JOURNAL OF THEORETICAL
AND APPLIED MECHANICS

61, 1, pp. 23-36, Warsaw 2023
https://doi.org/10.15632/jtam-pl /157464

ANALYSIS OF ABNORMAL VIBRATIONS OF CRUDE OIL EFFLUX
PUMPS USING ANSYS

TIANQI WANG
Xian Shiyou University, Mechanical Engineering College, Xi’an, China, and
Xidian University, The School of Mechano-Electronic Engineering, Xi’an, China

Corresponding author, e-mail: wangtianqi@Qrsyu.edu.cn

LEr XiE
Cementing Company Downhole Service Company CCDC, Chengdu, China

HONGSHENG YU, XIULIANG WEI
Changging Oilfield Second Oil Transmission Office, Xianyang, China

PENGMIN DONG,TIANYI ZHAO
Xian Shiyou University, Mechanical Engineering College, Xi’an, China

In this study, abnormal vibrations of 1 pump fluid in a crude oil efflux station in the
Changqing Oilfield was investigated. Kinetic simulation was applied to flow fields in the
crude oil efflux pump using Ansys to determine trends of the impeller static pressure, speed,
total pressure, wall pressure of the impeller, outlet pressure and pressure on the pump shell
and to identify the reasons behind the abnormal vibrations. The results indicated that the
axial vibration amplitude of the pump could be reduced from 1.3 mm down to 0.68 mm if
the operation parameters of the external control oil pump were set as 2500-2550r/min and
325-335m? /h, respectively.
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1. Introduction

Impellers of a centrifugal pump are typically subject to highly complex 3D flows. Here, the
fluid speed is distributed over several orders of magnitude; unidirectional flows and cross flow
of multiphase flows are observed; separated flow, backflow and secondary flow also occur due
to the effects of impeller rotation and surface curvature. As a result, fluid flows in an impeller
can be extremely complicated (Shen, 2007). Considering the immaturity of existing testing
methods, several researchers have used computational fluid dynamics (CFD) to numerically
simulate characteristics of internal flows in the impeller of a centrifugal pump for impeller
modeling and design, which has become an important research method in the modern pump
technology (Chen et al., 2014; Yu, 2008). Majidi (2005) solved an unsteady 3D viscous flow in
the impeller and volute of a centrifugal pump using CFD methods. Benra and Dohmen (1966)
investigated an unsteady flow field of a single-blade centrifugal pump using numerical simulation.
The results showed that the lift increased in direct proportion with the flow. Boehning et al.
(2011) investigated the effects of the volute structure on the radial force of a blood pump by using
transient numerical methods. The results showed that a dual-volute structure could effectively
reduce the radial force compared with the circumferential volute. Barrio et al. (2011) calculated
the radial force of the impeller of a centrifugal pump under undesigned flow conditions by using
a transient numerical method and found that the radial force was 40-70% of that under steady
conditions, while the radial force under unsteady conditions was closer to the experimental
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results. Mele et al. (2014) investigated correlation of vibrations and unsteady flows in a pump
under different speeds using both experimental and simulation methods. The results showed that
flow-induced vibrations increased with increasing pump speed and were significantly related to
pump efficiency.

In this study, the speed and pressure variations were simulated, and by combining the sim-
ulation results with the vibration condition of the centrifugal pump during operation, a flow
range that could reduce vibration was obtained to guide the actual production.

A crude oil pump group consists of feeding pumps, efflux pumps, heating furnaces, oil storage
tanks, reverse feeding pumps and other components. The two feeding pumps and three efflux
pumps were double-suction centrifugal pumps purchased from the Hunan Tane Ocean Pump Co.,
Ltd. (China). The oil pump had a lift of 480 m, a flow of 500 m3/h, a rated speed of 2980 r/min,
a maximum allowed working pressure of 8.8 MPa, a bearing model of 7316B/DB, and a rated
motor power of 800 kW. To increase the pump lift, 1 feeding pump worked in tandem with 1 and
2 efflux pumps during the operation of the pump group. The actual working speed and flow of
the efflux pumps ranged from 2400 to 2750 1/min and about 350 m?/h, while the rated speed
and flow of the efflux pumps were 2980 r/min and 500 m?/h, respectively.

The three eflux pumps at the oil eflux station were put into operation on September 15,
2015, and the accumulated operation time until the end of June 2019 was 23,835 hours for 1 efflux
pump, 25,511 hours for 2 eflux pump and 23,509 hours for 3 efflux pump, all of which have
been operating alternately for nearly four years. For 1 efflux pump, cavitation occurred during
operation, the impeller in the pump shell had indications of being subjected to cavitation, and
there was obvious crackling sound from the inside. Uninterrupted monitoring for the past five
years indicated that vibration at the low-pressure end of 1 efflux pump has become increasingly
large, and the transient vibration tested on February 24, 2020 exceeded 9.0 mm/s. After the
mode of operation was adjusted using different methods, the vibration perpendicular to the
axial direction at the low-pressure end of the pump often exceeded 7.1 mm/s.

With regard to vibrations of an oil pump, this paper proposed a rational speed and flow
range using Ansys based on the change law of the flow field and fluid pressure in the pump, to
guide the actual production and reduce the vibration amplitude of the pump so as to ensure
unhindered production.

2. The pump model

2.1. Geometric parameters of the pump model

A double-suction centrifugal pump was used as the model in this study. This pump had a
designed flow of g, = 500 m3/h, designed lift of H = 480m, designed speed of n = 2980 r/min,
specific speed of ng = 40, designed efficiency of n = 78%, blade number of z = 6, impeller inlet
diameter of Dy = 180 mm, impeller outlet diameter of Dy = 541 mm, and impeller outlet width
of by = 21.1 mm. Additionally, ¢, = 357m?/h, and speed n = 2554 r/min.

2.2. Meshing of the pump model

The centrifugal pump model was simplified using SolidWorks 2019 and fluid domains were
selected in SpaceClaim. Figure 1 shows the established model.

The model consists of inflow runners, rotors, guide vanes, volutes, outflow runners and other
components. To ensure the overall quality of the mesh and shorten the computational time, all
the overflow components were divided using unstructured meshes in this paper. Each component
was structurally divided into blocks to pre-generate the mesh, and by adjusting the distribution
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Fig. 1. 3D model of the centrifugal pump: (a) volute fluid domain, (b) pump shell fluid domain,

of nodes and the number of nodes, the mesh domain of each overflow component was encrypted

(c) impeller fluid domain, (d) impeller

in the targeted manner (Zhao et al., 2005).

The boundary conditions were determined for meshing in FLUENT, with the impeller fluid
having 956,000 elements and the shell fluid domain having 1.245 million elements. Figure 2 shows

the developed mesh.

2.3. Boundary conditions

Given the designed flow and lift of the target pump, the inlet boundary condition was set as
the mass flow inlet, and the outlet boundary condition was set as a pressure outlet. Numerical
simulation results were used to calculate the corresponding lift and efficiency. The rotating
boundary was set as the rotor, the non-slip boundary condition was set as the wall, and the
standard wall function was used for the near-wall region (Han et al., 2004). Due to the complex
working conditions of the pump station, and influenced by many factors such as pipelines, valves,
feeding pumps and discharges, the measured data were averaged in this study. Table 1 lists the

specific boundary conditions.

Table 1. Boundary conditions

SR -

Fig. 2. Model meshing

Inlet Flow rate Speed Center-of-mass | Gravitational
pressure at inlet [rl/)min] coordinates acceleration
[(MPa] [kg/s] of impeller model [m/s?]
0.6134 | single inlet, 49.603, | 2554.44 | X = —0.0541268 9.81
two inlets, 99.206 Y = —0.0281454
Z =0.413535
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2.4. Selection of the turbulence model

The SST k-w turbulence model is used to convert between the k-w model for the near-
-wall region and the k-w model for the far-field region using a blending function. It combines
the accuracy of the k-w model for calculating viscous flows in the near-wall region with the
reliability of the k-w model for calculating free flows in the far-field region. The advantage of
this model is that it considers turbulent shear stresses and can obtain accurate results even when
flow separation occurs. In this study, the SST k-w turbulence model was chosen for computation.
Herein, the pressure term adopted the second-order central difference format; the momentum
term and the turbulent viscosity correction were computed using the second-order windward
format. The speed and pressure in the flow field were coupled using the Simple algorithm (Wang,

2004).
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Fig. 3. Boundary condition settings

Mass flow inlet conditions were used for the inlet, and the data were exchanged between the
overflow components of the pump using interfaces. The inflow and outflow runner walls of the
model pump and the cavity walls of the pump were set as stationary walls. The walls of the blade



Analysis of abnormal vibrations of crude oil...

27

and the impeller that rotate with the impeller were set as rotational boundaries. The no-slip
boundary conditions were used for solid walls, and the standard wall function was used for near
walls. The convection term was discretized using the second-order windward scheme, the diffusion
term was discretized based on a central difference format with the second-order accuracy, and the
speed and pressure were coupled by the Simple algorithm. To ensure convergence, the monitoring
residual value was set to 107°. Figure 2 shows the developed mesh. The boundary conditions
are set in Fig. 3.

2.5. Mesh-independent verification

To exclude the influence of the total number of meshes on the results, 56 sets of meshes
with different amounts were divided for mesh-independent verification. The lift of the centrifu-
gal pump was used as a dependent variable for the mesh-independent verification. When the
lift fluctuation was less than 1%, the meshes were considered to meet the computational re-
quirements. Meanwhile, by considering both the computational time and resources required for
numerical computation, 2.2 million elements were finally selected as the computational require-
ment. Figure 4 shows the trend of curve change, between 2.1 and 2.3 it is gentle and stable, so
2.2 was selected.

9950
£, 99.45 ~ A
£ 99.40 7
~ 99.35
99.30 /'
99.25/. /
99.20
99.15
99.10

x10°
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Number of mesh

Fig. 4. Relationship between lift and mesh

3. Fluid analysis

3.1. Unstable flow characteristics in the centrifugal pump

A centrifugal pump comprises impellers and volutes. The complex structure and flow patterns
result in the formation of unstable unsteady turbulence flows. When a centrifugal pump operates,
the internal flows of the pump have many unstable flow characteristics, such as backflow at the
impeller inlet, a wake-jet structure of the impeller outlet, and induced vibrations and noise. These
unsteady flow characteristics determine the operating performance of the centrifugal pump.

3.1.1. Backflow

Backflow generally occurs at the inlet and outlet of the impeller. The backflow at the impeller
inlet is mainly caused by an uneven force of high-speed rotating blades on the internal fluid.
Due to the centrifugal force during operation, a pressure difference exists between the fluid flow
at the outer edge of the inlet and the fluid in the inlet pipe near the shaft. The pressure at the
outer edge is higher than that at the shaft, thus resulting in the fluid backflow from the impeller
inlet to the inlet pipe (Zhu, 2008). Figure 5 shows the schematic of the backflow.
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Fig. 5. Schematic of backflows at the inlet and outlet of the centrifugal pump

3.1.2.  Wake-jet structure

As mentioned above, the flow rate near the blade pressure surface accelerates, while the fluid
flow near the blade suction surface slows down, resulting in a wake-jet structure. A jet zone with
a relatively high flow rate and almost zero viscosity exists near the blade pressure surface, while
the wake zone with a relatively low flow rate is near the blade suction surface (Zhang, 2001).
Figure 6 shows the wake-jet structure.

Fig. 6. Wake-jet structure in the sub-impeller

3.2. Analysis of streamlines

Fluent has a wide range of analytical functions and a series of flow models including those
for asteady flow, laminar flow, turbulent flow and unsteady flow. The computation and display
of streamlines is a fundamental technique in the visualization of flow fields. In this study, the
CFD computational mesh was divided into tetrahedral cells first, and the topological relation
between the adjacent tetrahedra was set. Subsequently, the “compass” method based on the
tetrahedral side method was used for fast point location, and an adaptive step numerical inte-
gration method was used to trace the streamlines directly in the physical space. By doing so, the
conversion between the physical space, computational space and resulting errors were avoided,
and the accuracy and efficiency of streamline tracing were improved (Zhang, 2007). After the
computation was completed, Ansys was used to generate streamlines.



Analysis of abnormal vibrations of crude oil...

29

Figure 7 shows the distribution of streamlines in the flow field. As observed, the fluid flows
in from the fluid domain inlet, and at this point, the streamline is distributed in a regular and
orderly manner. After rotation of the impeller, the flow pattern of the streamline changes, and
the streamline moves in a spiral shape and flows out from the outlet. The fluid in the pump
cavity accelerates, and the fluid in the impeller shows a gradient distribution in terms of the flow
rate. Since diameter of the outlet is smaller than that of the inlet, the flow speed at the outlet is
significantly higher than that at the inlet. Additionally, the presence of a wake-jet structure and
boundary layer separation in the flow runner will lead to increased hydraulic losses, low pump
efficiency, and even vibrations.

(a)

Fig. 7. Distribution of streamlines in the flow field: (a) distribution of the encrypted streamline,
(b) distribution of the unencrypted streamline

3.3. Numerical analysis of the impeller

3.8.1.  Static pressure

Figure 8 shows the distribution of impeller pressure. As observed, the absolute pressure at
the root of the blade in the suction inlet section is lower than that at the blade edge, and the
pressure at this position is the same as the outlet pressure of the feeding pump (about 6.4 kPa),
which facilitates normal suction of the fluid flowing out from the feeding pump. The pressure at
the blade edge is 1.3 MPa, and the pressure gradually increases from the root to the edge of the
blade. Given that the blade edge and discharge outlet are closely positioned, the fluid can flow
smoothly from the suction inlet to the discharge outlet under low-pressure suction. In summary;,
the impeller shows good suction and discharge capacity.

3.3.2.  Speed

Figure 9 shows the distribution of impeller speed. As observed, the blade edge speed increases
from the root to the end surface with a maximum speed of 75.1m/s, and the speed at the suction
inlet section is lower than that at the blade edge. The inlet flow rate is calculated as

Q 357.14
S 3600 - (0.09)2 -

- 3.90? (3.1)

where @ is the average inlet flow at the centrifugal pump and S is the area of the inlet section
with a diameter of 180 mm.

Therefore, the fluid with a relatively low flow rate can be significantly increased after flowing
through the impeller. Nevertheless, due to the influence of the secondary flow in the impeller
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Fig. 8. Distribution cloud of impeller pressure: (a) front view, (b) side view
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Fig. 9. Distribution cloud of impeller speed: (a) front view, (b) side view

flow runner, high-energy fluid microclusters are clustered at the blade pressure surface, which
accelerates the fluid flow rate and thus reduces the possibility of boundary layer separation at the
blade pressure surface. On the other side, the low-energy fluid microclusters enter the boundary
layer near the suction surface of the blade, which reduces the flow rate near the suction surface,
makes the boundary layer thicker and intensifies boundary layer separation at the suction surface
of the blade (Wang et al., 2022), which also becomes a triggering factor for pump vibrations.

3.83.3.  Total pressure

Figure 10 illustrates the distribution of total pressure on the impeller.

As observed, the total pressure at the impeller blade surface is higher than that at the blade
edge and shows an increasing trend from the root to the edge of the blade. Since the total
pressure is the sum of static pressure and dynamic pressure, the dynamic pressure at the blade
edge is higher than that at the root and its value is the highest, which is also consistent with the
trend of speed distribution. The lower part of Fig. 10b shows that the pressure at the outlet is
much higher than in other parts after the fluid flows across the impeller of the centrifugal pump.
As shown in Fig. 10a, the work done by the blade on the fluid is not uniform, boundary layer
separation occurs in the fluid in the impeller flow runner, and a separation vortex is formed
in the flow runner. Boundary layer separation may cause vibrations, thus leading to low pump
efficiency.
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Fig. 10. Distribution cloud of total pressure on the impeller: (a) front view, (b) side view

3.8.4. Analysis of impeller inner wall

Figure 11 shows the distribution of the impeller inner wall pressure. As observed, the pressure
distribution in the inner profile of the impeller is basically the same as that in the blade.
Since the blade pressure distribution may be described in terms of absolute pressure, the outer
profile is described in terms of the surface pressure (static pressure). As observed, the maximum
and minimum pressures were 1.2 MPa and 4.0 kPa, respectively. This is partly a result of the
combined effect of the impeller centrifugal force and the lifting force. The center of the impeller
is the suction zone where the pump sucks the fluid, and the edge is the discharge zone for lifting
the liquid pressure for discharge, which forms the work done in the fluid (Chu et al., 2009).

(a) (b)

-
- . o
- 5 |
N

Fig. 11. Distribution cloud of pressure on the inner wall of the impeller

3.8.5.  Pressure on the inner wall of the pump

Figure 12 shows the distribution of pressure on the inner wall of the pump. As observed,
the maximum and minimum pressures were 1.2 MPa and 4.0 kPa, respectively. This is partly
a result of the combined effect of the impeller discharge pressure and the pump shell. Thus,
as the impeller radius increases, the pressure also increases, while the local pressure increases
significantly due to the outlet backflow.
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(a) (b)

Fig. 12. Distribution cloud of pressure on the inner wall of the pump

3.8.6.  Outlet analysis

Figure 13 shows the distribution of the eflux pump outlet pressure. The centrifugal rotation
and backflow at the discharge outlet cause backflow near the bottom of the pump cavity. As a
result, the bottom has a relatively low flow rate due to the impact of speed and pressure, while
the centrifugal force at the top is relatively high, resulting in higher kinetic energy and higher
total pressure at the top than at the bottom (Archard, 1953). The outlet pressure was calculated
to be 1.3 MPa according to the surface average. The backflow at the impeller outlet is due to
the combined effect of non-uniform fluid flows at the outlet and turbulent flows in the volute.
The absolute speed of a portion of the fluid is greater than the flow rate in the volute, so this
part of the fluid will hit the fluid in the volute with a relatively high kinetic energy. This fluid
will be subjected to secondary work in the impeller and will consume more energy, while the
flow rate of the rest of the fluid will be lower and will be pressed back into the impeller. Thus,
a severe backflow may induce pump vibrations and lead to low pump efficiency.
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Fig. 13. Distribution cloud of outlet pressure of the output pump

3.8.7.  Analysis of the pump shell

Figure 14 shows the distribution of pressure on the pump shell. The center of the pump shell is
influenced by the centrifugal lifting force, cavity volume and outlet diameter. The pressure at the
center is significantly higher than the suction inlets on both sides, and the pressure decreases
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symmetrically along the center surface under the influence of the pump impeller, eventually
dropping down to the inlet suction pressure (Chen et al., 2017). The fluid flows in from the inlet
negative pressure zone (pressure is relatively low) and flows out of the pump cavity along the
tangential direction after the work done by the impeller. Figures 15 and 16 show the cross-section
of the shell.

(a) (b)
‘contour-1
Absohse Pressure ‘contour-1
1.300406 Tota Pressue
261e+08
117406
237e408
1040406
2120406
9.090+05
187e+08
7.190+05
162e+06
6500405 J 1370008
5200405 1130408
|
391e+05 H‘ 879405
W
2610405 8316005
1320005 L 3800005
- .
2530403 1360405

Fig. 14. Distribution cloud of pressure on the pump shell: (a) absolute pressure, (b) total pressure,
(c) static pressure

After the centrifugal pump is started, the pump shaft will drive the impeller to facilitate
a high-speed rotational movement, forcing the pre-filled fluid between the blades to rotate.
Under the action of the inertial centrifugal force, the fluid moves radially from the center of the
impeller to the outer circumference. In the process of flowing through the impeller, the fluid will
gain energy, resulting in an increased static pressure energy as well as an increased flow rate.
When the fluid flows out of the impeller into the pump shell, the flow rate decelerates with a
gradual expansion of the flow runner in the shell. In this process, a part of the kinetic energy is
converted into static pressure energy, and finally, the fluid flows into the discharge pipe along the
tangential direction. While the fluid is thrown from the center of the impeller to the periphery,
a low-pressure zone will be formed in the center of the impeller, and the fluid is sucked into the
center of the impeller under the action of the total potential energy difference between the liquid
surface in the storage tank and the center of the impeller. Depending on continuous operation
of the impeller, the liquid will be continuously sucked and discharged. The mechanical energy
absorbed by the liquid in the centrifugal pump may be observed in the form of an increase of
static pressure energy (Blais et al., 2016; Li et al., 2019).
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Fig. 15. Vertical center cross-section of the pump shell: (a) distribution of static pressure,
(b) distribution of total pressure (difference between the pressure and the static pressure is one
atmosphere), (c) total pressure, (d) speed vectorgraph

Based on the results of the simulation analysis of pressure variation, the following operational
verification parameters were obtained (Table 2). The results indicated that when the speed and
flow rate of the eflux pump was 2300-2550 r/min and 325-335m?/h, the maximum vibration
value was less than 1.3 mm/s, respectively.

Table 2. 1 pump verification parameters under actual working conditions (high-pressure end)

1 efflux pump | Output volume | Axial vibration
[r/min] [m?3 /h] [mm)]
2519 331 0.68
2575 334 0.91
2325 332 1.05
2475 333 1.03
2525 331 1.08
2550 354 1.18
2450 355 1.1
2400 356 1.3

4. Conclusions

Based on the results of the simulation analysis of pressure variation, the following operational
verification parameters were obtained.
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Fig. 16. Horizontal center cross-section of the pump shell: (a) speed vectorgraph, (b) static pressure,
(c) absolute pressure

In summary, the pump axial vibration was minimized down to 0.68 mm/s, and the speed
and output volume of 1 efflux pump were 2519 r/min and 331 m?/h, respectively. The abnormal
vibrations of the eflux pump during operation were investigated by kinetic simulation of the flow
fields in the efflux pump using Ansys. A rational speed and flow rate range through parameter
verification was proposed to guide the current production. The results indicated that when the
speed and flow rate of the efflux pump was 2500-2550 r/min and 325-335 m®/h, respectively, the
vibrations of the efflux pump could be significantly decreased. The vibration value was reduced
to 1.3mm/s, which is 85.6% lower than the original instantaneous needle movement (9 mm/s)
and less than 4.5 mm/s allowable for pump vibration. The normal production can be guaranteed.
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