the solutions obtained on the basis of analysing nonlinear equations were presented
in (Smirnova and Proskurnikov, 2021). The synchronization of two exciters under the nonlinear
influence of elastic elements of sectional-linear characteristics was investigated in (Zhang et al.,
2016). A system with a tri-motor was analysed in (Zou et al., 2020), where the conditions of
achieving the synchronous state were determined by means of the small-parameters method,
while the stability criterion of synchronous motion was determined by means of the Poincaré-
-Lyapunov method. In (Zhao et al., 2011), the problem of synchronizing two pairs of vibrators
elastically placed on a common frame was reduced to the stability problem of two generalized
systems. One of them was the generalized system of angular velocity disturbance parameters
for four unbalanced rotors, and the other was the generalized system of three-phase disturbance
parameters. Researchers have also obtained satisfactory results regarding the synchronization
of unbalanced masses in spatial motion (Zhao, 2010; Cieplok and Wójcik, 2020; Fang et al.,
2019). Because of strong nonlinear connections between unbalanced masses and the body of the
device (Dimentberg et al., 1997), some analyses concerning transient processes are still based on
numerical investigation (Zhang et al., 2019; Shokhin et al., 2021).

2. Theoretical analysis

The conveyor of a structure corresponding to the one presented in Fig. 1 was analyzed in this
study. The analyses dealt with three problems: dynamic equations of motion of the system,
analysis of motion stability of drive vibrators, and determination of an analytical formula for
the synchronizing moment of vibrators. Realization of the last two problems required knowing
the analytical solutions of equations of motion of the system. They were determined for the
steady state, for which it was possible to assume a constant rotational speed of vibrators. This
assumption allowed one to obtain linear equations and to lower the number of degrees of freedom
by two. The dynamic equations of motion became also the basis for verifying analytical results.

2.1. Dynamic equations of the conveyor

Let us discuss the system presented in Fig. 2. It consists of four solid bodies representing:
drive frame of a conveyormk with mass inertia JCk, transporting troughmr with mass inertia JCr
and two inertial vibrators each of them having massmw and radius of unbalance ew. The conveyor
is placed on a viscoelastic suspension described by parameters kx, ky, bx, by; while the trough is
connected with the body by means of a leaf springs system described by parameters ksi, bsi.
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Fig. 2. Schematic presentation of the system.

Inertial vibrators are driven counter running by means of two asynchronous motors of identi-
cal drive characteristics M1 and M2. The total value of the axial moment of inertia of the motor
and the central moment of inertia of the vibrator mass is marked as Jw. Vibrators are placed
in the line perpendicular to the direction of motion of the transporting trough. They are placed
symmetrically at a distance d, in relation to the mass centre of the drive frame. 6 generalized
coordinates were used to describe the system location. Coordinates xCk, yCk represent the mass
centre of the drive frame, α – angle of rotation of the drive frame and transporting trough, s –
displacement of the trough in relation to the frame, and angles ϕ1, ϕ2 describe angular positions
of the vibrators. On the basis of Fig. 2 the kinematic dependencies imposed on the positions of
mass centres of the trough and drive vibrators were determined

xCr = xCk + s yCr = yCk

xC1 = xCk + ew cosϕ1 + dα yC1 = yCk + ew sinϕ1

xC2 = xCk + ew cosϕ2 − dα yC2 = yCk − ew sinϕ2

(2.1)

Geometrical dependencies imposed on shifting of springs of the suspension system were also
determined

∆xA = hα + xCk cos β − yCk sin β ∆yA = −aα+ yCk cos β + xCk sin β

∆xB = hα+ xCk cos β − yCk sin β ∆yB = aα+ yCk cos β + xCk sinβ
(2.2)

These dependencies allowed one to formulate the Lagrange kinetic potential of the system in
the form
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and on its basis and by making use of the Lagrange formula
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to determine the dynamic equation of motion. In Eq. (2.4) marked are: by qi the i-th generalized
coordinate, by Qi – i-th generalized force and by N – value of linear loses. The last quantity
(2.5) was determined on account of a damping present in elements of the system suspension and
in leaf springs of the trough

N = bx
(d∆xA
dt

)2
+ by
(d∆yA
dt

)2
+ bx
(d∆xB
dt

)2
+ by
(d∆yB
dt

)2
+ bs
(ds

dt

)2
(2.5)

Dependencies from (2.6) to (2.11) present dynamic equations of motion determined one after
another in the coordinates: xCk, yCk, s, α, ϕ1 and ϕ2

[sin(2β)by − sin(2β)bx]
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where Mdesync is the moment desynchronizing the vibrators.
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2.2. Equations of the steady state above resonances of the suspension system

The analyzed machine is of the over-resonance type, for which the effect of the suspension
system elements on the drive frame can be omitted in relation to influences of inertial vibrators.
In turn, on account of the application – in the further part of this study – the self-synchronization
criterion of vibrators, which is based only on the Lagrange kinematic potential, a component of
damping forces between the drive frame and trough was also omitted in the equations.
Steady state equations were obtained assuming the constant value of angular velocities of

vibrators dϕ1/dt = dϕ2/dt = ω. Angular positions of the vibrators are then

ϕ1 = ωt+ ϕ10 ϕ2 = ωt+ ϕ20 (2.12)

where ϕ10 and ϕ20 denote constants during the pathway phases.
In the equations of steady state, an expression for the adjusting frequency of the dynamic

damper (in the analyzed case, the transporting trough) to the excitation frequency originating
from forces of the drive vibrators, was also taken into account

ks = mrω
2 (2.13)

In such a way, equations (2.14) were determined

(2mw +mr +mk)
( d2

dt2
xCk
)

+mr
( d2

dt2
s
)

= ewmwω
2 cos(ωt+ ϕ10) + ewmwω

2 cos(ωt+ ϕ20)

(2mw +mr +mk)
( d2

dt2
yCk
)

= ewmwω
2 sin(ωt+ ϕ10)− ewmwω

2 sin(ωt+ ϕ20)

mr
( d2

dt2
xCk
)

+mr
( d2

dt2
s
)

+mrω
2s = 0

(JCr + JCk)
( d2

dt2
α
)

+ 2
( d2

dt2
α
)

d2mw

= dewmwω
2 cos(ωt+ ϕ10)− dewmwω

2 cos(ωt+ ϕ20)

(2.14)

It can be noticed that equations are of a linear form, heterogeneous, in which forcing elements are
composed of harmonic expressions. Equations of this type can be solved by symbolic calculation,
transforming the time depending differential equations into algebraic equations, also linear and
depending on iω, where i is the imaginary unit.
Defining representations of coordinates

xCk(t)⇋ X(iω) yCk(t)⇋ Y (iω) s(t)⇋ S(iω) α(t)⇋ α(iω) (2.15)

excitations

sin(ωt+ ϕ10)⇋ e
iϕ10 cos(ωt+ ϕ20)⇋ ie
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operators

d
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solutions of the system motion can be obtained in a complex form

X = 0 Y =
ewmw

2mw +mr +mk

(

eiϕ20 − eiϕ10
)

S = −
iewmw
mr

(

eiϕ20 + eiϕ10
)

α =
idewmw

2d2mw + JCr + JCk

(

eiϕ20 − eiϕ10
)
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Time waveforms corresponding the above numbers are obtained on the basis of the formula

yCk(t) = ℜ(Y ) sin(ωt) + ℑ(Y ) cos(ωt)

s(t) = ℜ(S) sin(ωt) +ℑ(S) cos(ωt) α(t) = ℜ(α) sin(ωt) + ℑ(α) cos(ωt)
(2.19)

where ℜ and ℑ denote the real and imaginary parts of complex numbers.
Coordinates determined in such a way were used in the analysis of the kinematic potential

and in calculating the moment synchronizing the drive vibrators in the steady state operations
of the machine.

2.3. Problem of the stability of the system motion

The position of the stable equilibrium of vibrators was determined on the basis of the criterion

D(ϕ10, ϕ20) =
1

T

T
∫

0

Ldt→ min (2.20)

formulated in the studies by Blekhman (2000). According to these findings, vibrators obtain
stable positions when the average value of the Lagrange function L, determined for the vibration
period T of the system, obtains its minimal value. On the basis of (2.3) and solutions (2.19),
the function D in the explicit analytical form was derived
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(2.21)

Its cosinusoidal dependence on the difference of angles ϕ20 and ϕ10 means, that there is only
one minimum of the function and it occurs for the angle

γ = ϕ20 − ϕ10 = π (2.22)

The obtained result allows one to state that in the case of the counter running drive the system
has only one state of stable work, in which vibrators generate a sinusoidally variable force of a
rectilinear direction, perpendicular to the segment connecting the points of its fastening to the
machine body, Fig. 3.

Fig. 3. System of phase angles of vibrators in the synchronous running state

2.4. Moment synchronizing the drive vibrators

Left sides of equations (2.10) and (2.11), apart from the components (JCr +mre
2)(d2/dt2),

present the effect of the drive frame on drive vibrators. When transferred them into the right
hand side of equations, they represent vibration moments as (Dimentberg et al., 1997)
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α
)
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( d2

dt2
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)
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Depending on the mutual positions of the vibrators these moments may obtain different values.
However, from the practical point of view, the most essential value is the average difference of
moments (2.24). This value decides on the size of disphasing of the vibrators and on the reserve
of stability related to the stable equilibrium of vibrators

Msync =
1

T

T
∫

0

[Mvibr2(t)−Mvibr1(t)] dt (2.24)

After calculating two times the derivative of (2.19) versus time and inserting it into equation
(2.24), the synchronizing moment was determined in the form

Msync = m
2
we
2ω2

(4mw +mr +mk)d
2 + JCr + JCk

(2mw +mr +mk)(2mwd2 + JCr + JCk)
sin γ (2.25)

Transferring to the boundary (JCk + JCr) → ∞ or inserting into equation d = 0, provides an
interesting result. In such a situation, we obtain the formula

M0sync =
m2we

2ω2

2mw +mr +mk
sin (2.26)

which allows one to state that when there is a lack of angular vibrations, the synchronizing
moment will still exist and will have a high enough value to maintain synchronous motion of
the drive vibrators. This property is quite different than that of the conveyors without dynamic
damper systems, for which the coaxial fastening of vibrators does not generate any synchronizing
moments.

3. Numerical analysis

The verification of analytical formulas derived in Section 2 is based on dynamic equations (2.6)-
(2.11) and on parameters of the exemplary conveyor. Parameters presented in Table 1 are related
to the long conveyor, approximately 5m, for which – due to a high value of JCk + JCr – there
is a danger of a low level of body angular vibration and difficulties with self-synchronizing of
vibrators.

Table 1. Physical parameters of the system

Parameter Value Unit Parameter Value Unit

mk 500.0 kg kx 65023.3 N/m

mr 350.0 kg ky 1.30E+05 N/m

mwew 0.9625 kgm bx 114.0 Ns/m

a 1.5 m by 161.3 Ns/m

h 0.5 m β π/6 rad

d 0.5 m ks 3.84E+06 N/m

JCw 0.001 kgm2 bs 733.04 Ns/m

JCk 416.67 kgm2 ω 100π/3 rad/s

JCr 729.17 kgm2

However, the main investigations should be veryfied because of errors resulting from simpli-
fications made while formulating equations of steady state (2.14).
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On the basis of analytical formulas (2.18), the following results were obtained

Y = −0.0011073 + 0.0011073i = 0.0015659e+i135
0

m

S = −0.0011073 + 0.0011073i = 0.0038891e−i45
0

m

α = −0.0011073 + 0.0011073i = 0.00059149e−i135
0

rad

(3.1)

and on the basis of equation (2.25) it was found

Msync = 13.89 Nm (3.2)

Analogous procedure was applied in the case of d = 0. Then, it was obtained

Y = −0.0011073 + 0.0011073i = 0.0015659e+i135
0

m

S = +0.0027500 − 0.0027500i = 0.0038891e−i45
0

m

α = 0 rad

(3.3)

and

Msync = 11.68 Nm (3.4)

The dynamic equations of motion enabled obtaining the pathways as presented in Figs. 4-6.
Figure 4 presents the pathways of coordinates of conveyor motion in the steady work state

at the maximal desynchronizing moment. On the basis of the data read from the figure, it is
possible to determine error values for individual pathways

δyCk =
0.00155 − 0.0015659

0.0015659
100% = 1% δs =

0.00397 − 0.0038891

0.00397
100% = 2%

δα =
0.00397 − 0.0038891

0.00397
100% = 2%

(3.5)

The simulation results for the vibrators loaded by external desynchronizing moments are
presented in Fig. 5 for three values: 3Nm, 14.2 Nm and 14.3 Nm. The load was applied at 10 s,
20 s and 35 s of the simulation time. It can be noticed that breaking of the synchronizing bond
occurred above 14.2 Nm. Thus, it is possible to determine the error of synchronizing moment to
be

δMsync =
14.2 − 13.89

14.2
100% = 2.1% (3.6)

The pathways of coordinates of the mass centre of the drive frame, corresponding with loads
from Fig. 5, are presented in Fig. 6. From Figs. 4-6 a change in the direction and amplitude
of vibrations of the conveyor trough can be pointed out. When the desynchronizing moment is
increasing then vibrations of the trough are smaller and more bent in the direction of transport.

4. Summary

The self-synchronization process of drive vibrators (of the inertial type) in a vibratory conveyor
with a dynamic damper was analyzed in this study. This type of solution allows us to use the
antiresonance effect to achieve a significant decrease in the drive frame vibration amplitude
and, consequently, a significant decrease in forces transmitted to the foundation. It was revealed
that in this type of solution, the nonzero average value of the synchronizing moment allowed
for mutual synchronization of the vibrators and that these vibrators could assume only one
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Fig. 4. Pathways of generalized coordinates in the steady state obtained on the basis of dynamic
equations (2.6)-(2.11)

Fig. 5. Pathways of the disphasing angle of drive vibrators and desynchronizing moment

stable position with respect to each other. It was shown that in the case of counter running,
the drive vibrators generated a force that was sinusoidally variable in the rectilinear direction
and perpendicular to the segment connecting the mounting points to the machine body. The
analytical formula for the average value of the synchronizing moment was determined, and on the
basis of it, the meaning of the component originating from angular vibrations of the conveyor was
determined. It was shown that in a system containing a dynamic damper, the synchronization of
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Fig. 6. Pathways of coordinates of the mass centre of the drive frame

vibrators was possible without angular vibrations of the machine, which provided the possibility
of installing drive vibrators on the same axis. This is completely different than the situation for
conveyors without a dynamic damper system, in which the coaxial mounting of vibrators does
not generate a synchronizing moment.

The last conclusions have fundamental importance for building long conveyors, in which mass
moments of inertia of the drive frame and trough take high values, which leads to low values of
angular vibrations.
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