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The geometry dynamical modeling method for a double pendulum is explored with the Lie
group and a double spherical space method. Four types of Lagrange equations are built for
relative and absolute motion with the above two geometry methods, which are then used
to explore the influence of different expressions for motion on the dynamic modeling and
computations. With Legendre transformation, the Lagrange equations are transformed to
Hamilton ones which are dynamical models greatly reduced. The models are solved by the
same numerical method. The simulation results show that they are better for the relative
group than for the absolute one in long time simulation with the same numerical computa-
tions. The Lie group based result is better than the double spherical space one.
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1. Introduction

The geometry method can conserve a geometrical structure and give a simple mathematical
expression for a dynamical model, which is significant to dynamical modeling of multibody sys-
tems. As a mathematical concept, the geometry theory is very complex to the common engineer,
so the way of using it in the multibody dynamics modeling is very important. From the math-
ematical derivation, the geometry method uses the attitude matrix or the attitude vector as
the modeling element, which can express an obvious reduction in the dynamical modeling and
avoidance of the complex triangle transformation. The numerical method which is based on the
geometry dynamical model can also avoid the triangle computations, which can enhance the nu-
merical efficiency and make the system have long time simulation stability. So the exploration of
the geometry dynamical modeling of a multibody system is significant to the accuracy, efficiency
and stability in the multibody systems modeling.

In recent years, the geometry dynamical modeling method for multibody systems has been
researched extensively. Lee et al. (2009) explored the geometry modeling in double spherical
space with a spherical pendulum and a plastic rod. Ding and Pan (2014) explored a high order
variational integrator with constraints of a multibody system using the spherical pendulum as
an example. Miller (2014, 2021, 2022) and Miiller and Terze (2014) constructed a multibody
system dynamical model of a parallel mechanism, and combined the topology method and the
Lie group theory. He also explored the relation of the Lie group structure with constraints of
a time integrated multibody system, and found a close loop expression in form of a high order
differention equation of motion of the system joints. With the Lie group integrator and Cayley
transformation, an implicit generalized a method is presented to enhance the simulation effi-
ciency. Bjorkenstam et al. (2018) explored the discrete geometry method for a multibody system
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with constraint multipliers, which was used in the optimal control. Celledoni et al. (2021) built
a Lie group integrator for a chain system and studied it numerically. Holzinger and Gestmayr
(2021) used the Lie group time integrator in consistency computations of the rotation vector
or Euler angles to avoid the singularity and enhance the accuracy. This method has also an
advantage of transportability. Rong et al. (2020) explored dynamical equations of geometrically
accurate thin-walled beams with an arbitrary sectional base on the local coordinate of SE(3)
applying the Lie group generalized « integrate method. Ding et al. (2019) explored the con-
straint stability equation with Lie group theory for a 3D rigid body and double pendulum in
space. An implicit solving method for the Lagrange equation and constraint Hamilton equation
was built. This method can conserve stability of long time simulation of the displacement, ve-
locity and acceleration. Urkullu et al. (2019) explored the direct central difference method for a
solving multibody system, so that the equation could be solved directly without the of reducing
the order. Terze et al. (2015) analyzed the solving method of the first kind differential-algebra
equation. With the least square constraint stability mapping method eliminating the constraint
break problem of generalized coordinate and velocity in integration, the method was testified by
the heavy top and the satellite model. Arnold and Briils (2015) explored convergence of the Lie
group by coupling first order error recursion method of the differential-algebra solution. This
research indicates that transient vibration can be eliminated by perturbation of the initial value
or parameter simplification. Sonneville and Briils (2014) used a directly differential method and
an adjoint variable method to estimate semi-analytical sensitivity. The sensitivity of a multibody
system under Lie group expression was also explored.

In this study, the geometry dynamical model of a double pendulum with its own inertia is
constructed. The dynamical model is based on two different geometry methods — the Lie group
and attitude vector, and two different motions — the absolute and relative movement. Four types
of dynamical models are built, and their characteristics are analyzed according to numerical
computations. This research discloses foundations of the geometry method used in multibody
systems more deeply.

2. Geometry method for a multibody system
02 04
03

Fig. 1. The tree structure of a multibody system

O

By

Figure 1 shows a tree structure of a multibody system. B; represents the rigid body, O; repre-
sents the joint of bodies. Here, the joints are plane. Supposing that the rotation angle of the joint
is 0;, so the rotation matrix is R;. If the relative angle is used to express rotation of each joints,
the attitude matrix of each rigid body has a recursive relation. Using By-B1-Bs as the example,
supposing that By is the root of the tree, the attitude matrix of By and By are expressed as



Comparison of long time simulation of Hamilton and Lagrange geometry...

689

Rp1 =R Rp2 = RiR» (2.1)
Differentiate (2.1) to obtain the relation between the angular velocity and attitude matrix
RBl = Rls(wl) RBQ = Rls(wl)Rg + RlRQS(WQ) (2.2)

In (2.2), S(-) is the skew symmetric matrix. For the plane rotation joint, the angular velocity w
can be extracted and (2.2) can be transformed as

RBl = wlRls(l) RBQ = u)lRls(l)Rz + nglRQS(l) (23)

0
1
relative attitude of By-By and Bi-Bs, respectively. Rp1, Rps are absolute attitude matrices
of an arbitrary rigid body relative to the root By. The absolute attitude matrix and absolute
angular velocity satisfy the relation which is similar to the relative expressions as

The skew matrix is S(1) = _011 According to (2.1), (2.2) and (2.3), Ry, Ry represent the

Rp1 = Rp1S(wa1) Rps = RpaS(wp2) (2.4)

Comparing the second term of equation (2.3) and (2.4), these two terms must be equal. It can
be obtained by transformation of (2.3). The attitude matrix can be expressed as the triangle
one

o ] 29
Substituting (2.5) into (2.3), the relationship angular and absolute velocity is
Wwp2 = W1 + w2 (2.6)
The term R;S(1)Ry can be written as
R;S(1)R; = R1R2S(1) (2.7)

Equation (2.6) indicates that in the planar multibody system, the absolute angular velocity
of each body is equal to the sum of the angular velocities of every body on the chain to the root
of the tree. It also conforms to the universal law of planar rigid body motion. So with the Lie
group theory, the attitude of the rigid body is expressed by a matrix. The attitude of the rigid
body can also be expressed as a vector. Supposing that the attitude vector of the rigid body
is q, then the triangle expression of it is

q = [cos B, sin 0] (2.8)
Differentiate (2.8) to obtain the relation between the angular velocity and attitude vector
q = w[—sinf,cos ] = wS1q (2.9)

Similar to equation (2.1), the attitude of each rigid body in the tree structure needs to be
expressed by the attitude vector, which is the basis for dynamical analysis. The attitude of By
relative to By can be written as qp1 = q1, and the absolute attitude vector of By relative to By
is

as2 = qi Tiqze; + qf Taqze; (2.10)
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where T, T2 in (2.10) are as follows. Equation (2.10) can be testified by triangle transformations.
Differentiate (2.10) to obtain the relation for the angular velocity and attitude vector

dp2 = —w1q; S1T1qee; + waq] T1S1q2e; — wiq] S1Taqees + waqi ToS1qoes (2.11)

With SlTl = T2, T181 = —TQ, Ssz = —Tl, TQSl = Tl, equation (211) can be transformed
to

dp2 = (w1 +w2)(qi Tiqees — qf Taqeer) = (w1 + w2)S1qp (2.12)

According to equation (2.12), the angular velocity of the rigid body based on the attitude
vector also satisfies the cumulative relation.

3. Dynamical modeling with relative rotation matrix and vector

In this part, the double pendulum geometry dynamical model is built by the relative attitude
matrix and vector. The double pendulum is shown in Fig. 2. Suppose that the rotation matrix

Fig. 2. Sketch map of the double pendulum

of AB is Ry, which expresses the rotation relative to the ground. So it is also the absolute
rotation matrix which satisfies R4 = Rq. The rotation matrix of BC relative to AB is Ra, so
the absolute rotation matrix of BC'is Rp = RjR». Supposing the mass center position vectors
of AB and BC are p; and ps, respectively, the angular velocity of AB is wi, the angular velocity
of BC relative to AB is ws, so the absolute angular velocity of BC is

RB = RBS(w1 + wg) (3.1)
In Eq. (3.1), R1S1R2 = R1R5S;. The rotation inertia of AB and BC along the mass center

are J; and Jy, respectively. The position of B in AB is qo, the velocity of AB mass center
is pywi, the kinetic and potential energy are

1
Ty =50+ mipi py)wi Vi = —mige; Rip, (3.2)

According to the rotation relation, the displacement of mass center of BC'is R1q; +R1Rops,
so the velocity of it can be written as

vy = Riq; + RiR2py + RiRypy = wiR1S1q1 + (w1 + wo)R1 RS 1 p, (3.3)
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So the kinetic and potential energy of BC' is

1 1
Ty = §(J2 +map; po)(wi + wa)? + §m2w%(hTQ1 + ma(wi + wa)wips SRS S1an (3.4)

Vo = —mage; (R1q2 + RiRap,)

The third term of kinetic energy can be reduced by STRS; = R. According to equations (3.2)
and (3.4), the Lagrange function of the system is

1 1 1
L=5(l+ mapy Po) (w1 + wa)? + §mzq1rq1w% + 50+ mipi py)wi

(3.5)
+ mapa R; q1 (w1 + wa)wy + mage; (Riqr + RiRaps) + migel Rip,
Make variation to the angular velocity of the Lagrange function as
DW1L05S(w1) = Jawy + Jpw1 (3.6)

In (3.6), Ja = Ji +mullpy|* +mallai|* + Jp + meps Ry a1, Jp = Jo +ma||pol|* + m2ps Ry an.
Differentiate then equation (3.6), which gives

%(DMLC) = Jain + Jpin + Jaws + Jpwi = Jaws + Jpin 37)
— mapy Ry S1q1w3 — 2maps Ry S1qiwiws
In (3.7), jA = QJB = —2m2w2p;rSlR;Fq1. Make variation to we
Dy, L¢c - 6S(w2) = Jowr + Jpwa (3.8)
In (3.8), Jo = Jp + mapa RYqy, Jp = Jo + ma| py||®. Differentiate (3.8)
%(DwQLC) = Jow + Jpis — (maps R S1q1)wiws (3.9)
Take variation to R, Rg, then find the tangent vector of them. The results is
T;Lg, - Dr,L = mage; (R1S1a1 + R1S1Rap,) + mige; Ri1S1p, (3.10)

T;Lg, - Dr,L = mage; RiR2S1py — ma(w1 + w2)wiaj S| Rapy
From (3.7), (3.9) and (3.10), the Lagrange equation is
Jaws + Jpin + mapy Ry S1quwi — mage; (RiS1q1 + RiS1Rapy) + 2map; Ry S1quwiws
—migesR;S1p, =0 (3.11)
Jownr + Jpis + (maps Ry S1qn)wiws — mages R1R2S1py — ma(wi + w2)wiq] S Rapy = 0
Simplify it to

-1
wi| _  |JB Ja
|}U;| - JC JD] (QA + QB)
Q- mapg Ry S1q1ws + 2maps Ry Siqiwiwy (3.12)
m2PgR381Q1w1w2
Qp = —mage; (R1S1q1 + R1S1Rapy) — miges RiS:1py)
—maged R1R2S1py — ma(w1 + wo)wiqi STRapy)
Take the Legendre transformation to (3.12), supposing that II4 = Jaws + Jpwi,

1l5 = Jowy + Jpws. The dynamical equation of the system are

IT; — mage) (R1S1q1 + RiR2S1p,) — miges R1S1p; =0 (3.13)
ITy — mages RiR3S1py — ma(wi + w2)wiq] S1Rapy = 0
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4. Dynamic modeling with absolute motion

In this part, the absolute motion parameters are used to dynamical modeling of the double
pendulum. The absolute attitude matrices of AB, BC are R4, Rp, respectively. wy, wp are
absolute angular velocities. The kinetic and potential energy of the first pendulum is

1
Ti = 5 (i +mipr p)wiVi = —mige; Rapy (4.1)

According to the attitude transformation, the position of mass center of BC'is Raq; +Rpp,,
so the velocity of mass center of BC' is

vy = Raqi + Rppy = waRAS1q1 + wpRES1ps (4.2)
Square (4.2) to obtain
v2]* = widal a1 + whps po + 2wawpal S| RARES1p, (4.3)

So the kinetic and potential energy of BC' is

T, = sy + imalloal? = S+ ymawalan + smael oy
+mowawpq] S{ RARES1p, (44)

Va = —mage; (Raqz + Rpps)

The Lagrange function of the system is

L= %(Jl +mip] py + madi qi)wi + %(Jz +mapy po)wp +mige; Rapy (45)

+ mawawpdq; ST RARES1py + mage; (Raqs + Rppsy)
Take variation to the angular velocities
Dy, Lo - 08(wa) = (Ji + mipi py + maai a1)wa + maq S{ RARES1ppwp 46)

D.,Lc - 0S(wp) = (J2 + map3 py)wp + mad; S{ RARES1 powa

According to equations (4.6), the last terms in (4.6) have similar expressions. After differentia-
tion, one obtains

d
%(WN?S?RERBSle) = moq] RyRES1py(wa — wp) (4.7)

Equation (4.7) is reduced by RS; = —STR. Take variation to the rotation matrix

T!Lr, -Dr,L = —mawawpq] RARES|py + miges RaS1p; + mages RaS1qo

% T T T (4.8)
TeLRB . DRBL = MawAWRBd; SlRARsz + mage, Rlep2
Then the dynamical equation of the system is
(J1 + mip] p + maai a1)a — meq] SIRARBS1p,0p + maq SIRAR ppowi;
— maq; RYRES1 powawp + mowawpqi RARS1p,
- mlgegRAslpl - mggegRAslqg =0 (49)

(J2 + map3 po)iop — madi SIRARES1powa + maai SIRARppowaws

— maqi RARES1pow?i — mowawpd SIRAREp, — mage; RpS1py = 0
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According to the Legendre transformation, and supposing that II4 = D, ,L, IIp = D, L,
the dynamical equations can be simplified as

1Ty — mpwawpd; RIRES1py + migel R4S1p; + magel RaS1qs = 0 (4.10)
I+ mpwawpd] SIRAR 5P, + mages RpS1py = 0

Comparing (3.13) and (4.10), both of them are reduced in complexity, which can may obvi-
ously reduce the complexity of solving.

5. Dynamic modeling with the attitude vector

In this Section, the dynamical equations are built with the attitude vector. Supposing the at-
titude of AB is qi, the attitude vector of BC relative to AB is q2, q1 and qo are both unit
vectors. Their derivatives are

Q1 = wiSiqu g2 = w2S1q2 (5.1)

The absolute attitude vector of BC is

as = q; T1qze1 + q Taqzes (5.2)
1 0 01 . .. S
In (5.2), T; = 0 —1l Ty = 1 ol Differentiating (5.2), the velocity is

4p = (w1 +w2)S19B (5.3)

Suppose that the length of AB and BC' are [y and [y, respectively. The mass center lies on the
direction line of AB and BC, and the position of mass centers are a1qil; and qil1 + asqpls,
respectively, which is very simple. If the position of mass centers in its own coordinates of AB
and BC are p; = [x1,y1] and py = [x2,y2], respectively, then the positions of the mass centers
of AB and BC are T, qi and qi1l1 + T, qp, respectively. The expressions of T, , T),, are

1 —Y €2 —Y2
T = T. = 5.4
=] e 6.0

Then the velocity of two mass centers are

ver = Tp g1 = wi1Ty S1q;
veo = qili1 +Tp ap = wi1S1ai1ly + wp™Ty S1ap

The Lagrange function of the system is

1 1 1 1
L= §J1wf + §m1\lvc1H2 + §J2w% + §m2||V02tH2 +migey Ty a1 +magey (aily + Tp,ap)
1 1
= U+ millpy P + malf)d + 5 (s + malpy 2 (5:6)
+ m2l1q§TE2Q1wa1 + migey Tp a1 +mages (a1l + Tpap)

Take variation to wy, wo

leL . 5S(w1) = JQlwl + JQB(.UQ DWQL . 5S(w2) = JQBLU1 + JQAwg (5.7)
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In (5.7), Jo1 = J1 + mal? + ma|lpy||* + Joa + 2mgllq£T};2q1. The derivatives of Jgp and Jg1

are
Jos = mali(w1qpT), S1q1 — wpqpSIT, qi) Jor =2JgB (5.8)

Differentiate the variation of w

= Jo1i1 + Jopwa + Jorwi + Jopwas = Jorw1 + Jopwa + Jop(2wi + wa)

d
EleL . 5S(w1)
d i ) .
EDWQL . (5S(w2) = JQBwl + JQAwg + JQBwl
(5.9)
Find variation of the attitude parameters in the Lagrange function. Take variation to qp
5qp = 6q] T1qzer + 6q] Taqzez + qf T1qze1 + qf T2dqae; (5.10)
According to the transformation relation of the middle matrix, (5.10) is changed to
5qp = 6q; Tiqzer + qf T16qze1 + 5qf Toqzes + qf Todqae;
. . (5.11)
= [(a; T1az)ez — (a; T2q2)e1](m +n2)
Take variation to the Lagrange function
5qL - mQ(llewlquI‘TPQ + gengg)éqB + (mQleBwlquEQ + mlge;FTpl (512)
+ magliey )dqy
Take (5.11) into (5.12), the variation of L is
dqL = (wiwa + w3S1q1)m + wiwane (5.13)
The parameters in (5.13) are as follows
_ T T
wy = maliwpwiq; Ty, + mage; Tp,
wy = (qf T1q2)ez — (qf Taqa)e;
wy = mgllewlqug + mlgeng1 + mgglleg
Then the tangent projections are
T:qu . DqlL = wiws + w3S1qq T:ng . DqQL = Wwiw2 (514)
The dynamical equation of the system is as
Jo +JopNw - W =0 (5.15)
The parameters in (5.17) are as follows
_|Jar JgB w— |1 N |21 W= |wiwe +wsSiaqn
JoB Joa w9 1 0 Wi Wy
Take variation to absolute angular velocities in the Lagrange function, as
Do, L-6S(w) = (Ji + mi|lpy|| +mald)wr + malidb T quws (5.16)

Do, L - 68(wp) = (Ja + malpy [P)ws + mohidh Ty, crws
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Find derivative of equation (5.16), as

d : :
— Doy L 0S(wp) = (J2 + mallp|*)os +malidp Ty, a1én

dt (5.17)

+ mali (wiqpT), Sia1 — wpw1qpS1T), ai)
The tangent projection are

T:qu . DqlL = (mgllewlqug + mlgengl + mgglleg)Slql
T;Lq, -Dg,L = (mglleculquer2 + mggengg)(SqB (5.18)

= (m2l1w3w1q’1er2 + mQQGQTTpQ)Squ
At last, the Lagrange equation with the absolute attitude expression is

(J1 +mallpy||* + mal)or + mahapT), qiop — moliwpS1qpT, ai

+mohwiwpdpTy Siar — (mohwpwiqpT, — mige; T —magliey)Siqr = 0 (5.19)
(Jo +mallpy ) + maliqp T, qiin + maoli (wiqpT) Sia1r — wpwiqpSiT), qi)

— (molwpwiai Tp, — mages T )S1qp = 0

According to the Legendre transformation, the dynamical equation with the relative attitude
satisfies the relation as D, L - S(wy) = II1, Dy, L - §S(wy) = II5. So, the Hamilton equation
with the relative attitudes is

I + mahwpw (af Tagze] — qf Traze; )Ty a1 — maliwpwiapT,, Siar — mige; Ty, S1an
—mag(ey Tp,q] Toqoer — el qily —e; Ty, g Tiqgoes) =0 (5.20)
11, — myhwpwi (q] Tiqze; — qi Toqeel )T qi + mage; Ty, (qf Tiqzes — qf Toqoe;) =0

In a similar way, the Hamilton equation with the absolute parameters is

I — (m2l1w3w1qu22 —mige; Ty, —maglies)Siar =0 (5.21)
II's — (maliwpwiqi Tp, — mage; Ty, )S1dp =0

Based on the Lie group and attitude vector, eight types of dynamical equations are derived from
the relative and absolute motion and Lagrange and Hamilton theory. They are named in the
following format X-Y-Z. X represents the modeling method as the Lie group or attitude vector,
Y represents the type of motion as relative or absolute, and Z represents the type as Lagrange
or Hamilton. So the names of these eight equations are: L-R-L; L-R-H; L-A-L; L-A-H; A-R-L;
A-R-H; A-A-L; A-A-H. From the above results, it occure that the Hamilton equations are much
simpler than the Lagrange ones, which can enhance the computation efficiency. According to
the comparison of the Lagrange equation with the absolute and relative motion, the complexity
of the equation is not obviously reduced. For the expression, the attitude vector gives a simpler
form than the Lie group. So from the point of view of complexity, the attitude vector is better
than the Lie group, and the Hamilton equation is better than Lagrange one. So the dynamical
equation based on the attitude vector, Hamilton theory, yields the most simple expression.

6. Numerical computations

The eight dynamical equations need to be arranged and completed with some conditions before
numerical computations. From the point of view of ordinary differential equation computations,
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the equations should be given some conditions which satisfy the number of unknown parameters
equal to the dimensions. For the L-A-L equation, there are many solution methods according
to the parameter selection. The first and the most visual is to select wq, ws, 01, O as the
parameters. It can be obtained by an exponential map. It is the most custom one. Here the
geometry expression is chosen to avoid triangle computations. The kinematic expressions based
on the attitude matrix are

R1 = R181w1 R2 = RQSlWQ (6.1)

Equation (6.1) can not be used in the dynamical equation directly. Multiplying e4 on both sides
of (6.1), the vector equations can be written as

R?eg = —SlR?egwl R;Fez = —Sleegwg (62)
Equation (6.2) changes to (6.3) by I'T = Ries, Ih = Rd ey
Fl = —81F1W1 11‘2 - _Slp2w2 (63)

In the matrix form

I SiI1 Ogxi| |w1
S == 6.4
lFJ l02><1 Sily | w2 (6:4)
So the dynamical equations are transformed to be the ODEs with dimension of 6

HEENE

The terms in (6.5) are as follows

I SiI71 Ogxi| |w1
S == 6.5
[FJ l02><1 S1F2] LJQ] (6:5)

Ty = mopy Ry S1q1wj + 2map; R Siquwiws + magey (R1S1q2
+RiR5S1py) + mige; RiS1p;
Ty = mapy R3 S1quwaws + mage; RiRS1py + ma(wi + w2)wiq) SiRaps

The inverse matrix of (6.5) can be found directly to decrease the amount computations during
numerical solution

—1
Jp Ja|  _ 1 Jp  —Ja (6.6)
JC JD JBJD—JAJC —JC JD .

In the L-A-H equation, Iy, IIs, R, Ry are unknown parameters, so the angular velocities

need to be eliminated. According to the relation between IIy, Il and w;i, we, the angular
velocities are

-1
MR o

Substitute (6.7) into (6.5), the dynamical equation is then

) —1
]jl _ Slfl 02><1 JB JA Hl (6 8)
I O2x1 Sily| |Jo Jp g ’
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Combine (6.8) with the L-A-H equation, the dynamical equations with dimension of 6 will be

1:71 _ mage; RiR2S1p, + mages R1S1q2 + mige; R1S1p;
g mggegRlespo + mg(wl + wg)wlq?SlepQ

: —1
I |Suft O |JB Ja In
I O2x1 Sila| |Jo Jp 11y

In (6.9), Ry = [-S111, 1], Ry = [—S1[%, I]. Similarly, L-A-L can also be written as an explicit
formulation

(6.9)

w=JK I'=Srw (6.10)
In (6.10)
S1I7 Oax1
w = [wa, T =41 Sp =
wa, wp] [T, Il r [02><1 Sl&]

Tp = Ji+miplpy +moqiqr —maqi SIRIRBS1py
—maqi S1R RS p, Jo 4+ mapa py

K — mige; RaS1p; + mages RaSiaz — maqf SIR Rppowh
mgq?RTARgspow% + mggegRBSM)Q

Similarly, accoding to J I_(lH = w, the Hamilton equation with the absolute matrix is
Pi=-K4 I =-SpJ

K= [—mbAqulTRTARBsz + miges RaS1p; + magel RaS1qz (6.11)

mpwawpq; SIRIRppy + mages RpS1p,

Differently to the Lie group expression, the dynamics model based on the attitude vector can
be calculated directly from the vector. So the kinematic model can be directly obtained by
differentiating the attitude vector. So the ODE of the A-R-L equation are

Jow+W =0 4= Syw (6.12)
The terms in (6.12) are as follows
Siqr Ogzx1 Jo1 JoB Wi
W O2x1 S192 @ [JQB Joa @ Wo

W1 = maly (2w1 + w2) (w1 — wp)ap T, Siqr + maliwpwi[q) (Taqee] — Tiqee; )T, a
- Q1T3T,T;231Q1] —mag(e3 Tp,ai Toqzer —ei qils — €3 Tp,qi Tiazes) —mige; T, Sian
Wy = mage; T, (ai Tiazes — qf Taqeer) — maliwpwi (a5S1 + qf Tigzey
— qi Toqze] )T, a1 + mohiwiqpT) Sian
The A-R-H dynamical equation can be transformed to the following type
II=U q=SwI,'Pi (6.13)
The terms in (6.13) are as follows
U = [Uy, U] w=J,'T
U = m2l1wBW1q1T;T,T,251Q1 —mige; Ty Siai + mag(e; Tp,ai Toqzer — ef qily
— 3 Tp,qf T1qze2) — mohiwpwi (q] Toqze] — qf Tiqze; )T, an

Uy = mahwpwi (qf Tiqze; — qf Taqee )T a1 — mage; Ty, (qf Tiqzes — qf Toqzer)
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The A-A-L dynamical equation is
sz—f—jzw—FZ:O q=Szw (6.14)

The following terms are
Siar O2x1
Fy=[Fz,F S, —
2 =21, ] i [02x1 Sias

_ [l +mal? mahiqE TS an
maliqp Ty Jo + mal|py ||?

Jz

0 1 0 1
1 0] = mali (w1qpT} S1q1 — qpSi T, qiws) [1 0]

01
10

At last, the A-A-H dynamical equation is

Jz = mali(@pT) a1 +apTy )

= mali (w1 —wp)apT, Sian

ImI=X q=SzJ,'I1 (6.15)
with term as follows

w = [wy,wp] = I, X = [X1, Xo] II = [I1,, ITg]

X1 = (mzllewlquEQ —mige; Tp, —maglies )Siqs

Xo = ma(liwpwiai — ge3 )T, S1as

According to the above analysis, the geometry dynamical equations of the double pendulum
are ODEs with the dimension of six. With using the triangle function, the dimension is four.
Although the dimension of the geometry model increases, it avoids the triangle transformation
during differentiation, which simplifies the deriving process and programming.

In the above derivations, the dynamical models of the double pendulum are expressed by
the rotation matrix R and the attitude vector q. They have the same norm ||R|| =1, ||q| = 1.
They represent geometrical characteristics of the dynamical system which should be conserved.
From the triangle expressions of R and q as in Eq. (2.5) and Eq. (2.8), it can be concluded that
the maximum values of each element in R and g should be 1 and —1. So the maximum values
of attitudes can be used as a standard to evaluate the accuracy of each dynamical model with
a special numerical algorithm.

7. Simulation analysis

In this Section, the eight dynamical models are solved and compared with the same numer-
ical method. The length of simulation is 200s, which reflects a long simulation time charac-
ter. Supposing that the mass and inertia of the double pendulum is as follows: m; = 0.5kg,
mo = 0.8kg, J; = 1kg-m?,Jo = 2kg-m?, the length of the first pendulum is /; = 1 m. The posi-
tion of mass center is p; = [0.05,0.3] m, py = [0.05,0.3] m. The initial rotation angles and angular
velocities of two stage pendulums are ¢y = —7/3rad, 0, = 7/3rad and w; = wy = Orad/s, re-
spectively. According to the initial angles, the initial rotation matrix and attitude can be derived
from Eq. (2.5) and Eq. (2.8), respectively. The dynamical models are solved by the commonly
used ordinary differential equation solver ODE45 in Matlab. So the accuracy of the eight models
can be compared with the same algorithm. The simulation is performed by a computer with the
Intel(R)Xeon(R) E-2176M CPUQ@2.70GHz processor, and the internal storage is 32GB.
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The results of relative and absolute Lagrange dynamical equation based on the Lie group
are denoted in Fig. 3 with black and red lines, respectively. The angular velocities and attitudes
coincide in macroscopic scale. The simulation results distinguish from 50s to 100 s and become

bigger and bigger with time. The phase difference is more obvious than the amplitude, which

Fig. 4 with red and blue lines, respectively. The results are similar to Fig. 3, which indicates

A comparison of the Hamilton equations with the absolute and relative Lie group are shown in
that the difference occurs at the time of 50s.

means that the error accumulation have bigger influence on the phase than on the amplitude.
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accumulation of the relative group (black, blue) is smaller than 0.01 in 200 seconds. The results
of the Lagrange equation for the absolute motion is also smaller than 0.01, and the beginning
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time of error accumulation is after 110s. But the Hamilton equation for the absolute motion
gives 0.03. So the computation result based on the Lagrange-Absolute-Lie group is advantageous
obviously.

In Fig. 6, the green line represents the absolute modeling, and the red represents the relative
one. The results start to distinguish at 50s. In Fig. 7, the blue and black lines represent the
absolute and relative results, respectively. They indicate that the momentum and attitudes are
all out of sync for different models.
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Fig. 7. Simulation results of the Hamilton equation with the attitude vector
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Fig. 8. A comparison of the first stage pendulum attitudes from four dynamics models based on
the attitude vectors

According to Fig. 8, the four color lines exhibit a distinguishing tendency with a time increase.
The black and green lines coincide much more than the other two from the results within 30 s to
100 s, which means that the results of the relative Hamilton equations coincide with the absolute
Lagrange ones. The error represented by the blue line is much higher than others, which means
that the error accumulation of the absolute Hamilton equation is much higher than the other
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three ones. The error accumulation of the absolute Lagrange equation begins at 110s. The
maximum value of the error is 0.015, which is lower than the Lie group result. In Fig. 9, three of
these algorithms have the same long time simulation results. Only the Hamilton equation with
the relative attitude vector has an obvious difference with respect to the other three algorithms.
The error accumulation which is represented by the blue line is much higher than the other
three ones, which means that the Hamilton equation with the absolute vector has faster error
accumulation than the other three ones.
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Fig. 9. A simulation results for the relative vector

In Fig. 10, the results coincide by pairs. The Lagrange and Hamilton functions coincide
respectively. The error accumulation indicates that the Hamilton equation with the absolute
attitude vector has the fastest error accumulation, and the maximum value is 0.02, which is
higher than that with the relative vector (0.01).
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Fig. 10. Simulation results of the first stage pendulum with the under absolute vector

In Fig. 11, the green line differs more than the other three ones, which means that the
Lagrange-Absolute-Attitude vector modeling method more easily leads to erratic results. The
maximum attitude error is 0.006, which is the lowest one. In Fig. 12, there are three results from
the four Hamilton methods. The green and red lines coincide together, which means that the
results of Hamilton-Relative-Lie group and Hamilton-Relative-Attitude vector methods coincide
together, which is better than for the two other methods. According to error accumulation, the
Hamilton equation with the absolute vector has the biggest error. At 200s of simulation, the
error valued from 0.02 to 0.03.
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Fig. 11. Simulation results of the first stage pendulum from the Lagrange equation
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Fig. 12. Simulation results from the Hamilton equation

In Fig. 13, the red line (Lagrange equation for the absolute motion) represents the error oc-
curring after 100 s, which has the lowest value. The green line (Hamilton equation for the absolute
motion) represents the biggest error accumulation. The blue and cyan lines (relative motion) have
approximate values. In the second one in Fig. 13, the green line (Absolute-Hamilton) coincides
more with the red line (Absolute-Lagrange), whereas the blue and cyan lines (relative motion)
obviously distinguish. This means that the absolute modeling method is more advantageous in
conserving the character of long time simulation.
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Fig. 13. Comparison of the eight methods
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8. Conclusion

In this paper, geometry mathematical modeling (Lie group, attitude vector), dynamical mod-
eling method (Lagrange and Hamilton) and motion modeling (absolute and relative motion)
are all combined together, and eight dynamical equations of a double pendulum are built. The
equations are solved by the same numerical algorithms. According to comparison of the resuts,
the Lagrange equation with the absolute Lie group has the best conservation character in a long
time simulation. From complexity of the model, the Hamilton equation for the absolute motion
has the simplest structure. So the geometry dynamical models of the Hamilton type and with
the absolute motion are advantageous in both the modeling as well as computations.
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