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This paper studies profile estimation of a road. The prediction has been achieved using
the Independent Component Analysis Method (ICA). The vehicle dynamic responses were
calculated for different road profiles which were defined using an ISO norm. The robustness
of this method was proven by implementing the stochastic Monte Carlo (MC) technique in
the presence of inevitable uncertainty parameters simultaneously associated with the vehicle
mass, spring stiffness and damping for different vehicle speeds and wind values. Convergence
was assessed when comparing real profiles to simulated ones. The obtained results prove the
efficiency of the ICA in estimating the profile variabilities under uncertainties.
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1. Introduction

The road profile is a significant factor that affects the vehicle performance especially riding
comfort and road handling. Hence, detection of such data is crucial for accurate knowledge of the
vehicle behavior on one hand and for active vehicle control systems design, on the other (Nodeh
et al., 2021; Doumiati et al., 2017). The collection of road profile variability was the topic of a
good number of studies. Some of these used instrumented vehicle relying on direct measurements
of road irregularities such as profilographs (American Society of Testing and Materials, 2008),
profilometers (Healey et al., 1997), laser and cameras (Xue et al., 2020). Nevertheless, these
instruments have high operation costs so their frequent use in detecting the road profile is
impractical. Adding to that, in snowy environments, laser sensors cannot be used (Nodeh et
al., 2021). Several researchers tried to overcome these drawbacks, suggesting the use of road
estimators based on accelerometers which are easier to process. For instance, González et al.
(2008) used accelerometers to estimate road roughness at a constant vehicle speed but this
estimation was not confirmed when the speed changed. Similarly, Hong et al. (2002) proposed
an estimation method at a constant speed based on the Fourier Transform of the road. Other
studies focused on estimation of the road profile based on vehicle dynamic responses. Among
these studies, we can cite that of Imine et al. (2005) in which the authors presented a model-based
sliding mode observer of a full-car model, where the speed was considered constant. In Heyns et
al. (2012), a road roughness monitoring system was suggested using a Bayesian estimator under
variable speed, but it required a priori information of the road. Fauriat et al. (2016) proposed
an algorithm based on the cross-entropy method that used Monte Carlo simulations in order
to get the optimal road profile estimation. This numerical technique, however, needs a long
computation time. In a real context, the suspension system model is multi-dimensional so its
parameters are uncertain due to variation of the sprung mass, tire stiffness and damping. In this
context, Chaabane et al. (2019) proposed a comparison between the augmented Kalman filter
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estimation technique and the Independent Component Analysis (ICA) method. The authors
showed that the Kalman filtering displayed greater sensitivity to both sprung mass and vehicle
speed variations. However, it was remarked that the Kalman filter displayed certain losses in
the frequency spectrum mainly at high speeds (Chaabane et al., 2019) compared to the ICA.
So, for an accurate road profile estimation, the uncertain parameters of the vehicle model have
to be taken into account. To this end, this paper proposes the use of the ICA technique to
reconstruct the road variability. Ben Hassen et al. (2019b) has already referred to this method
and estimated the road profile using dynamic responses of the full vehicle model. As shown in
the indicated study and many other research works, the proposed method was fast, easy and
simple to apply in order to estimate the road profile. It was also used for different vehicle models
(quarter car, pitch model, roll model) and exhibited a high accuracy in the estimation process.
The road profiles were adopted according to ISO 8608 standard. Ben Hassen et al. (2019a)
proved that the ICA technique can estimate road irregularities even with the use of a non-
-linear vehicle model (non-linear suspension spring and damper). A great deal of research dealt
with uncertainties. Among the used methods in these works, we can cite the Monte Carlo MC
method which presents a simple process to carry out the uncertainty propagation (Papadrakakis
and Kotsopulos, 1999). Several researchers referred to this method to study robustness. As
an illustration, we can mention that of Fonseca et al. (2007) where the authors used a novel
probabilistic method to optimize the robust design of a beam truss based on the MC method.
The obtained result was checked with a regular MC simulation. Che and Wang (2014) proposed
to use the MC optimization technique to study the robustness of a new product design. The
idea was to adjust the precision value of random design variables in MC experiments and then
to validate the method. A case study was brought forward.

In this paper, relying on the previous studies we proposed to estimate several road profiles
using the ICA method. A quarter vehicle model was adopted for the purpose. The novelty lies
in the use of an MC method-based optimisation technique to study the ICA robustness under
uncertainty. In a real case, the sprung mass, tire stiffness and damping are variable parameters.
Using the MC technique, a different set of random values of these parameters are computed;
then, the estimation process is applied under these uncertainties. Also the influence of the vehicle
speed and noise variation (wind) are taken into account. Comparing the obtained results with
the real road profiles, the ICA efficiency was proven.

The remainder of this paper is organized as follows: in first Section, the studied quarter car
model was introduced together with the road profile construction. In the second Section, the
MC theory was detailed. In the third Section, the ICA technique was applied and the simulation
results were described; a good accuracy between the original signals and the estimated ones was
achieved. Finally, Section 5 was devoted to study of the proposed method robustness varying
the sprung mass, stiffness and damping and using the MC optimisation technique under several
vehicle and wind speeds. Section 6 drew the main conclusions.

2. Studied model

In this Section, a combination of the ICA algorithm and the Monte Carlo method was achieved.
The ICA uses dynamic responses of the vehicle model as input signals to estimate the road
profile. The efficiency of this estimation was studied using the Monte Carlo method which takes
into account the uncertainty of such parameters as the sprung mass, stiffness and damping. The
following flowchart describes different steps we followed to study the ICA estimation robustness,
taking into account parameter uncertainties.
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Fig. 1. ICA and MC coupling method

2.1. Vehicle model

In this study, the vehicle is modelled using the quarter car model as it is the most commonly
used model to describe vehicle performances (Chaabane et al., 2019). The vehicle is modelled
by two masses m1 and m2 linked by a suspension with the stiffness k1 and the damping c1.
The contact between the road (defined by its profile r(t)) and the vehicle wheel was modelled
by a linear stiffness k2. As shown in Fig. 2, the model has two degrees of freedom: X1 and X2
depicting the m1 and m2 displacements, respectively.

Fig. 2. Quarter car model

The equations of motion associated to the system under study are written as follows

m1Ẋ1 + k1(X1 −X2) + c1(Ẋ1 − Ẋ2) = 0

m2Ẋ2 + k1(X1 −X2) + c1(Ẋ1 − Ẋ2) + k1[X2 − r(t)] = 0
(2.1)

The suspension parameters used in this paper are given in Table 1. These values were provided
by Fauriat et al. (2016).

2.2. Road disturbance modelling: random road profile

In this study, the external excitation due to the road disturbance is expressed using the ran-
dom road profile, which has been constructed according to ISO 8608 standard given in Table 2.
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Table 1. Suspension system parameters

Parameter Value Unit

Sprung mass m1 = 372 kg

Unsprung mass m2 = 59 kg

Suspension stiffness k1 = 36540 N/m

Tire stiffness k2 = 242000 N/m

Suspension damping c1 = 3300 Ns/m

Table 2. Road profile classification

Road class
Degree of roughness Gd(n0) [10

−6m3]
Lower limit Geometric mean Upper limit

Road A – 16 32

Road B 32 64 128

Road C 128 256 512

Road D 512 1024 2048

Road E 2048 4096 8192

The Integral White Noise Model method has been applied to establish the road roughness.
It considers the road roughness as the result of a filtered white noise by

ṙ(t) = 2πn0

√

Gd(n0)V W1(t) (2.2)

where n0 = 0, 1 cycle/m is the reference spatial frequency, Gd(n0) is the displacement PSD
(given in Table 2), V is the vehicle velocity (equal to 15m/s in our case study) and W1(t) is the
Gaussian white noise with a variance equal to 1.
This road disturbance affects dynamic responses of the vehicle. These responses are measured

numerically using the Newmark algorithm and then they are inserted in the ICA algorithm as
observed signals denoted by {Vobserved}. This vector is composed of the mixing matrix [Mmixing ]
and the source signals {Soriginal} which are the road profiles as follows

{Vobserved} = [Mmixing ]{Soriginal} (2.3)

Generation of the estimated road profiles {Sestimated} by ICA requires some assumptions (Chaa-
bane et al., 2019): firstly, the elements of {Sestimated} should be statistically independent and
secondly, the number of generated signals is equal to the observed ones. Then, [Munmixing ] which
is defined as the inverse of [Mmixing ] is computed and the estimated vector can be written as

{Sestimated} = [Munmixing ]{Vobserved} (2.4)

We mentioned that some pre-treatments: centering and whitening (Chaabane et al., 2019) are
applied to the vector{Vobserved}. Thus, [Munmixing ] is determined and finally, {Sestimated} will
be equal to

{Sestimated} = [Munmixing ]
H{Vobserved} (2.5)

where (·)H presents a conjugate-transpose operator.
The ICA method swaps the estimated sources and random profiles in order to get the exact

road profile. Then, the MC algorithm is applied to study the robustness of the ICA under
uncertainties which are the driver mass, the suspension stiffness and the damping variation. To
be more realistic, the influence of the vehicle speed and the noise are also taken into account.
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3. Monte Carlo theory

It is well known that the MC theory is a reliable method with successive resolutions used for
deterministic systems including uncertain parameters which are expressed by random variables.
Random samples are established for each uncertain parameter considering their correlations and
their probability distributions. A set of parameters and deterministic calculation are estimated
for each based on analytical or numerical model. The MC method is known for its ability to be
applied to all system sizes and complexity degrees. A large number of iterations is needed for
accurate results. The standard MC approach is described by the following equation

Y =M(X) (3.1)

whereM describes the model under consideration, the vector X = [X1,X2, . . . ,Xn]
T represents

the uncertain input parameters while the vector Y contains random values of the estimated
outputs. The method essentially consists of 5 steps as described in Fig. 3.

Fig. 3. MC algorithm steps

4. ICA results and discussion

4.1. Dynamic responses

Three road profile types are considered for this study: road A, road C and road E, where
A is chosen as a very good quality road, C has a medium roughness and finally E is the most
disturbed road. The dynamic responses corresponding to each profile type, which are the inputs
for the ICA algorithm, are given in Fig. 4. Only the sprung mass acceleration is introduced as
observed signals.
As presented in Fig. 4, the sprung mass acceleration is the only known input for the ICA.

Starting from each response, the ICA would estimate the corresponding road profile.

4.2. Estimation of the road profile

Based on the dynamic responses of the quarter car model, the ICA method accurately esti-
mates different road profiles as presented in Fig. 5. This figure displays a comparison between
the real and estimated profiles for different road types: Figs. 5a, 5b and 5c correspond to roads A,
C and E, respectively.
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Fig. 4. Observed signals corresponding to several road profiles

Fig. 5. Comparison between the real and estimated profiles: (a) road A, (b) road C, (c) road E

A good accuracy between the estimated profile and the real one in different studied cases can
be easily noticed. This result was already proven in a previous work of Ben Hassen et al. (2019b).
Indeed, the ICA is considered as one of the best used techniques in estimating dynamic responses.
Since the sprung mass, stiffness and damping coefficient are variable parameters, the idea now
is to study sensibility of the ICA method when these different parameters are uncertain. The
Monte Carlo algorithm is particularly applied to study this problem, as previously mentioned.
In this work, 500 samplings of 3 input variables have been calculated and then the problem is
solved for each sample of input variables. Moreover, the influence of both of vehicle speed and
wind is studied.
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5. Robustness study

5.1. Uncertainties parameters impact

The objective here is to study the performance prediction of the ICA method which will
operate in the presence of three simultaneously associated uncertainty parameters: the sprung
mass, stiffness and damping. Thus, variations of 20%, 40% and 60% have been performed for
each parameter. The achieved results were discussed in the following Section. Tables 4, 5 and 6
show the relative error between the real signal and the extracted one from the MC simulation
for, respectively, the sprung mass, sprung stiffness and damping coefficient uncertain parameters.
Three variations, 20%, 40% and 60%, were studied for each parameter. It is worth noting that
there was convergence in the results. In fact, for the three uncertainty cases and the three
variation values, the error did not exceed 5%. This might be interpreted as success of the
combination between the MC and ICA methods in reproducing the real profile. In order to
further explain, the obtained results are given in Tables 4 to 6. Table 3 has been elaborated to
recapitulate the collected errors (maximal, minimal and average) between real and estimated
profiles defined for each variation parameter.

Table 3. Maximum, average and minimum errors between real and estimated road profile for
mass, stiffness and damping uncertainties roads A, C and E

20% 40% 60%
m k c m k c m k c

Road A

Min 0.70 0.80 1.02 1.01 1.20 2.23 1.13 2.00 2.85

Average 0.94 1.20 1.64 1.54 1.73 2.72 3.02 3.52 4.78

Max 1.25 1.74 2.25 2.04 2.26 3.50 2.31 2.99 4.02

Road C

Min 0.90 1.10 1.70 1.27 1.64 3.23 1.50 2.41 3.92

Average 1.18 1.46 2.17 1.73 2.09 3.73 2.23 3.04 4.19

Max 1.75 2.01 2.70 2.49 3.01 4.49 3.02 3.52 4.78

Road E

Min 1.17 1.48 2.42 1.55 2.00 4.15 1.90 3.01 4.99

Average 1.56 2.14 2.80 2.19 2.83 4.47 2.83 3.93 5.16

Max 2.27 3.01 3.31 3.50 3.90 5.09 4.05 4.52 5.71

It is easily noticeable that for the three parameter variations: mass, stiffness and damping,
the errors increased with an increase of the road profile roughness. For example, for the mass
sprung with 60% variation, the maximum error goes from 2.31% to 5.71%. For the stiffness
parameter with 60% variation, the maximum error climbs from 2.9% to 4.52%. It can be therefore
concluded that the estimation with the combination of the MC and ICA methods allows accurate
reproduction of the road profile, especially for small variations. Even for great variations, the
obtained results are acceptable. By comparing the maximum, minimum and average errors with
respect to the variation values for each parameter, we can conclude that the error values also
increased with the increase of variation. In fact, for the mass variation, the maximum error goes
from 1.25% to 2.31% when the mass varies from 20% to 60%. The average error also passes from
0.94% to 1.73%. The same conclusions can be drawn for the stiffness and damping variations.

5.2. Vehicle speed impact

In order to show the impact of vehicle speed on the robustness study, three case studies have
been elaborated. The first considered vehicle speed was 20 km/h; in the second case, the vehicle
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Table 4. Impact of sprung mass variation on road profiles A, C and E

Chosen Road type
variation Road A Road C Road E

20% m

40% m

60% m
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Table 5.Impact of stiffness variation on road profiles A, C and E

Chosen Road type
variation Road A Road C Road E

20% k

40% k

60% k
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Table 6. Impact of damping variation on road profiles A, C and E

Chosen Road type
variation Road A Road C Road E

20% C

40% C

60% C
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speed was 50 km/h, in the third one, we took into account a vehicle speed equal to 100 km/h.
The three vehicle speeds were studied together with a 60% variation of the three other uncertain
parameters. The obtained results showed that when the vehicle speed increased, the error in the
estimation process increased as well, especially when driving on E road type, disturbed with a
60% damping variation. In fact, the maximum error is obtained especially for road profile E,
with a vehicle speed equal to 100 km/h having damping variation equal to 60%. Despite their
increase, we can say that the error values are acceptable, and that the MC method reproduces
accurately the road profile for all studied cases.

Table 7. Speed impact on road E

Road profile
A C E

Vehicle speed ]km/h]
20 50 100 20 50 100 20 50 100

Min 1.5 2.8 3.5 2.8 3.8 3.8 3.8 5.0 5.0

Average 2.5 3.4 4.2 3.5 4.3 4.4 4.4 5.2 5.6

Max 3.5 4.0 5.0 4.4 5.2 5.0 5.0 5.5 6.2

5.3. Noise variation impact

In order to show the wind impact (defined as noise variation) on the vehicle, three cases have
been investigated. In this work, we adopted the Signal to Noise Ratio (SNR) values suggested
by Ben Hassen et al. (2019a), from 0.9 dB to 3.5 dB in the second case, and to 9.5 dB in the third
case. The estimation quality decreased from the minimum noise to the maximum one, especially
for roughness profile E. It is also worth reminding that in this study, these error values are
assumed to be acceptable and the road profile is well estimated.

Table 8. Noise impacts on road E

Road profile
A C E

Wind variation [db]
0.9 3.5 9.5 0.9 3.5 9.5 0.9 3.5 9.5

Min 3.8 3.92 3.95 4.0 4.90 5.0 6.0 6.2 7.1

Average 3.9 4.46 4.47 4.9 5.45 5.5 6.5 6.6 7.7

Max 4.0 5.00 5.00 5.8 6.60 6.0 7.0 7.0 8.3

6. Conclusion

In this study, the MC method has been used based on the Newmark technique in order to
solve the equation of motion of the quarter vehicle model and then to estimate the road pro-
file when vehicle mass, damping coefficient and sprung stiffness are uncertain. The obtained
results depend on the iteration number. An increase of the iteration number leads to a better
refined solution. The probabilistic behavior of the suggested uncertain parameters affects the
ICA method efficiency in estimating the road disturbance profile. In the second step, the impact
of variation of both vehicle speed and wind are investigated. The achieved results show that
the uncertainty levels in the input data have no impact on the ICA method for several vehicle
speeds and wind values when estimating different road profiles. This confirms the efficiency of
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the ICA in reconstructing the road disturbance. This result is very important since it allows
estimation of the road profile in real time, on one hand, and it can be inserted in a control law,
afterward, to ameliorate the vehicle performance.
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