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Structural components are often operated under combined stress conditions (primary and
secondary stresses), but the stress levels generated by residual stress (or secondary stress) is
hardly ever evaluated. Hence, stress intensity factors at the crack tips of a compact tension
(CT) specimen under a pre-compressed load condition are analyzed using the finite element
method. Then, the average residual stress intensity factor is calculated and analyzed. As
the crack length a0/W increases, the average residual stresses σave/σ0 grows under the
same pre-compression load. σave/σ0 increases rapidly at a low range of the pre-compression
load but tends to a constant in a high range of the load. The distribution of the average
residual stress intensity factorsKave and σave/σ0 of the CT specimen with same crack length
under different pre-compression loads have the same tendency. Additionally, the distribution
of Kave and KFEM under different pre-compression loads are also similar. Nevertheless,
Kave estimated by the average residual stress is too conservative and not accurate, and
the method is complex, which depends on the analysis of simulation. Therefore, a simple
method for calculating Mode I stress intensity factor K for this model is presented. A group
of examples is presented to verify the accuracy of the method.
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1. Introduction

The stress intensity factor (SIF) K is used to describe stress intensity or the stress state gen-
erated by a remote load or residual stresses near the crack tip in studies related to fracture
mechanics (Anderson, 2005). It is usually determined for homogeneous, linear elastic materials
and materials that exhibit small-scale yielding at the crack tip. The magnitude of K depends
on sample geometry, size and location of the crack, magnitude and model distribution of loads
acting on the material. Since the introduction of the SIF (Tada et al., 2000), there have been
various investigations regarding K under the primary load condition. Three modes of the SIF
under different types of loads have been discussed (Rooke and Percy, 1976), and Mode I is the
most common load type encountered in engineering design. Moreover, several of examples of
SIFs are investigated in detail (Rooke and Percy, 1976; Sih et al., 1974; Sneddon, 1946; Isida,
1966; Sih and Macdonald, 1974; Erdogan, 1962), such as in infinite plate with uniform uniaxial
stress (Rooke and Percy, 1976) and infinite plate (Sneddon, 1946), etc. The American Society for
Testing and Materials (ASTM) has proposed fracture toughness testing standard for different
specimen modes (ASTM, 2013). The specific calculation equations of Mode I SIF for different
specimens are listed in Ref. (Bower, 2009), especially the compact tension (CT) specimen, which
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is a common type of specimen. However, the aforementioned studies are conducted considering
the primary load, but in-service components invariably develop residual stress introduced during
fabrication or service processes (Chen et al., 2013) (usually by thermal gradients or non-uniform
plastic deformation) which may cause fracture failure. Hence, it is significant to propose com-
putation equations to predict the SIF under the residual stress condition. Webster et al. (2011)
obtained K of the residual stress by estimating residual stress distributions. Zhao et al. (2013)
used this method to analyse K of the residual stress. However, the SIF is overestimated due to
the residual stress field, which results in an excessively pessimistic defect assessment. To analyze
the effect of residual stress on the SIF, a simple and repeatable technique of obtaining the resid-
ual stress is the pre-compression on a specific specimen (CT specimen) (Chen et al., 2013; Zhao
et al., 2013; Xu et al., 2016; Song et al., 2015a,b; Shirahatti et al., 2014). A tensile residual stress
field in the vicinity of the crack tip can be introduced by loading a pre-compressed specimen
beyond the yield strength and then unloading it (Zhao et al., 2013; O’Dowd et al., 2005; Turski
et al., 2008). Therefore, in this study, the technique of pre-compressing the CT specimen is used
to investigate the effect of residual stress on the SIF. It is significant to make an appropriate
prediction and derive computation equations of the SIF resulting from the residual stress.

In this study, the finite-element (FE) method was carried out to assess the effects of local
tensile residual stress on the SIF. The residual stress was generated by pre-compressing the CT
specimen and then unloading it. The average residual stress intensity factor was calculated and
analyzed. The law of change of the SIF varied with the pre-compression load, thickness and
crack length of the pre-compressed CT specimen were concluded. An analysis with a series of
original computation equations was proposed to predict the SIF of the CT specimen with pre-
compressed residual stress. Finally, the suitability and accuracy of the analytical method were
studied and validated by comparing them with a range of examples.

2. Finite element models and material properties

2.1. Finite element models

In this study, a three-dimensional finite element (3D FE) model of the CT specimen is
employed. A tensile residual stress field in the vicinity of the crack tip can be introduced by
loading the pre-compressed specimen beyond the yield strength and then unloading it. This
technique was previously developed by Zhao et al. (2013), O’Dowd et al. (2005), Turski et al.
(2008).

Figure 1 shows geometry of a specified CT specimen. Thickness, width, crack depth and
notch root radius of the specimen respectively are B = 10mm, W = 20mm, a0/W = 0.5 and
r = 0.20mm, respectively. Only a half of the symmetric CT geometry is modelled. And the
loading process is achieved by the movement of an analytical rigid shell, which is used as the
punch tool. The rigid shell is constrained in the horizontal and rotational directions but free to
move in the vertical direction during the loading process. The crack is inserted at the end of
the notch tip after the pre-compression. Hard contact of contact control, finite sliding of sliding
formulation and surface to surface of the discretization method are used in the pre-compression
process. Firstly, the residual stress filed could be simulated by using the elastic-plastic finite
element model, then the residual stress intensity factor can be obtained when the residual stress
filed is loaded in the elastic finite element model.

Figure 2a depicts the FE mesh for the CT specimen, and the local fine mesh distribution
around the crack tip is shown in Fig. 2b. The smallest element size is 15µm, which is approx-
imately one third of the average grain size of P92 steel (which is about 40µm to 50µm). The
model in Fig. 2 contains 8802 eight-node linear grid reduced integration elements (C3D8R) and
11060 nodes. All analyses are carried out using ABAQUS code (Hibbitt et al., 2014).
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Fig. 1. Geometry of the notched compact tension (CT) specimen

Fig. 2. Finite element model of the notched CT specimen: (a) meshes in the whole model, (b) local fine
meshes around the crack tip

Different thicknesses of CT specimen, i.e. 10, 15, 25 and 30mm, and different crack depth
ratios a0/W (a0 and W are the initial crack depth and width, respectively) are employed. The
specific geometric parameters of CT specimens are listed in Table 1.

Table 1. Geometric parameters of CT specimens used in the FEM

Specimen thickness Crack depth Pre-compressed
B [mm] a0/W load P [N]

10 15 20 25 30 0.3 200-20000

10 15 20 25 30 0.4 200-20000

10 15 20 25 30 0.5 200-20000

10 15 20 25 30 0.6 200-20000

10 15 20 25 30 0.7 200-20000

2.2. Material properties

The isotropic hardening model and mechanical properties of P92 steel are used. The power-
-hardening stress-strain relation (Song et al., 2015a) at room temperature is expressed as follows

σ =

{

Eε σ ¬ σ0
KP ε

np σ > σ0
(2.1)

where E is Young’s modulus of 206000MPa. np is strain-hardening exponent of 0.155, σ0 is the
yeilding stress of 320MPa, and Kp is the strain-hardening coefficient of 861MPa (Zhao et al.,
2012).



40 D. Wu et al.

3. FEM results and a method of average stress intensity factor predictions

Webster et al. (2011) and Zhao et al. (2013) obtained an average stress intensity factor Kave
of the residual stress by estimating average residual stress distributions. The average stress
intensity factor Kave is calculated by

Kave = σave
√
2πrave (3.1)

where σave is the average residual stress ahead of the crack tip, rave the average distance of
residual stress distributions ahead of the crack tip.
Figure 3 shows the residual stress distribution ahead of the crack tip of the CT specimen

with thickness B = 10mm, crack length a0/W = 0.3, and pre-compression load P = 5000N.
The residual stress σ22 is normalised by σ0, and we could obtain the average residual stress
intensity factor Kave = 224.22MPa·mm−1/2. Similarly, we could calculate Kave values under
different load levels and specimen sizes.

Fig. 3. The distribution of residual stress and average stress ahead of the crack tip

Fig. 4. Comparision of the average stress distribution under different crack depth a0/W , specimen
thickness B = 10mm

Figure 4 depicts distribution of the average residual stresses σave/σ0 of the CT specimen
with thickness B = 10mm and different crack length under different pre-compression loads. The
pre-compression load P is normalised as P ′ = P N. It is clearly seen that as the crack length
a0/W increases, the average residual stresses σave/σ0 grows under the same pre-compression
load. In addition, σave/σ0 increases rapidly at a low range of the pre-compression load but tends
to a constant in a high range of the load.
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Figure 5 compares the simulated stress intensity factors KFEM (which are directly obtained
by using the history output variables from FE results) and the average residual stress intensity
factors Kave of the CT specimen with thickness B = 10mm and different crack length under the
different pre-compression loads. The distribution ofKave and σave/σ0 with the same crack length
under different pre-compression loads have the same tendency. Additionally, the distribution of
Kave and KFEM for different pre-compression loads are also similar. It is indicated that the
average stress intensity factor Kave of the residual stress estimated by the average residual
stress could underestimate the residual stress intensity factor, but it is much too conservative
and not accurate, which may endanger in-service components. Moreover, the prediction method
of the residual stress intensity factor is complex and it needs analysis of simulation. Therefore,
a simple and accurate method is needed to predict the residual stress intensity factor.

Fig. 5. Comparision of stress intensity factors between the FEM solutions and the results calculated by
the average stresses

4. Methodology

The results of the normalised SIF under different specimen thickness B and different crack depth
a0/W are listed in Fig. 6. To simplify the analysis, the parameters are normalised as follows:
K ′ = K [MPa·m−1/2], and B′ = B [mm]. It is found from Fig. 6 that K ′ increases rapidly in the
low range of P ′ and smoothly increases in the high range of P ′. The change rules of the K ′-P ′

line may be related to the change rules of the residual stress, because the SIF is a vital term
in the stress distribution near the crack tip (Tada, 2000). Moreover, for the same specimen,
thickness B, K ′ line moves left and upward as the crack depth a0/W increases. In addition,
for the same crack depth a0/W , the K

′-P ′ line moves right and downward as the specimen
thickness B increases.

By comparing several types of function expressions, a perfect relationship between K ′ and P ′

is approximated to a complex exponential function (Fig. 6), which can be expressed by the
following equation

K ′ = aebP
′

+ cedP
′

(4.1)

K ′ is the normalised SIF (K ′ = K [MPa·m−1/2]) and P ′ is the normalised pre-compressed load
(P ′ = P [N]). Additionally, a, b, c and d are parameters related to the normalised specimen
thickness B′ (B′ = B [mm]) and crack depth a0/W . All parameters for different geometrical
conditions are obtained by fitting the curves, as seen in Fig. 6.
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Fig. 6. Comparision of K ′ solutions under different crack depth a0/W , (a) specimen thickness
B = 10mm, (b) B = 15mm, (c) B = 20mm, (d) B = 25mm, (e) B = 30mm

Figure 7 shows the fitted curves of parameters (a, b, c and d) and the normalised specimen
thickness B′ under different crack depths a0/W . It is obvious that a-B

′ and c-B′ curves are
linear, whereas b-B′ and d-B′ curves are approximately quadratic. The fitted curves can be
expressed as follows

a = a1 + a2B
′ b = b1 + b2B + b3B

′2

c = c1 + c2B
′ d = d1 + d2B + d3B

′2
(4.2)

It is indicated that as the crack depth increases, a-B′ and b-B′ curves move upward but c-B′

and d-B′ curves move downward. The variation trend in the fitted curves is constantly related
to the crack depth a0/W . Therefore, it is important to analyse the relationship between the
parameters a1, a2, b1, b2, b3, c1, c2, d1, d2 and d3 and a0/W .
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Fig. 7. Fitted curve of parameters and normalised specimen thickness B′, (a) parameters a and B′,
(b) b and B′, (c) c and B′, (d) d and B′

Figure 8 shows the fitted curve of parameters a1, a2, b1, b2, b3, c1, c2, d1, d2, d3 and the crack
depth a0/W . It can be concluded that a1-B

′ and c1-B
′ curves show a good linear relationship,

a2-B
′ and c2-B

′ curves are horizontal, and the other curves are approximately quadratic. The
fitted curves can be expressed as follows

a1 = a11 + a12
a0
W

a2 = −1.6 b1 = b11 + b12
a0
W
+ b13

a0
W

2

b2 = b21 + b22
a0
W
+ b23

a0
W

2
b3 = b31 + b32

a0
W
+ b33

a0
W

2

c1 = c11 + c12
a0
W

c2 = −40 d1 = d11 + d12
a0
W
+ d13

a0
W

2

d2 = d21 + d22
a0
W
+ d23

a0
W

2
d3 = d31 + d32

a0
W
+ d33

a0
W

2

(4.3)

All the coefficients a1, a2, b1, b2, b3, c1, c2, d1, d2 and d3 obtained by fitting the curves shown
in Fig. 8 are listed in Table 2.

By substituting the coefficients into Eqs. (4.3) and substituting these equations into Eqs.
(4.2), we could obtain a general equation to predict the SIF of the CT specimen under the
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Fig. 8. Fitted curve of coefficients and normalised crack depth a0/W : (a) a1, (b) a2, (c) b1, (d) b2,
(e) b3, (f) c1, (g) c2, (h) d1, (i) d2, (j) d3
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Table 2. Coefficients of the fitted curves in Fig. 8

a11 a12 a2 b11 b12 b13

194.5 60 −1.6 0.15075 −0.47518 0.79486

b21 b22 b23 b31 b32 b33

−0.0075 0.02322 −0.0429 0.00011 −0.00031 0.00066

c11 c12 c2 d11 d12 d13

−80 −600 −40 −2.831 10.815 −29.73
d21 d22 d23 d31 d32 d33

0.11576 −0.467 1.67914 −0.0015 0.00658 −0.0289

pre-compressed condition wherein only the following two variables are involved: specimen thick-
ness B and crack depth a0/W . The rearranged functions can be expressed as follows

K ′ =
(

a11 + a12
a0
W
+ a2B

′

)

exp
{[

b11 + b12
a0
W
+ b13

( a0
W

)2

+
(

b21 + b22
a0
W
+ b23

( a0
W

)2)

B +
(

b31 + b32
a0
W
+ b33

( a0
W

)2)

B′
2
]

P ′
}

+
(

c11 + c12
a0
W
+ c2B

′

)

exp
{[

d11 + d12
a0
W
+ d13

( a0
W

)2

+
(

d21 + d22
a0
W
+ d23

( a0
W

)2)

B +
(

d31 + d32
a0
W
+ d33

( a0
W

)2)

B′
2
]

P ′
}

(4.4)

5. Verification of the function

To validate the function, we compare the SIFs between the FE method results, the calculated
solutions obtained by this function and the average residual stress intensity factors. The follwing
two cases of CT specimens with different geometry are chosen for the study under the pre-
-compressed condition:

• Case 1: specimen thickness B = 18mm and the crack depth a0/W = 0.35;
• Case 2: specimen thickness B = 28mm and the crack depth a0/W = 0.65.

First, according to Eq. (4.4), we can obtain specific calculation equations for specimens of
each geometry under the pre-compressed condition. After substituting different normalised pre-
-compressed loads P ′ into the equations, the data of the normalised SIF K ′ can be obtained.

It can be seen from Fig. 9 that the calculated solutions are a good fit to the FE solutions, and
the function is more appropriate and larger than the average residual stress intensity factors. In
conclusion, this approach is satisfactory and accurate in enabling the engineering estimates for
fracture related problems.

6. Conclusions

The finite-element method is applied to assess the effects of local tensile residual stress on the
stress intensity factor. A simple method for calculating Mode I stress intensity factor of residual
stress is presented. The main results obtained are summarized as follows:

• As the crack length a0/W increases, the average residual stresses σave/σ0 grows, under
the same pre-compression load. σave/σ0 increases rapidly at the low range of the pre-
-compression load but tends to a constant value in the high range of load.
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Fig. 9. Comparison of K ′ between the FE solutions, average results and calculated solutions:
(a) specimen thickness B = 18mm, crack depth a0/W = 0.35, (b) B = 28mm, a0/W = 0.65

• The distributions of average residual stress intensity factors Kave and σave/σ0 of the CT
specimen with the same crack length under different pre-compression loads have the same
tendency. Additionally, the distribution ofKave andKFEM under different pre-compression
loads are also similar. Nevertheless, Kave estimated by the average residual stress is too
conservative and not accurate. The method is complex and needs analysis of simulation
results.

• A simple method for calculating Mode I stress intensities for the CT specimen under the
pre-compressed condition is proposed. The approach is very easy and simple, which consists
of two variables only if the geometry is defined: specimen thickness B and the crack depth
a0/W . A comparison between the calculation and FE solutions suggests that the approach
is satisfactory and accurate in estimating Mode I stress intensities for the CT specimen
under the pre-compressed condition for engineering fracture related problems.
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