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The paper deals with the linear theory of elastic materials with voids based on the concept of
volume fraction. In this model, the interstitial pores are vacuous and can contract or stretch.
The change in the volume fraction is measured by a scalar function, so that independent
kinematical variables are four: the components of displacements and the volume fraction
function. The equilibrium problem of elastic spherical bodies under radial surface traction is
solved. The solution is given in closed form and applied to study three special cases. Explicit
formulas of the displacement, stress distribution and volume fraction function are given.
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1. Introduction

The equilibrium and motion of solid bodies bounded by a spherical surface are classical prob-
lems in the theory of elasticity. At the beginning of the nineteenth century, many scientists
investigated various problems concerning spheres and spherical shells. We mention among oth-
ers Poisson (1829) who, in the second section of his Mémoire, studied vibrations of an elastic
sphere, and Clebsch (1862), who addressed the problem of radial vibrations. The equilibrium
problem of a spherical shell subjected to a given distribution of load was solved by Lamé (1854).
A complete solution of the “Lamé’s problem” was obtained by Lord Kelvin (Thompson, 1863)
using series involving spherical harmonics. In his famous treatise, Love (1926) introduced a
method of solving the Lamé’s problem in terms of series of spherical harmonics regarding these
functions as functions of Cartesian coordinates and avoiding transformations to polar coordi-
nates. In more recent years, a representation of solutions in terms of series and quadrature was
presented by Kupradze (1979). The method has been applied to solve several cases of boundary
value problems in three-dimensional elasticity and thermoelasticity for spheres and spherical
cavities in a infinite medium.

The attention given to the topic is due to its practical applications in engineering, geotech-
nical sciences, geophysics and earth sciences.
In this paper, we address the equilibrium problem of spherical bodies under the action of given

surface traction in the context of the linear theory of elastic materials with voids introduced by
Cowin and Nunziato (1983). Differently from the well-known Biot (1941) consolidation theory,
where the open pore spaces are filled with a liquid or gas, in the Cowin-Nunziato model the
pores are empty, containing nothing of mechanical significance. Both theories were formulated
to describe mechanical behaviour of porous materials and play an important role in engineering,
soil mechanics and biomechanics.
The basis of Cowin-Nunziato theory is the concept of volume fraction. The bulk density

is explicated as the product of two fields, the matrix material density field and the volume
fraction field. The volume fraction corresponding to the void volume is taken as an independent
kinematic parameter. In consequence, the theory of materials with voids is characterized by four
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independent kinematical variables, three components of the displacement and a change in the
volume fraction. Consequently, for the mechanical equilibrium an additional balance equation is
required. Moreover, extra boundary conditions must be added. The model is suitable to describe
the behaviour of rocks, ceramics, pressed powders as well as concrete.
The theory has been subject to intensive study, and a great number of contributions regarding

the fundamentals and applications has been published. Basic results and extended references
may be found in the book by Ciarletta and Ieşan (1993). Theorems concerning the existence
and uniqueness of the solution were established by Ieşsan (1985). Using a semi-inverse method,
the Saint-Venant problem was solved by Dell’Isola and Batra (1977). Magnucki and Malinowski
(2004) derived an explicit expression for the critical load of compressed porous beams. Stress
concentration problems were investigated by De Cicco and De Angelis (2019). Thermoelastic
deformations of porous anisotropic cylinders were studied by De Cicco and Ieşan (2013). Puri
and Cowin (1985) analysed behaviour of plane harmonic waves in a medium with voids.
A contribution to the topic under consideration was given by Cowin and Nunziato (1983).

They solved the problems of thick walled spherical and circular cylindrical shells under internal
and external pressure. The salient feature of the solution is that the stress field is not affected
by the porosity and is identical with that predicted by classical elasticity. In this problem, we
generalize the pressure vessel problem proposed by Cowin and Puri (1983).
The outline of the paper is as follows. In Section 2, we present the basic equations of the

equilibrium theory of elastic materials with voids. In Section 3, we derive the generalized ana-
lytical solution for a class of problems for which the kinematical variables are functions of the
radial coordinate r. In Section 4, the solution is applied to study three special cases.
All the results are expressed in explicit form and generalize the solutions of analogous prob-

lems in the classical elasticity. It is worth to note that in the two cases studied, the stress
distribution is not affected by a change in the volume fraction, whereas in the third case the
porosity influences both the displacement and stress field.

2. Preliminaries

We consider a regular region B of three-dimensional Euclidean space occupied by a linearly
elastic material with voids. The region B is referred to a system of Cartesian coordinates
O{e1, e2, e3}. We denote by ∂B the boundary of B and by n the outward unit normal vec-
tor of ∂B. We denote by ρ the mass density in the deformed configuration and assume that ρ
has the decomposition ρ = σρ̂, where ρ̂ is the density of the matrix material and σ is the volume
fraction field. In the undeformed state we have ρ0 = σ0ρ̂0, where ρ0, ρ̂0 and σ0 are the mass
density, density of the matrix material and the volume fraction field in the reference configu-
ration, respectively. We introduce the notation ψ = σ − σ0 (see Appendix). The independent
kinematic variables are components of the displacement ui (i = 1, 2, 3) and a change in the
volume fraction ψ. The governing equations of the linear theory of elastic materials with voids
are given by the geometrical equations

E =
1

2
(∇u+∇uT) (2.1)

where u is the displacement field over B, ∇u is the gradient of u, ∇uT is the transpose of ∇u,
and E is the strain tensor. The equilibrium equations are

divT+ f = 0 divh− p+ q = 0 (2.2)

where T denotes the stress tensor, f the body force, h the equilibrated stress vector, p the
intrinsic equilibrated body force and q the extrinsic equilibrated body force.
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In some microstructural theories as well as in specific problems of classical elasticity, there
arise stress systems equivalent to two oppositely directed forces at some point, known as double
force systems without moments. The terminology is justified by the fact that such systems have
no net force and no resulting moment. In classical elasticity, the double force systems were
identified as singularities and were discussed by Love (1926).
Now we consider the problem of an elastic sphere forced into a spherical hole of slightly

smaller diameter in an infinite elastic medium. The stress distribution consists of three double
force systems without moment along three mutually perpendicular axes and is called the center
of dilation or center of compression. In the theory of granular materials Goodman and Cowin
(1972) showed the existence of an equilibrated stress resulting in either a center of compression
or center of dilation.
In equation (2.2)2, divh and p can be associated with the center of dilation. The vector h

could be interpreted as a single double force system, whereas the term p can be considered
the center of dilation, but one of them acts at a distance. Other possible interpretations were
suggested by Jenkins (1975) in the context of theory of granular materials and by Mackenzie
(1950) who considered a porous material with spherical voids.
The second equation of (2.2) was first suggested by Goodman and Cowin (1972) and then

derived from a variational argument by Cowin and Goodman (1976) (see also Appendix). It has
been a subject of detailed discussions regarding the physical meaning and specific interpretations.
A comparison with analogous equations arising in microstructural theories was formulated by
Nunziato and Cowin (1979) and Cowin and Nunziato (1983).
The constitutive equations are

T = 2µE+ λ trEI+ βψI h = α∇ψ p = β divu+ ζψ (2.3)

where I is the identity tensor, and µ, λ, β, α and ζ are constitutive coefficients. Assuming
that the internal energy density is a positive definite form, the following inequalities hold

µ > 0 α > 0 ζ > 0

2µ+ 3λ > 0 (2µ+ 3λ)ζ > 3β2
(2.4)

The boundary conditions at a regular point of ∂B are expressed by

t = Tn h = h · n (2.5)

where t is the surface traction and h the equilibrated surface force. The dot denotes scalar
product. With the help of equations (2.3) and (2.1), equilibrium equations (2.2) become

µ∆u+ (µ+ λ)∇ divu+ β∇ψ = 0 α∇ψ − ζψ − β divu = 0 (2.6)

where ∆ is the Laplacian.

3. Elastic porous spheres

In this Section, we shall consider the equilibrium of a porous body bounded by a spherical surface
under the action of given surface tractions. We assume that the region B is referred to the interior
of a sphere of radius a, i.e. B = {x| x21 + x

2
2 + x

2
3 < a2}. The system of Cartesian coordinates

O{x1, x2, x3} is chosen so that the origin O is in the center of the sphere. In the following, for
our convenience, the displacement vector and the volume fraction function will be expressed in
spherical coordinates (r, ϕ, ϑ) related to the Cartesian coordinates by the expressions

r =
√
x21 + x

2
2 + x

2
3 ϕ = arccos

x3
r

vt = arctan
x2
x1
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We denote by (ur, uϕ, uϑ) the components of the displacement vector u. We have

ur = ur(r, ϕ, ϑ) uϕ = uϕ(r, ϕ, ϑ)

uϑ = uϑ(r, ϕ, ϑ) ψ = ψ(r, ϕ, ϑ)

0 ¬ r < a 0 ¬ ϕ < π 0 ¬ ϑ < 2π

(3.1)

Now, we restrict our attention to the class of problems with spherical symmetry. In consequence,
all the quantities are independent of ϕ and ϑ and depend only upon the variable r. Precisely,
we suppose that

ur = u(r) uϕ = uϑ = 0 ψ = ψ(r) (3.2)

The components of the strain tensor in spherical coordinates are given by

err = u
′ eϕϕ = eϑϑ =

1

r
u erϕ = erϑ = eϕϑ = 0 (3.3)

where the prime stands for derivation with respect to r.
The constitutive equations become

σrr = (2µ+ λ)u
′ + 2λ

1

r
u+ βψ σϕϕ = σϑϑ = 2(µ+ λ)

1

r
u+ λu′ + βψ

σrϕ = σrϑ = σϕϑ = 0 hr = αψ
′ hϕ = hϑ = 0

p = β
(
u′ +
2

r
u
)
+ ζψ

(3.4)

From (3.2) and (3.3), equilibrium equation (2.6) can be written in the form

u′′ +
(2
r
u
)′
+ νψ′ = 0 α

(
ψ′′ +

2

r
ψ′
)
− ζψ − β

(
u′ +
2

r
u
)
= 0 (3.5)

where

ν =
β

2µ+ λ′

The boundary conditions reduce to

σrr = tr σϕr = tϕ σϑr = tϑ h = hr (3.6)

where tr and hr are prescribed constants.
From the first equation of (3.5) we get

u′ +
2

r
u+ νψ = B1 (3.7)

in which B1 is an arbitrary constant. By considering equation (3.7), the second equation of
(3.5) become

ψ′′ +
2

r
ψ′ − ξ2ψ =

β

α
B1 (3.8)

where

ξ2 =
1

α

(
ζ −

β2

2µ+ λ

)

We note that ξ2 > 0.
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Equation (3.8) has solution

ψ = C1i0(ξr) + C2k0(ξr)−
β

αξ2
B1 (3.9)

where C1 and C2 are arbitrary constants and in and kn are spherical modified Bessel functions
of the first and second kind, respectively.
When n = 0 and ξr > 0, the following identities hold

i0 =

√
π

2ξr
I1/2(ξr) =

sinh ξr

ξr
k0 =

√
π

2ξr
K1/2(ξr) =

e−ξr

ξr
(3.10)

where In+1/2 and Kn+1/2 are modified Bessel functions of a non-integer order and e is the Nepero
number. Taking into account the relation

1 +
νβ

ξ2α
=

ζ

αξ2
(3.11)

from (3.7) and (3.9), we obtain

u =
ζ

3αξ2
B1r −B2

1

r2
− νC1i1(ξr) + νC2k1(ξr) (3.12)

in which B2 is an arbitrary constant. In (3.12) the spherical modified Bessel functions i1 and k1
take the following expressions

i1(ξr) =

√
π

2ξr
I3/2(ξr) =

ξr cosh ξr − sinh ξr

ξ2r2

k1(ξr) =

√
π

2ξr
K3/2(ξr) =

( 1
rξ
+
1

ξ2r2

)
e−ξr

(3.13)

In the next Section we consider some applications of general solution (3.9) and (3.12) of the
problem. We will study special cases related to the equilibrium of an elastic sphere.

4. Related problems and applications

4.1. Solid sphere loaded with purely radial pressure

In boundary conditions (3.6), let

tr = t = const tϕ = tϑ = 0 h = 0 (4.1)

For r = 0, the functions u and ψ must be finite, so that

B2 = 0 C1 = 0 C2 = 0 (4.2)

The functions u and ψ reduce to

u =
ζ

3αξ2
B1r ψ = −

β

αξ2
B1 (4.3)

From (4.3), (3.3) and (3.4) we find

err = eϕϕ = eϑϑ =
ζ

3αξ2
B1 (4.4)



310 S. De Cicco

and

σrr = σϕϕ = σϑϑ =
ζ(2µ+ 3λ)− 3β2

3αξ2
B1

hr = hϕ = hϑ = 0 p = 0

(4.5)

We introduce the notation

c =
ζ(2µ+ 3λ)− 3β2

3αξ2
(4.6)

It follows from (4.5), (4.1) and boundary conditions (3.6) that

B1 =
1

c
t (4.7)

From (4.3), we obtain a solution of an analogous problem in the classical theory of elasticity. In
fact when β = 0, then

u =
1

2µ+ 3λ
ψ = 0 (4.8)

Solution (4.3) enables us to calculate the bulk modulus of a material with voids. From (4.4) and
(3.4) we get

ψ = −
β

ζ
trE (4.9)

By constitutive equations (3.4) and equations (4.5), we obtain

t = K trE (4.10)

where

K =
ζ(2µ+ 3λ)− 3β2

3ζ
(4.11)

The constant K is the bulk modulus of an elastic material with voids. Now we introduce the
notation

K∗ =
ζ(2µ+ 3λ)− 3β2

3β
(4.12)

From (4.3), (4.11) and (4.12), the functions u and ψ can be written in an explicit form

u =
1

3K
tr ψ = −

1

K∗
t (4.13)

For β = 0, we have 1/K∗ = 0 and K reducing to

K0 =
2µ+ 3λ

3
(4.14)

The elastic constant K0 is the bulk modulus in classical elasticity. We note that K > 0 and
K < K0. In fact

K0 −K =
β2

ζ
> 0
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Fig. 1.

4.2. A shell bounded by concentric spherical surfaces

We consider a body bounded by concentric spherical surfaces under the action of internal
and external pressure. We denote by r1 and r2 the radius of the external and internal boundaries,
respectively. Let p1 be the pressure on the external spherical surface and p2 the pressure on the
internal spherical surface (Fig. 1).
Boundary conditions (3.6) become

σrr = −p1 σϕr = σϑr = 0 hr = 0 on r = r1

σrr = −p2 σϕr = σϑr = 0 hr = 0 on r = r2
(4.15)

From (3.4) and (3.9), it follows that

hr = αξ[C1i1(ξr)− C2k1(ξr)] (4.16)

For r 6= 0, the function i1 and k1 assume finite and non-zero values, so that boundary conditions
(4.15) imply

C1 = C2 = 0 (4.17)

Taking into account (3.9), (3.12), (3.4) and (4.6), the stress component σrr has the form

σrr = cB1 + 4µ
1

r3
B2 (4.18)

With the use of (4.15), we find

B1 =
1

c

p2r
3
2 − p1r

3
1

r31 − r
3
2

B2 =
p1 − p2
4µ

r31r
3
2

r31 − r
3
2

(4.19)

From (3.9), (3.12), (3.4) and (4.19), we obtain the solution in an explicit form

u =
1

r31 − r
3
2

[ 1
3K
(p1r

3
1 − p2r

3
2)r −

1

4µ
(p1 − p2)

r31r
3
2

r2

]

ψ =
1

K∗
p1r
3
1 − p2r

3
2

r31 − r
3
2

(4.20)
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Further

σrr =
1

r31 − r
3
2

[
(p1 − p2)

r31r
3
2

r3
− p1r

3
1 + p2r

3
2

]

σϕϕ = σϑϑ = −
1

r31 − r
3
2

[1
2
(p1 − p2)

r31r
3
2

r3
+ p1r

3
1 − p2r

3
2

]

hr = 0 p = 0

(4.21)

Relations (4.20) and (4.21) generalize the solution of the analogous problem in the classical
elasticity (Love, 1926).

4.3. A sphere with a rigid core

Now, we consider a spherical porous body B of radius r1 in which a concentric rigid sphere of
radius r2 has been inserted. The body is in equilibrium under the action of uniform pressure −t
(t > 0), Fig. 2.

Fig. 2.

The boundary conditions are

σrr = −t hr = 0 for r = r1

u = 0 ψ = 0 for r = r2
(4.22)

We introduce the following functions

Q1(ξr) =
i0(ξr)k1(ξr1) + k0(ξr)i1(ξr1)

i1(ξr1)

Q2(ξr) =
i1(ξr)k1(ξr1)− i1(ξr1)k1(ξr)

i1(ξr1)

(4.23)

It follows from (3.4), (3.9) and (3.12) that boundary conditions (4.22) are satisfied if and only if

C1 =
k1(ξr1)

i1(ξr1)
C2 C2 = −

1

D
t

B1 =
αξ2

β
Q1(ξr2)C2 B2 =

[ ζ
3β
Q1(ξr2)r

3
2 − νQ2(ξr2)r

2
2

]
C2

(4.24)
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where

D = Q1(ξr2)
(
K∗ +

4µζ

3β

r32
r31

)
− 4µνQ2(ξr2)

r32
r31

(4.25)

Replacing constants (4.24) in relations (3.9), (3.12), (3.3) and (3.4), the solution can be rewritten
in an explicit form. The kinematic variables are

u = −
t

D

{ ζ

3β
Q1(ξr2)

(
r −

r32
r2

)
+ ν

[
Q2(ξr2)

r22
r2
−Q2(ξr)

]}

ψ = −
t

D
[Q1(ξr)−Q1(ξr2)]

(4.26)

The components of the stress are expressed by

σrr = −
t

D

{
Q1(ξr2)

(
K∗ +

4µζ

3β

r32
r3

)
+ 4µν

[
Q2(ξr)

1

r
−Q2(ξr2)

r22
r3

]}

σϑϑ = σϕϕ = −
t

D

{
c
k1(ξr1)

i1(ξr1)
− 2µ

[ ζ
3β
Q1(ξr2)

r32
r3
− νQ1(ξr)

]

+ 2µν
[
Q2(ξr2)

r22
r3
−Q2(ξr)

1

r

]}

hr = −
t

D
αξQ2(r) p = −

t

D
αξ2Q1(r)

(4.27)

The maximum value of σrr occurs at r = r2

σmaxrr = −
t

D

ζ(2µ+ λ)− β2

β
Q1(ξr2) (4.28)

If we put β = 0 into equations (4.26) and (4.27), we obtain the solution of the problem in
classical elastostatics

u0 = −
t

D∗

(
r −

r32
r2

)
ψ0 = 0 (4.29)

and

σ0rr = −
t

D∗

(
2µ+ 3λ+ 4µ

r32
r3

)
σ0ϕϕ = σ

0
ϑϑ =

t

D∗
2µ
r32
r3

hr = 0 p = 0

(4.30)

where we have introduced the notation

D∗ = 2µ+ 3λ+ 4µ
r32
r31

(4.31)

The maximum stress occurs at r = r2

σ0maxrr = −
t

D∗
(6µ+ 3λ) (4.32)

If we put into (4.32) r2 = sr1, 0 < s ¬ 1, the relation can be rewritten in the form

σ0maxrr = −3t
1− ν∗

1 + ν∗ + 2(1 − 2ν)s3
(4.33)

where ν∗ is the Poisson ratio.
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The ratio −σmaxrr /t defines the stress concentration factor. For the problem under consider-
ation, we have

κ =
1

D
Q1(ξr2)

(
K∗ +

4µζ

3β

)
(4.34)

Expression (4.34) generalizes the stress concentration factor for the analogous problem in clas-
sical elastostatics

κ0 =
3(2µ + λ)

D∗
(4.35)

5. Concluding remarks

• In the theory presented here, the volume fraction as an independent kinematical variable
serves to distinguish the mechanical behaviour of materials with voids from ordinary elastic
materials. The theory is closely related to microstructural theories and can be considered
a special case of the microstretch continuum theory formulated by Eringen (1999).

• We solve the problem of spherical bodies under normal pressure. The solution is obtained
in a closed form, and explicit formulas for the displacement, volume fraction function and
stress distribution are given.

• The solution is applied to study three special cases. The results are compared with those
predicted by the classical elasticity for the same problems. It is interesting to note that
in the first and second case, the stresses are not affected by the voids, whereas the radial
displacement field is modified from the value predicted by the classical elasticity. Contrary
to the previous cases, the third application exhibits both radial displacement and stress
field influenced by the voids.

• The solution of the porous spherical shell under external and internal normal pressure
coincides with that established by Cowin and Nunziato (1983) with a different approach.

• We derive the bulk modulus of an elastic material with voids and show that it is smaller
than the bulk modulus of the elastic material of the skeleton. In the case of the porous
sphere with a rigid nucleus, the maximum value of tensile stress and stress concentration
factor are calculated.

A. Appendix

A.1. The volume fraction concept

In many branches of engineering, for example, mechanics and biomechanics, we address solids
which contain pores, such as rocks, and ceramics as well as bones. The pores can be empty or
filled with fluids. The exact location of the pores is impossible to describe, so that we suppose
they are statistically distributed in order to create a homogenized continuum. In the N-C theory,
the pores are empty, and the material is composed by a skeleton matrix and voids. The theory
of materials with voids is based on the volume fraction concept.
We consider an element of volume dV0 in a point X0 in the reference configuration. Let dy0

be the volume of the skeleton matrix in P0, then we define the volume fraction field by the ratio

σ0 =
dv0
dV0

If we denote by σ the volume fraction field in a generic deformed configuration, the difference

ψ = σ − σ0

is a scalar function measuring a change in the volume fraction.



On the deformation of porous spherical bodies... 315

In the N-C theory, the kinematic variables are four: three components of the displacement ui
(i = 1, 2, 3) and a change in the volume fraction ψ. When ψ = 0, the theory reduces to the
classical theory of elasticity.

A.2. Balance equations

The generalized theories of elasticity are characterized by a number of kinematic variables
greater than three. To formulate theories that are determinate, the number of equilibrium equa-
tions must be equal to that of kinematic variables.
In the N-C theory, the additional equilibrium equation is

hi,i − p+ q = 0 (A.1)

The equations of motion can be easily derived from the energy conservation law (Nunziato and
Cowin, 1979)

d

dt

∫

r

ρ0
(
e+

1

2u̇j u̇j
+
1

2
κψ̇2

)
dV0 =

∫

Ω

(fiu̇i + qψ̇) dV0 +

∫

∂Ω

(tku̇k + hψ̇) dA0 (A.2)

where e is the internal energy per unit mass and k is the equilibrated inertia.
The previous equation is also true when u̇ is replaced by u̇ + a, where a is an arbitrary

constant vector with all the other terms being unaltered. By subtraction, we get
(∫

Ω

fi dV0 +

∫

∂Ω

ti dA0 −

∫

Ω

ρ0üi dV0

)

− ai = 0 (A.3)

for all arbitrary constant vectors a. The quantities in the square brackets are independent of a,
then it follows that

∫

Ω

ρ0üi dV0 =

∫

∂Ω

ti dA0 +

∫

Ω

fi dV0 (A.4)

From the usual methods, we obtain

tji,j + fi = ρ0üi (A.5)

In view of (A.4), relation (A.1) reduces to
∫

Ω

ρ0(ė+ κψ̇ψ̈ dV0 =

∫

Ω

(tij ėij + qψ̇) dV0 +

∫

∂Ω

hψ̇ dA0 (A.6)

If the region Ω is a tetrahedron bounded by the coordinate planes through the point X and by
a plane whose unit normal is n, we obtain

(h− hini)ψ̇ = 0 (A.7)

Using (A.5) and (A.6) and applying the resulting equation to an arbitrary region, we obtain
the load form of the conservation of energy

ρ0ė = Tij ėij + hiψ̇,i + pψ̇ (A.8)

where p satisfies the equation

hi,i − p+ q = ρ0κψ̈ (A.9)

The last equation is called the balance of equilibrated force and describes dynamical changes in
the void volume.
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