ANALYTICAL STUDY ON THE CUTTING FORCE AND RESIDUAL STRESS IN WHIRLWIND MILLING OF A LARGE SCREW

Qin Guo
Industrial Center, Nanjing Institute of Technology, Nanjing, Jiangsu, China
e-mail: 453094252@qq.com

Yulin Wang, Bin Zhou
School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, China

The finite element method (FEM) is developed to simulate a discontinuous cutting in the whirlwind milling. Firstly, a simplified arc-cutting model for simulating the actual circular cutting, and a plane-cutting model for simplification were both developed and verified by experiments. Then, the effects of cutting parameters on the cutting force and residual stress were effectively investigated based on the plane-cutting model. Moreover, a plane-second-cutting model was further developed. It showed that a minor decrease of cutting force and a higher maximum compressive stress were generated in the second cutting. Those results were conducive to predict and improve the whirlwind milling.

Keywords: whirlwind milling (WM), cutting force, residual stress, finite element method (FEM)

1. Introduction

Among different cutting methods, the Whirlwind Milling (WM) (Wang et al., 2020b) is one of the most efficient and environmental ways, especially for processing a large screw. Properties of the surface and the sub-surface of a machined screw are known to depend on cutting parameters and physical states. Thus, the cutting force and residual stress were chosen to reflect the state of cutting and surface (Cao et al., 2019; Bobzin et al., 2021). The favorable cutting force can improve machined surface quality and tool life. Residual compressive stress can suppress fatigue failure of the product and prolong fatigue life. Combining with experiments, the Finite Element Method (FEM) (Kundrák et al., 2021) can describe the changing process of some physical quantities with time in the processing as realistically and intuitively as possible. For the cutting force and residual stress, the FEM with experiments were used to study and improve the whirlwind milling.

Previous studies analyzed the cutting force and residual stress. Wang et al. (2020b) proposed linear and nonlinear cutting force models based on cutting coefficients in helical milling. Zhou and Ren (2020) modeled the shear cutting force based on unequal division in the parallel-sided shear zone in orthogonal cutting. Wang et al. (2019) presented a cutting force model based on the geometrical and mechanical nature of the tool and workpiece. Salonitis et al. (2015) predicted the residual stress profile as a function of process parameters and the thermo-mechanical response in grind-hardening of AISI1045 steel. Masmiaty et al. (2016) predicted a mathematical model of residual stress, cutting force and surface roughness in end milling. Son et al. (2015) studied deformation and residual stress. The prediction methods, such as an analytical model and finite element analysis, were verified by firing and cooling experimental results.

The FEM is regarded as a useful method to study the cutting process. It can provide the information of the cutting force, residual stress, chip morphology and so on (Cai et al., 2019).
Kara et al. (2016) applied FEM to predict cutting temperatures in orthogonal turning of AISI 316L stainless steel. Huang et al. improved the thermal model by FEM which can provide a more clear description of temperature distribution in the workpiece. Chang et al. (2017) performed FEM simulations of hard turning aluminum 2024-T3 to predict the distribution of residual stresses. Huang et al. (2015) proposed FEM based analytical model of the stress field to calculate the residual stress. Toussi and El Wardany (2015) conducted four cutting simulations of titanium alloy Ti6Al4V. The results showed that the tangential force of the last three cuttings were almost the same as the first one, and the normal force was significantly smaller than that of the first cutting. For whirlwind milling, Yan et al. (2018) proposed a time-varying heat source modeling method and analyzed transient temperature in the cutting zone.

For WM, the technology has been applied in precision machining. But due to technical confidentiality and other reasons, there are few paper reported on the basic theory and cutting mechanism. Lee et al. (2008) modeled the tool-nose trajectory by the internal and external WM method and predicted the over-cut amount of the screw surface. Zanger et al. (2017) modeled the surface profile of a screw in dry WM. Han and Liu (2014) analyzed the theoretical machining error by dividing the scallop height into axial and cross-sectional errors. Wang et al. (2020a) applied an analytical approach to investigate WM forming errors, including circularity error, scallop height and surface roughness. With the help of cutting experiments, Guo et al. (2020b) investigated firstly the effect of cutting parameters on three characteristic parameters of the residual stress, then developed a prediction model of residual stress by the response surface methodology (Guo et al., 2019), and finally minimized the tangential cutting force by optimizing cutting parameters (Guo et al., 2019).

The above researches have made great contribution to study the cutting process. However, the cutting depth in some models was assumed to be constant, which did not represent the machining characteristics of whirlwind milling. Additionally in WM, the tests of cutting force and residual stress are difficult, complicated, time-consuming, and almost unpractical under every cutting parameter. Thus, the paper would develop different FEM models for simulating different thermo-mechanical processes in whirlwind milling. These work would be helpful to optimize the whirlwind milling parameters and improve the machined surface integrity of screw.

2. Finite element model

2.1. Simplified geometry model of whirlwind milling

The whirlwind milling in Fig. 1 is a complicated cutting process. For simulating, some simplifications and assumptions are made as follows:

(1) The workpiece is assumed to be fixed during the cutting process since rotational speed of the tools is much higher than that of workpiece.
(2) The small lead angle (around 2.28°) is neglected. The small lead angle has little influence on simulation results, so it can be ignored in a arc-cutting model.
(3) The first cutting is assumed to be accomplished and ignored due to chips different from those of the following cutting.

Due to the fact that the screw in whirlwind milling generates chips with arc-characteristics. Therefore, it is necessary to establish an arc-cutting model. Figure 1 shows the geometric forming process in which the number of tools on the whirling ring is \(n_{dt} \), workpiece rotational speed \(N_{w} \), whirling ring rotational speed \(N_{r} \), workpiece radius \(r \), tool noses’ circular radius \(R \), eccentricity \(e \) for the segment \(O_{w}O_{t} \). The parameter \(d \) is formed by the first cutting process. The cutting depth
changes during one cutting process. The maximum cutting depth h_{max} during one cut after the first one satisfies

$$h_{\text{max}} = \sqrt{r^2 + e^2 - 2er \cos(\alpha + \gamma) - R} \quad (2.1)$$

Here γ and α are calculated as follows

$$\gamma = 360N_{w}\frac{\Delta t}{60} \quad (2.2)$$

In Eq. (2.2), γ is the rotation angle of the workpiece from the beginning of cutting process K_n to the beginning of cutting process K_{n+1} ($n \geq 2$) while Δt is the time interval, which can be calculated as

$$\Delta t = \frac{60}{n_d N_t} \quad (2.3)$$

2.2. Settings and configurations of the FEM models

The Abaqus software was used to model the cutting. The arc-cutting model was established based on the plane strain assumption to simulate the whirlwind milling. The workpiece was of AISI 52100 steel, and the tools of PCBN. The material properties are shown in Table 1.

The Johnson-Cook constitutive model was used to describe the flow stress under high temperature, high strain and high strain rate in whirlwind milling. The Johnson-Cook failure model in Eq. (2.4) and parameters in Table 2 were adopted to describe the chip separation

$$w = \sum \frac{\Delta \sigma}{\varepsilon_f}$$

$$\varepsilon_f = \left(d_1 + d_2 e^{d_4 \frac{\sigma}{\sigma_0}} \right) \left(1 + d_4 \ln \frac{\dot{\varepsilon}}{\dot{\varepsilon}_0} \right) \left(1 + d_5 \frac{T - T_r}{T_m - T_r} \right) \quad (2.4)$$

where $\Delta \sigma$ is the equivalent plastic strain increment, ε_f is the failure strain, d_1-d_5 are failure parameters measured by tensile torsion tests, $\dot{\varepsilon}_0$ is the reference strain rate.

In the study, a revised Coulomb equation was used to describe the friction between the tool and the chip. The expression was shown as

$$\tau = \left\{ \begin{array}{ll}
\mu \sigma_n & \tau < \tau_{\text{max}} \quad \text{(in sliding area)} \\
\tau_{\text{max}} & \tau > \tau_{\text{max}} \quad \text{(in sticking area)}
\end{array} \right. \quad (2.5)$$
Table 1. Material properties of PCBN and AISI52100

<table>
<thead>
<tr>
<th>Physical characteristics</th>
<th>Workpiece-GCr15</th>
<th>Temperature [K]</th>
<th>Tool-PCBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density [kg/m³]</td>
<td>7812</td>
<td>–</td>
<td>3480</td>
</tr>
<tr>
<td>Elasticity modulus [MPa]</td>
<td>2.17E+005</td>
<td>–</td>
<td>7.2E+005</td>
</tr>
<tr>
<td>Poisson’s ratio [-]</td>
<td>0.3</td>
<td>–</td>
<td>0.3</td>
</tr>
<tr>
<td>Thermal conduction [W/(mK)]</td>
<td>46.6</td>
<td>–</td>
<td>79.54</td>
</tr>
<tr>
<td>Coefficient of expansion [K⁻¹]</td>
<td>1.14E-005</td>
<td>373</td>
<td>5.6E-006</td>
</tr>
<tr>
<td></td>
<td>1.24E-005</td>
<td>473</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.34E-005</td>
<td>573</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.30E-005</td>
<td>673</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.17E-005</td>
<td>773</td>
<td></td>
</tr>
<tr>
<td>Specific heat capacity [J/(kgK)]</td>
<td>552</td>
<td>318</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>788</td>
<td>798</td>
<td></td>
</tr>
<tr>
<td></td>
<td>724</td>
<td>1254</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contact of properties GCr15-PCBN</th>
<th>Tangential properties – coefficient of friction</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal properties</td>
<td>Hard contact</td>
</tr>
<tr>
<td>Heat conduction</td>
<td>Conductance</td>
<td>Clearance</td>
</tr>
<tr>
<td></td>
<td>28000</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2. Shear failure criterion parameters of Johnson-Cook model

<table>
<thead>
<tr>
<th>Failure parameters</th>
<th>d_1</th>
<th>d_2</th>
<th>d_3</th>
<th>d_4</th>
<th>d_5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.0368</td>
<td>2.34</td>
<td>−1.484</td>
<td>0.0035</td>
<td>0.411</td>
</tr>
</tbody>
</table>

where μ is the friction coefficient of the sliding zone, τ_{max} is the shear yield stress, σ_n is the normal stress of the tool-chip contact surface. In the study, the value of μ is assigned to be 0.35, the value of τ_{max} is 570 MPa, which can achieve good agreements with the experiments in terms of the cutting force and residual stress distribution.

The mesh is an important part in the finite element simulation, and the quality of the mesh would directly determine the accuracy of simulation results. The CPE4RT element was selected for the chip, the joint and workpiece. The CPE3RT element was selected for the cutting tool. The workpiece was considered to be isotropic while the tool was assumed to be rigid. The boundary conditions were set as follows: the upside of the workpiece was free while the rest sides were fixed, as shown in Fig. 2. The velocity was assigned on the rigid body reference point of the tool.

Fig. 2. Sketch of FEM
so that the tool moved straightly or circumferentially. The initial temperature of the workpiece and tool was 22°C. Only the upside of the workpiece exchanged heat fluxes with the environment if a cool-down step was set.

3. Finite element model validation

To validate the arc-cutting model, experiments were conducted. The validation experiments are shown in Fig. 3a. The cutting parameters were selected as cutting speed of 3.33 m/s, rake angle of -7°, a clearance angle of 5° and h_{max} of 0.062 mm. In Fig. 3b, a 3D piezoelectric force sensor was chosen, and the data was recorded using a standard quartz dynamometer (Kistler 9602A3) allowing measurements from -1 to 1 KN. By a team self-developed testing system (Ni et al., 2012), the WM cutting forces were acquired as shown in Fig. 3c. During the data collecting, see Fig. 3d, the sampling frequency of data was set at 5000 Hz. The force signals acquired were analyzed for a cutting time of 1.5 s.

![Fig. 3. Validation of cutting force experiments](image)

In simulation, some simplifications and assumptions in the arc-cutting model were made. The tool edge was simplified and assumed as a sharp one, the tool as a rigid body by neglecting the energy absorption and deformation which was used to simulate the actual circular cutting. To reduce difficulties of building the arc-cutting model, a simplified plane-cutting model was developed. It simplified an equal-depth cutting depth, and could avoid effectively the complex mesh distortion appearing in the arc-cutting model. In addition, the plane-cutting model considered the tool wear and absorption of mechanical and thermal energy, thus could simulate the actual thermo-mechanical process.

For the tangential force F_t and radial force F_r, comparisons between the experiments and simulations are listed in Table 3. The results indicated that the predicted cutting forces in the arc-cutting model agreed well with the experiments. However, the predicted cutting force was 9.3% smaller than the experimental one in the radial direction and 3.6% smaller in the tangential
direction. The arc-cutting model, therefore, resulted in a small drop of the cutting force. While for the plane-cutting model, the cutting force was 3.1% smaller than the experimental one in the tangential direction and 21.6% smaller in the radial direction.

Table 3. Values and errors of the experiment and simulation

<table>
<thead>
<tr>
<th></th>
<th>Experiments</th>
<th>Arc-cutting simulation</th>
<th>Plane-cutting simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tangential force F_t [N]</td>
<td>151.2</td>
<td>145.7</td>
<td>146.5</td>
</tr>
<tr>
<td>Radial force F_r [N]</td>
<td>57.9</td>
<td>52.5</td>
<td>45.34</td>
</tr>
<tr>
<td>Error of F_t</td>
<td></td>
<td>3.6%</td>
<td>3.1%</td>
</tr>
<tr>
<td>Error of F_r</td>
<td></td>
<td>9.3%</td>
<td>21.6%</td>
</tr>
</tbody>
</table>

Through the comparison in Fig. 4, it could be found that the predicting accuracy of the arc-cutting model was higher than of the plane-cutting model. Although, the error of the plane-cutting model was much larger, especially in predicting the radial force. The error of the tangential force between the arc-cutting and plane-cutting model was only 0.5%, which could be ignored for the tangential cutting force. Therefore, for improving the calculation efficiency, the plane cutting model was used to simulate the screw in whirlwind milling.

Fig. 4. Comparison of cutting forces between arc-cutting and plane-cutting

4. Simulation results

Due to the features of incremental forming with multi-tools in whirlwind milling, the vibration, temperature and residual stress of one cutting had important effects on the subsequent cutting. Therefore, the adjacent cuttings were simulated by employing the plane-cutting model.

4.1. Simulation of the cutting force and residual stress in the first cutting

The single-factor sets of simulations, assigned in Table 4, were designed to study the effects of cutting parameters. The predicted cutting forces under different cutting parameters were calculated and illustrated. Figure 5 shows relationships between cutting parameters and cutting forces. As the cutting depth increased, the tangential force varied from 110 N to 210 N, and the radial force from 40 N to 60 N. The tangential force increased more rapidly because it is the main cutting force for forming. As the cutting speed increased from 1 m/s to 5 m/s in Fig. 6, the tangential
Table 4. Investigated cutting parameters

<table>
<thead>
<tr>
<th>h_{max} [mm]</th>
<th>Cutting speed [m/s]</th>
<th>Rake angle</th>
<th>Clearance angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.06, 0.08, 0.10, 0.12</td>
<td>3</td>
<td>-7°</td>
<td>5°</td>
</tr>
<tr>
<td>0.08</td>
<td>1, 2, 3, 4, 5</td>
<td>-7°</td>
<td>5°</td>
</tr>
<tr>
<td>0.08</td>
<td>3</td>
<td>$\pm7^\circ$, $\pm5^\circ$, 0</td>
<td>5°</td>
</tr>
</tbody>
</table>

force decreased at first and then increased slowly while the radial force kept approximately the same magnitude. Figure 7 shows the tendency that tangential and radial cutting forces change with different rake angles. As the rake angles increased, the radial force changed from 5 N to 45 N while the tangential force increased insignificantly. Hence, the rake angle was the main influence factor of the radial forces.

The residual stresses have significant effects on the quality and life of machined parts. The simulation process was divided into several steps: (1) cutting; (2) retracting tools; (3) transforming constraint; (4) cooling of the workpiece to room temperature. For investigating the influence of cutting depth, three values 0.08 mm, 0.10 mm, 0.12 mm were constructed to predict the residual stress. The other cutting parameters were fixed, as the cutting speed at 3.33 m/s, rake angle at -7° and clearance angle at 5°, respectively.

For simulation, the workpiece was assumed to be residual stress free before the first cut. Figure 8 shows the distribution of residual normal stress S_{11} under different cutting depths. It could be found that the residual stress generated a peak at a certain depth below the machined surface and then decreased gradually to a stable state, fluctuating within a little amplitude. The residual stresses were tested by X-350A Stress Analyzer. A Cr Ka radiation was applied to scan the 211 peak of α-Fe steel. Every layer was successively removed by electrochemical etching to
avoid additional alternation. The tube voltage was set as at 27 kV, and the current 7.5 mA. A 1 mm collimator was used to minimize divergence of the X-ray beam. Under the cutting depth of 0.08 mm, the predicted maximum residual stress was -333 MPa, which was verified by tested data in Fig. 9.

In Table 5, the residual stress S_{11} under three cutting depths was compared. Consistently, as the cutting depth increased, the maximum residual stress and depth of the steady state both increased correspondingly. In the case of cutting depth 0.12 mm, the residual stress reached a peak value of -372 MPa at 0.06 mm below the machined surface and a stable state at depth of 0.24 mm.
4.2. Simulation of the cutting force and residual stress in the second cutting

For the FEM modeling of the second cutting, the physical state of the machined surface after unloading in the previous cutting was used as the initial condition for the next cutting. Two unloading steps were implemented after each cut: (1) releasing the cutting force; (2) cooling the workpiece down to the room temperature. As depicted in Fig. 10, the next and previous cutting were under the same cutting parameters, that is for the maximum depth 0.08 mm, rake angle -7°, clearance angle 5° and cutting speed 3 m/s. Steps were made as follows step 1 for the first cut (0.06 s), step 2 for the second cut (0.04 s), step 3 for retracting tools, and step 4 for cooling the workpiece down to the room temperature (3 s).

The cutting forces in Fig. 11a decreased slightly and were more stable in the next cutting process. The tangential force decreased by about 3%, and the radial force by about 2%. The residual stress S_{11} in Fig. 11b reached a peak of -333 MPa at 0.04 mm below the machined surface in the first cutting, while compared to that of -351 MPa at 0.045 mm in the second cutting process. The result indicated that the second-cutting process would increase the max-
74 Q. Guo et al.

Fig. 10. The cutting morphology under the next cutting and previous cutting

Fig. 11. Comparison of (a) cutting forces, (b) residual stress between the next and previous cutting

imum compressive stress and its distance from the machined surface. Moreover, the depth of compressive stress distribution also increased in the second cutting process.

5. Conclusion

Considering the periodic amplitude-variation of the cutting depth, the FEM models, namely the arc-cutting model, plane-cutting model and plane-second-cutting model, have been developed to analyze the thermo-mechanical process in whirlwind milling of a screw. The effects of cutting parameters on the cutting force and residual stress have been analyzed. Conclusions can be drawn as follows:

- The arc-cutting and plane-cutting FEM model were developed to study the whirlwind milling. The arc-cutting model was used for simulating the actual circular cutting, and the plane-cutting model for simplification and efficient computation. Both models were verified to be effective in predicting the tangential force, while the precision of the plane-cutting model was slightly lower than that of the arc-cutting model for predicting the radial force. Due to the fact that the tangential force is dominant for forming, combined with high efficiency of prediction, the plane-cutting model was preferred to analyze the whirlwind milling.

- The cutting force increased rapidly with the cutting depth, but slowly with the cutting speed and rake angle. The maximum depth of the cut was the dominant factor on the cutting force. The maximum residual stress value as well as depth of the maximum compressive stress layer increased correspondingly with the cutting depth.
In the plane-second-cutting model, the second cut lowered the cutting force but generated a larger maximum residual stress at a deeper distance. These results would be helpful to optimize the cutting parameters and improve the machined surface integrity in the screw whirlwind milling.

References

18. Tounsi N., El-Wardany T., 2015, Finite element analysis of chip formation and residual stresses induced by sequential cutting in side milling with microns to sub-micron uncut chip thickness and finite cutting edge radius, Advances in Manufacturing, 3, 4, 309-322

24. Zanger F., Sellmeier V., Klose J., Bartkowiak M., Schulze V., 2017, Comparison of modeling methods to determine cutting tool profile for conventional and synchronized whirling, Procedia CIRP, 58, 222-227

Manuscript received June 18, 2022; accepted for print October 24, 2022