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In this article, we study dynamical behaviour of a 2-DOF mechanical system subjected to an
external harmonic force. This system which consists of the Duffing oscillator considered as a
bulk system and a linear dynamic vibration absorber (LDVA) attached to it. An analytical
approach for optimal choice of the parameters of the LDVA is suggested with the aim to
avoid the “superfluous” increase in the amplitude of forced oscillations of the main system.
The analysis performed shows that when using a linear absorber, its proper tuning (choice
of stiffness and damping coefficients) gives satisfactory results – the peak values of the
frequency-amplitude curve (FAC) are decreasing comparatively with the case of the linear
main oscillator.
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1. Intoduction

Undesirable vibrations occur in many areas of human activity. They arise as a result of continuous
operation of machines in industry, as a result of earthquakes that are transmitted to neighboring
structural elements, due to motion of an object in a stream of a liquid or gas etc. Appearance
of such vibrations generates serious problems which may lead to malfunction of equipment
in many engineering areas including rotating machinery, aeronautics, seafaring, space-crafting
and robotics. Eliminating or mitigation of vibrations is the main goal of various industrial and
technical practices (Jangid, 2021; Kremer and Liu, 2017; Vakakis et al., 2009; Lu et al., 2018;
Balaji et al., 2021). One of the possible ways to counteract unwanted vibrations is the use of
passive vibration absorbers. For the first time, such a device was patented by Frahm (1911),
and later a mathematical model was presented and analyzed by Ormondroyd and Den Hartog
(1928), Den Hartog (1934) and Brock (1946).

Initially, a vibration absorber was considered as a linear single degree of freedom (DOF)
spring-mass system that abolishes or reduces excessive vibration of a harmonic-excited system.
In the literature, several terms are used for such devices: dynamic vibration absorber (DVA),
tuned mass damper (TMD) or inertial damper. Numerous types of non-linear absorbers are in
use today (Ocak et al., 2022). Among them are: pendulum-like absorbers, torsional absorbers,
absorbers with quasi-zero or negative stiffness, vibro-impact dampers and many others.
Over the past two decades the efforts of many authors have been directed to the study of

dynamics of a 2-DOF system with nonlinear coupling. The authors mainly used a combination of
the analytical approach and numerical methods. The following analytical methods are commonly
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used: multiple scale method (Jo and Yabuno, 2009; Ji and Zhang, 2010; Cirillo et al., 2017; Liu
et al., 2022), averaging method (Gendelman and Starosvetsky, 2007; Zhu et al., 2004; Yang et
al., 2014; Febbo and Machado, 2013) harmonic balance method (Habib et al., 2015; Peng et al.,
2012) and some combined techniques (Luongo and Zulli, 2012).

Many different aspects of the problem have been investigated and numerous kinds of DVA
design were suggested. In the paper by Yu and Luo (2019), analytical solutions were obtained for
periodic steady-state characteristics in a nonlinear vibration absorber under harmonic excitation.
The stability and bifurcations analysis of periodic responses were obtained through eigenvalue
analysis. Zhou et al. (2019) considered a DVA with negative stiffness, and their parameter
optimization was conducted according to two tuning methodologies: the fixed points theory and
the stability maximization criterion. Li and Zhang (2020) studied a 2-DOF system composed of a
linear main structure under harmonic excitation and a TMD mass block connected by nonlinear
with viscous damping. Special formula for a frequency of a tuned mass damper was suggested. A
similar system was studied by Awrejcewicz et al. (2020) with the assumption that the frequency
and amplitude of the excitation are not known. The noteworthy results based on experimental
study were obtained in papers by Gatti et al. (2010), Kremer and Liu (2017) and Bronkhorst et
al. (2018). In the paper by Islam and Jangid (2022), the performance of the LDVA was studied
using multiple objective functions of the damped SDOF structure. Namely, the impact of the
absorber damping ratio, frequency ratio, inertance ratio and structural damping ratio on its
performance were investigated. Tuning of the DVA for such a system subjected to stationary
white-noise earthquake excitation was discussed in the paper by Prakash and Jangid (2022).

At the same time, in the case of uncertain parameters, the problem is complex and numerical
study does not give a complete picture of dynamics of the system. From the theoretical point
of view, the problem cannot be considered closed because different aspects may be taken into
consideration, and some of them are more (or less) important depending on the situation. In
other words, there is no universal formula for DVA characteristics.

In the present paper, we discuss dynamics of a 2-DOF system which consists of a Duffing
oscillator subjected to simple harmonic excitation with a linear DVA attached and uncertain
parameters (frequency and amplitude of external excitation). The main attention is paid to the
development of an analytical technique for determining absorber parameters that contribute to
the maximum reduction in the amplitude of oscillations of the main system in the vicinity of
resonant frequencies. To simplify the mathematical model, the Krylov-Bogolyubov averaging
method is used. Then analysis of state-response maximal amplitudes was performed. Relations
for determining the characteristics of the absorber are presented. Finally, some numerical exam-
ples illustrate the results obtained.

2. Description of the model and preliminary simplifications

The mechanical system under study consists of the Duffing oscillator with a hardening spring
(primary system) with an attached linear DVA (Fig. 1).

The equations of motion of this system may be written in the following form

m1ẍ1 + ca(ẋ1 − ẋa) + klinx1 + knlx31 + ka(x1 − xa) = F0 cosωt
maẍa + ca(ẋa − ẋ1) + ka(xa − x1) = 0

(2.1)

where x1(t) and xa(t) are the displacements of the harmonically forced primary system and the
absorber. The Duffing oscillator has a hardening spring (knl > 0), the damping coefficient and
stiffness of the absorber are ca and ka, respectively. Introducing a new variable x2 = xa − x1,
system (2.1) may be rewritten in the following form
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Fig. 1. Mechanical system

(m1 +ma)ẍ1 +maẍ2 + klinx1 + knlx
3
1 = F0 cosωt

maẍ1 +maẍ2 + caẋ2 + kax2 = 0
(2.2)

Let us introduce the dimensionless parameters and time by formulas

ω1 =

√
klin
m1

ωa =

√
ka
ma

µ =

√
ma
m1

q =
( ω
ω1

)2

γ =
ω2a
ω21

h̃ =
ca

maω1
α̃ =

knlF
2
0

klin
τ = ωt

(2.3)

Also, we introduce the dimensionless displacements by formulas

x̃1 =
x1
F0

x̃2 =

√
µ

F0
x2 (2.4)

and now the equations of motion are in the following form

Mx̃′′ +Dx̃′ +Kx̃ = Φ(τ, x̃2) (2.5)

where the matrices M, D, K, Φ are defined according to formulas

M = q

[
1 + µ

√
µ√

µ 1

]
D = diag (0, h⋆) K = diag (1, γ)

h⋆ = h̃
√
q Φ =

[
cos τ − α̃x̃31
0

]
x̃ =

[
x̃1
x̃2

] (2.6)

Here, the prime denotes the derivative with respect to time τ . For convenience, the superscript
“∼” over x1, x2 is subsequently discarded. After the transformation

xj = uj cos τ + vj sin τ x′j = −uj sin τ + vj cos τ j = 1, 2 (2.7)

equations (2.5) take the following form

cos τ [Mv′ + (−M+K)u+Dv]− sin τ [Mu′ +Du+ (M−K)v] = Φ
cos τ(u′ + v) + sin τ(v′ − u) = − sin τu+ cos τv

(2.8)

Multiplying the previous system by the matrix

[
− sin τ cos τ
cos τ sin τ

]
(2.9)
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on the left throughout, we get the following equations

Mu′ +
1

2
[(1− c2)D+ s2(M−K)]u+

1

2
[−s2D+ (1− c2)(M−K)]v = Φ1

Mv′ +
1

2
[−s2D+ (1 + c2)(K−M)]u+

1

2
[(1 + c2)D+ s2(K−M)]v = Φ2

(2.10)

The expressions for the right-hand sides are described by formulas

Φ1 =
1

8

[
φ1
0

]
Φ=
1

8

[
φ2
0

]
(2.11)

where

φ1 = −4s2 + α̃[(2s2 + s4)u31 + 3(1 − c4)u21v1 + 3(2s2 − s4)u1v21 + (3− 4c2 + c4)v31 ]
φ2 = 4(1 + c2)− α̃[(3 + 4c2 + c4)u31 + 3(2s2 + s4)u21v1 + 3(1− c4)u1v21 + (2s2 − s4)v31 ]
s2 = sin 2τ c2 = cos 2τ s4 = sin 4τ c4 = cos 4τ

Now, we apply the Krylov-Bogolyubov averaging method. Assuming that u, v vary slowly with
time τ , we obtain the averaged equations

Mu′ +
1

2
[Du+ (M−K)v] = 3

8

[
α̃v1(u

2
1 + v

2
1)

0

]

Mv′ +
1

2
[(K−M)u+Dv] = 1

8

[
4− 3α̃u1(u21 + v21)

0

] (2.12)

Let us find the stationary points of system (2.12). Technically, it is easier to do this by
introducing the complex variables z = u+ iv. Then equations (2.12) take the following form

Mz′ +
1

2
(B+ iD)z =

1

2
i

[
1− αz21z1
0

]
Mz′ +

1

2
(B+ iD)z =

1

2
i

[
−1 + αz1z21
0

]
(2.13)

Here, the following notions are introduced

K−M , B =

[
b11 b12
b12 b22

]
(2.14)

where

b11 = 1− q(1 + µ) b12 = −µq b22 = γ − q α =
3

4
α̃

The condition z′ = 0 leads to the following system of algebraic equations

b11z1 + b12z2 − 1 + αz21z1 = 0 b12z1 + (b22 − ih)z2 = 0
CC1 = 0 CC2 = 0

(2.15)

where CC1, CC2 are corresponding complex conjugates.
Expressing the variable z2 from the second equation, we come to a pair of nonlinear equations

with respect to z1, z1

(b22 − ih̃)z21z1 + (b11b22 − b212 − ih̃b11)z1 − b22 + ih̃ = 0 CC = 0 (2.16)

Further, we rewrite equalities (2.16) in the form

[αr(b22 − ih̃) + detB− ih̃b11]z1 = b22 − ih̃
[αr(b22 + ih̃) + detB+ ih̃b11]z1 = b22 + ih̃ r = z1z1

(2.17)
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Now, multiplying separately the left- and right-hand sides of the two last equalities, we obtain
the real-valued equation

rq4 − r[2αr + 2(1 + µ)γ − h(1 + µ)2 + 2]q3 + {α2r3 + 2α[(2 + µ)γ − (1 + µ)h+ 1]r2

+ [(1 + µ)2γ2 + 2(2 + µ)γ − 2(1 + µ)h+ 1]r − 1}q2

− {α2(2γ − h)r3 + 2α[(1 + µ)γ2 + 2g − h]r2 + [2(1 + µ)γ2 + 2γ − h]r − 2γ + h}q
+ γ2[r(αr + 1)2 − 1] = 0 h = h̃2

(2.18)

This equation determines the frequency-amplitude hyper-surface in six-dimensional space
(related to equation (2.18)), where the square of amplitude of the primary mass r = (u21 + v

2
1)

depends also on dimensionless parameters µ, α, h, γ. When the mechanical parameters of both
masses are known, we have a traditional frequency-amplitude curve. Note that in the case α = 0
(linear system), equation (2.18) is equivalent to the well-known classical form (Den Hartog,
1934).

Remark 1. We do not present here the conditions for stability of stationary points, as well as
the conditions for the existence of three positive roots for r of polynomial (2.18). These
conditions can be obtained in a similar manner, as it was done in the paper by Awrejcewicz
et al. (2020).

3. Mitigation of the responses of the main mass

Assuming that the parameters m1, klin, knl of the main system are given, as well as the mass of
the absorber, we want to choose the damping coefficient and absorber stiffness in order to reduce
the maximum level of possible oscillation amplitude in the vicinity of resonant frequencies (i.e.,
the peaks of the frequency-amplitude curve). With respect to dimensionless parameters, which
means that µ and α are known, while the parameters h and γ should be determined.
The optimal case holds place when the ordinates of the peaks coincide, which geometrically

means that at these points the tangents r = r1, r = r2 to the curve r(q) coincide. In other words,
the equation f(r0, q) = 0 (r0 = const ) has three or four different real roots if r0 < rmax, and
two multiple roots if r0 = rmax (Fig. 2). Here rmax corresponds to the maximum value of r.

Fig. 2. Different number of solutions of equation f(r0, q) = 0 depending on values of h and γ
(µ = 0.02, α = 0.002): (a) r0 = rmax, (b), (c) r0 < rmax

The conditions for a fourth-degree polynomial

P (ξ) = a4ξ
4 + a3ξ

3 + a2ξ
2 + a1ξ + a0 a1a3 6= 0 (3.1)

to have two roots of multiplicity are

ψ1 , a0a
2
3 − a21a4 = 0 ψ2 , a33 − 4a2a3a4 + 8a1a24 = 0 (3.2)
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Substituting the corresponding expressions for the coefficients aj , we have

ψ1(r) =
3∑

j=0

ψ1jr
j ψ2(r) =

6∑

j=0

ψ2jr
j (3.3)

where

ψ10 = 4[2(1 − µ)γ + h(1− 2µ− µ2) + 2] ψ13 = 8µ
2α2h

ψ11 = 4(1 + µ)
2γ4 − 4h(1 + µ)3γ3 − [4 + 4µ(1 + µ)h− (1 + µ)4h2]γ2 + 8hγ − 2h2

ψ12 = 4h(1 + µ)
3γ3 − [(1 + µ)4h2 − 4µ1 + µ)(1− α)h + 8α]γ2 + 4h(1 − 4α)γ − h2(1− 4α)

ψ20 = 4[−2(1 − µ)γ + h(1− 2µ− µ2) + 2
ψ21 = −4(1 + µ)2γ4 + 4h(1 + µ)3γ3 + [4 + 4µ(1 + µ)h− (1 + µ)4h2]γ2 − 8hγ + 2h2

ψ22 = −4h(1 + µ)3γ3 + [(1 + µ)4h2 − 4µ(1 + µ)(1− α)h + 8α]γ2

+ 4h(1 − 4α)γ − h2(1− 4α)
ψ23 = −2α{4h(1 + µ)3γ3 − [(1 + µ)4h2 − 6µ(1 + µ)h+ 2α]γ2 − 4h(2 − α)γ + h2(2− α)}
ψ24 = −α2h{4(1 + µ)3γ3 + (1 + µ)[12µ− (1 + µ)3h]γ2 − 24γ + 6h}
ψ25 = −4α3h[µ(1 + µ)γ2 − 4γ + h] ψ26 = α

4h(4γ − h)r6

(3.4)

Thus, we have two conditions ψ1 = 0, ψ2 = 0 connecting the function r and the optimization
parameters h, γ. Considering ψ1 = 0 as an implicit function of r(h, γ) and ψ2 = 0 as a constraint
(or vice versa), we arrive at the problem of finding a conditional extremum. Compiling a linear
combination ψ(y, h, γ) = ψ1+λψ2 (λ is the Lagrange multiplier), we obtain a necessary condition
for the existence of an extremum in the following form

∆(y, h, γ, µ, α) =
∂ψ1
∂h

∂ψ2
∂γ
− ∂ψ1

∂γ

∂ψ2
∂h
= 0 (3.5)

Thus, for given values of the parameters µ and α, we have a system of three algebraic equations
from which the corresponding values of the DVA parameters can be found numerically. Since the
polynomials ψ1, ψ2, ∆ have a very high degree, the direct solution of such a system of equations
is computationally costly and may need an extra effort to avoid errors. Therefore, it makes sense
to localize suitable ranges of values of γ and h firstly. It is convenient to do this geometrically,
that is, to approximately determine the intersection point of the surfaces

ψ1(γ, h, r) = 0 ψ2(γ, h, r) = 0 ∆(γ, h, r) = 0 (3.6)

as shown in Fig. 3.

By choosing the values h0, γ0, r0 found from Fig. 3 as an initial approximation, it is much
easier to determine appropriate corrections. For example, substituting h1 = h0+δh, γ1 = γ0+δγ ,
r1 = r0 + δr into expressions ψ1, ψ2, ∆, and expanding the latter into the Taylor series in δh,
δγ , δr, we can limit ourselves to a linear approximation while finding the refined approximation
(with subsequent comparison of errors for thr left-hand sides of system (3.5) in both cases). In
particular, for µ = 0.05, α = 0.002 we find h ≈ 0.07, γ ≈ 0.973, the corresponding FAC is shown
in Fig. 4. The evolution of FAC with optimized DVA parameters depending on the value of α is
presented in Fig. 5. With a growth of α, the value of γ slowly increases and the peaks go down.

Remark 2. Due to the fact that polynomials in system (3.5) are of extremely high degrees, it
seems impossible to obtain explicit expressions for h, γ, r as functions of µ, α. These ex-
pressions can be approximately obtained in the form of asymptotic expansions. However,
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Fig. 3. Geometrical interpretation of system (3.5), where orange, green and blue surfaces correspond to
ψ1 = 0, ψ2 = 0 and ∆ = 0, µ = 0.05, α = 0.002

Fig. 4. The frequency-amplitude curve with optimized DVA parameters (based on Eq. (2.18), µ = 0.05,
α = 0.002, h = 0.07, γ = 0.973

Fig. 5. Dependence of the responses of primary mass on the parameter α for µ = 0.05

taking into account that the problem contains three small parameters (µ, F0, knl), ob-
taining such expansions essentially depends on how these parameters relate to each other
(for example, knl can be considered an independent small parameter, it can be considered
proportional to µ or µ2 etc.). The conscientious obtaining of such formulas is a subject of
separate consideration.
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4. Discussion and numerical validation

The procedure described above makes it possible to make an optimal choice of the absorber
parameters, assuming that the parameter α is known. As can be seen from formulas (2.3),
this parameter depends not only on the nonlinear stiffness knl of the main system, but also on
the amplitude F0 of the external force. If its exact value is unknown, then what corrections
should be made? This issue was discussed, in particular, in (Habib et al., 2015), where the
authors proposed the use of a nonlinear absorber with “mirror” characteristics (proportional to
characteristics of the main system). Such an approach seems to be logical, but the complexity of
analysis significantly increases. For example, a cubic polynomial on r in formula (2.18) transforms
into a polynomial of the ninth degree, and even the problem of determining the number of real
roots is mathematically very difficult (and the numerical approach is not very reliable due to the
large number of unknown parameters). Thus, the question arises: is it possible to use a linear
absorber in conditions where the exact value of F0 is vague, but the interval of possible values
of the amplitude is known, i.e. F0 ∈ [F1, F2]. If this interval is not too wide, say F2/F1 ¬ 2, then
taking into account that with a growth of α, the value of γ also increases (and to a lesser extent
the value of h), as can be seen in Fig. 5, then we suggest that when choosing the value of γ we
should take the maximum possible value of the amplitude of the external excitation F2. This is
illustrated in Figs. 6 and 7.

Fig. 6. Evolution of the responses as F0 goes up for h = 0.07, γ = 0.999

Fig. 7. Shape of the FAC when DVA parameters are chosen for α corresponding to F0 = F2
for h = 0.071: (a) α = 0.008, γ = 1.109, (b) α = 0.008, γ = 1.12, (c) α = 0.005, γ = 1.12

Suppose that α ∈ [0.002, 0.008] and the “expected” value of α is equal to 0.003. Then
calculated values for the absorber are: γ ≈ 0.999, h ≈ 0.07. The corresponding FAC is shown in
Fig. 6. It has one branch and two equal peaks at r ≈ 34. The allowable frequency range is wide
enough. If the amplitude grows by 10%, the maximal amplitude increases up to 40 units, but the
curve remains “robust” – no bifurcations, no blow-up, etc. However with a further growth by
10%, we get bifurcations and a significant increase in the amplitude of oscillations for primary
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mass. From the other side, calculating the absorber parameters for the upper limit α = 0.008,
we get γ ≈ 1.09, h ≈ 0.071. The FAC for such values is presented in Fig. 7. It looks the same
as in the case of the linear system, the value of rmax decreases down to ≈ 28, and there is some
distance between the right peak and the upper branch, thus the “jump” from the lower branch
to the upper one as a result of some occasional perturbations is not expected. Moreover, if we
choose γ = 1.12, then rmax grows up to 30 units, but the point M now is far enough from the
upper branch (Fig. 7).

In order to verify the obtained analytical results, we carried out numerical integration of
averaged system (2.12) and equations (2.5). Also, in order to compare the efficiency of the
absorber based on the proposed approach with other results, we took of the parameters µ = 0.05,
α = (3/4) · 0.013, as it was done in the article (Habib et al., 2016) in Fig. 4a. Those authors
considered a nonlinear absorber, however the values for h and γ were taken as optimal values for
the linear system, namely γ = 0.95242, h = (2 ·0.134)2γ. The corresponding cubic component of
stiffness of the absorber was taken β = (4/3) · 0.0851 ·α1 . The maximum dimensionless response
of main mass was between 5.5 and 6.0. At the same time, solving system (3.6) (or using its
geometrical interpretation like it is shown in Fig. 3) for the LDVA we found: h = 0.081, γ = 1.15,
q = 1.39. Substituting these values into system (2.15), we have u1 = −2.624, u2 = −0.50619,
v1 = 2.70287, v2 = −2.79266 (two other solutions are complex with respect to u, v). After this,
we integrate the averaged equations for both cases LDVA and NLDVA (with identical initial
values), the results are shown in Fig. 8a. The distance from the origin to the attraction point
is shorter with our choice of parameters of the absorber. Also, as one can see, trajectories with
different initial values tend to the attraction point, and coordinates of this point correlate with
the found values of u1, v1. The fact that the averaged equations describe well the behavior of
the solutions of the original system is confirmed by integrating equations (2.5).

Fig. 8. (a) Phase trajectories for system (2.12) with different initial values (points A, B, C) and the
stationary point D, µ = 0.05, α = 0.00975. The point E is the attraction point for NLDVA with cubic
nonlinearity and parameters of the absorber taken according to (Habib et al., 2016); (b) trajectory for

non-averaged system (2.10) with the initial point A

As can be seen in Fig. 9a, the stationary point of system (2.12) corresponds to the limit cycle
of system (2.5). The projection of the phase trajectory on the plane x1, x

′

1 which corresponds to
the NLDVA with values according to (Habib et al. 2016), see Fig. 4a, is shown in Fig. 9b, and
a comparison of two time histories for the dimensionless response of main mass is presented in
Fig. 9c.

1The averaged equations for such a case will differ from (2.5) by appearing the term −βx3
2
in the

second row of the matrix Φ.
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Fig. 9. (a) Projection of the phase trajectory on the plane x1x
′

1
for dimensionless system (2.5) with the

proposed LDVA parameters, the frequency ratio corresponds to the maximum response value q = 1.39;
(b) trajectory corresponding to the NLDVA, q = 1.25; (c) comparison of two time histories for the

LDVA and NLDVA

5. Conclusions

The article considers the problem of determining the parameters of a DVA connected to a
Duffing’s oscillator, which is under the influence of a periodic external excitation. The goal is
to reduce the maximum possible oscillation amplitude of the main system under conditions of
uncertainty (frequency ratio and external excitation amplitude) in the vicinity of resonant fre-
quencies. We paid special attention to the development of an analytical procedure for selection
the DVA parameters. It is shown that an appropriate choice of absorber stiffness depends signif-
icantly on the amplitude of the external action. In the case when this amplitude can take values
from a certain range, it is advisable to focus on the upper limit of this range when choosing the
absorber frequency.

The future work will be related to obtaining asymptotic formulas for the absorber parameters,
more detailed comparison of the efficiency of using linear and non-linear absorbers and estimating
the region of attraction.
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