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The paper presents a numerical analysis of the thermal damage process taking place in
biological tissue containing a blood vessel during laser irradiation. The internal heat source
resulting from laser irradiation based on the solution of the optical diffusion equation is taken
into account. The investigation was concerned with the influence of tissue denaturation and
oxygen content in blood on temperature distribution. The analysis of oxygen transport to
the tissue is treated as a part of the analysis of thermal damage processes. At the stage
of numerical computations, the boundary element method and the finite difference method
were used.
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1. Introduction

Blood and its components play many important roles in a living organism, i.e. they transport oxy-
gen and nutrients to cells and, on the way back, carbon dioxide, a waste product of metabolism.
Blood circulation is also responsible for maintaining normal body temperature (normothermia)
and water-electrolyte balance (homeostasis).

Blood consists of cellular components (approximately 45%) and plasma (approximately 55%).
The former consist mainly of red blood cells (RBC or erythrocytes), white blood cells (WBC or
leukocytes) and platelets (thrombocytes). The most numerous components are red blood cells
which contain haemoglobin responsible for binding and transporting oxygen (Bessonov et al.,
2016; Caro et al., 2012).

From the point of view of optical properties of blood, the concentration of haemoglobin in
RBC makes it the most absorbing element of blood in the wavelength range of 250-1100 nm.
Due to the difference in the refractive index between red blood cells and the surrounding blood
plasma, red blood cells also prevail over blood scattering. Oxygen saturation affects the optical
properties of the blood as well: oxygenated blood has a lighter and more vivid red shade than
deoxygenated blood. Other components that can affect the optical properties of blood are various
proteins, nutritious compounds, or pharmaceuticals (Bosschaart et al., 2014; Friebel et al., 2006).

Laser irradiation of tissue causes different reactions, i.e. thermal interactions which can
lead to permanent tissue damage. It is obvious that in the presence of blood vessels in the
tissue, heating and damage processes take place slightly differently from those of homogeneous
tissue. Because of motion of the blood, which has a cooling effect, the energy contained in
the heat impulse does not migrate deep into the tissue and is drained by blood circulation.
The aforementioned oxygen saturation of the blood can also have an impact on these processes
(Bosschaart et al., 2014; Friebel et al., 2006).

Mathematical description of the processes taking place during laser irradiation of biological
tissue containing blood vessels can be divided into stages related to modelling of laser energy
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deposition, blood velocity determination, temperature distribution and thermal damage mod-
elling. It is also possible to use an additional model for the analysis of oxygen transport to the
tissue.

It can be said that the main part of this type of analysis is related to temperature distribution
which can be determined by making use of the bioheat transfer equation. It should be pointed
out that the equation describing temperature distribution in the domain of the blood vessel
usually has an additional component related to blood velocities, the so-called advection term
(Gonzalez-Suarez and Berjano, 2016; Hassanpour and Saboonchi, 2016; Paul and Paul, 2018).

The earliest of bioheat transfer equations, but probably still the most widely used, is the
Pennes equation (Abraham and Sparrow, 2007; Paruch, 2017). The newest equations, such as
GDPL equation (generalized dual-phase lag equation), take into account a heterogeneous struc-
ture of biological tissue (Dombrovski, 2012; Majchrzak et al., 2019).

To solve the bioheat transfer equation, one must know the light distribution. For this purpose,
radiative transport equation is usually taken into account, which can be solved by the statistical
Monte Carlo approach or one of several modifications in the discrete ordinates method (Dom-
brovski, 2012; Friebel et al., 2006; Jacques and Pogue, 2008). It is also possible to approximate
the light transport using the optical diffusion equation (Korczak and Jasiński, 2019; Majchrzak
et al., 2019).

The next step in the analysis of laser-tissue interaction is the estimation of the degree of
tissue thermal damage. For this purpose, the so-called Arrhenius injury integral is usually applied
(Abraham and Sparrow, 2007; Akula and Maniyeri, 2020; Paruch, 2020). It assumes that tissue
damage is irreversible, even in the case of a temporary, small, local increase of temperature.
There are also models that make it possible to take into account withdrawal of the tissue injury
in such cases, e.g., the TTIW algorithm (Jasiński, 2018).

Models of oxygen distribution are often based on the Krogh cylinder concept (McGuire and
Secomb, 2001; Zhu et al., 2015). These models have been developed and, at present, they allow
one to take into account a number of phenomena such as intravascular resistance to oxygen
diffusion or the influence of other substances (e.g. myoglobin or haemoglobin) (Whiteley et al.,
2002).

This work aims at analysing the process of thermal damage in the 2D non-homogeneous
domain, consisting of soft tissue and a blood vessel, subjected to a laser impulse.

The novelty aspect of the paper is primarily the incorporation of an oxygen distribution
model into the analysis of thermal damage processes. It was realized by a combination of two
models at different scales (tissue-blood vessel model and Krogh cylinder). Additionally, different
values of optical parameters for tissue and blood resulting from the saturation level and tissue
damage were taken into account. The light distribution in both subdomains was determined on
the basis of the optical diffusion equation. Thermal analysis is based on the Pennes equation for
the tissue subdomain, while for the blood vessel subdomain the advection-diffusion equation is
used. Using this model, the degrees of thermal damage for different values of optical parameters
of tissue and blood were also calculated. At the stage of numerical realization, different methods
were used.

2. Governing equations

The analysis was carried out on the basis of two models presented in Fig. 1. On the left-hand side
of this figure, the domain under consideration in the thermal damage problem subjected to laser
action is presented. It consists of two subdomains: tissueΩt and blood vesselΩv (Jasiński, 2020a).
The second model is related to the delivery of oxygen to biological tissue. As this phenomenon
occurs at the capillary level, the model is based on the Krogh cylinder concept (McGuire and
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Secomb, 2001; Whiteley et al., 2002; Zhu et al., 2015). Similarly to the thermal damage problem
model, two subdomains can be distinguished in this model: tissue ΩKt and capillary ΩKc. Since
dimensions of the Krogh cylinder are much smaller than dimensions of the thermal damage
model (micrometers vs. millimeters), the oxygen distribution model corresponds to the selected
point in the domain of tissue Ωt in the thermal damage model.

Fig. 1. The domains considered in the thermal damage problem (left) and oxygen distribution
problem (right)

The oxygen distribution model is associated with the thermal damage model through the
perfusion coefficient w [m3bloodm

−3
tissues

−1] and the blood velocity in the capillary ub [cm s
−1]. The

first of these parameters, the perfusion coefficient is a characteristic feature of any soft tissue,
related to the total volume of blood in the tissue. It is obvious that its value is influenced by
the volumes and velocities of blood in all blood vessels contained in the soft tissue domain. So
the relationship between the perfusion coefficient and the blood velocity in the capillary can be
denoted as (McGuire and Secomb, 2001)

w =
Qb
πR2tLt

=
πR2cub
πR2tLt

→ ub = wLt
R2t
R2c

(2.1)

where Qb [cm
3s−1] is the blood flow rate in the capillary while Rc, Rt, and Lt are geometrical

parameters of the oxygen distribution model (see Fig. 1).
It should be pointed out that the perfusion coefficient is often treated as a marker of tissue

damage, so in this paper it is assumed to be damage-dependent in form (Abraham and Sparrow,
2007)

w = w(Arr ) =















(1 + 25Arr − 260Arr 2)w0 0 ¬ Arr ¬ 0.1

(1−Arr)w0 0.1 < Arr ¬ 1

0 Arr > 1

(2.2)

where w0 is the initial perfusion coefficient while Arr denotes the Arrhenius injury integral
(Majchrzak et al., 2019; Paruch, 2020)

Arr(x1, x2, t
F ) =

tF
∫

0

A exp
[

−
E

RT (x1, x2, t)

]

dt (2.3)
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where R [Jmole−1K−1] is the universal gas constant, E [Jmole−1] is the activation energy,
A [s−1] is the preexponential factor.

There are two values treated as necrosis criteria: Arr(x1, x2) = 1 and Arr(x1, x2) = 4.6 which
correspond to 63% and 99% of cell death at a specific point (x1, x2), respectively. Furthermore, in
this work, the TTIW algorithm (thermal tissue injury withdrawal algorithm) has been applied to
model the possibility of tissue injury withdrawal when the thermal impulse is stopped (Jasiński,
2018).

In order to determine the degree of thermal damage of the tissue, the temperature field in the
domain considered must be known (Fig. 1 left). Transient heat transfer in the subdomains of the
thermal damage model is described by the Pennes bioheat transfer equation (tissue subdomain)
(Korczak and Jasiński, 2019; Paruch, 2017) and the advection-diffusion equation (blood vessel
subdomain) (Gonzalez-Suarez and Berjano, 2016; Hassanpour and Saboonchi, 2016; Paul and
Paul, 2018), which form

(x1, x2) ∈ Ωt : ctρt
∂Tt(x1, x2, t)

∂t
= λt∇

2Tt(x1, x2, t) +Qperf (x1, x2, t)

+Qlas t(x1, x2, t) +Qmet t

(x1, x2) ∈ Ωv : cvρvu∇Tv(x1, x2, t) = λv∇
2Tv(x1, x2, t) +Qlas v(x1, x2, t) +Qmet v

(2.4)

where (subscripts t and v refer to the subdomains of tissue and blood vessel, respectively)
λ [Wm−1K−1] is the thermal conductivity, c [Jkg−1K−1] is the specific heat, ρ [kgm−3] is the den-
sity, T is the temperature, while u = [u, v] [m s−1] is the velocity vector. The components Qperf ,
Qlas, and Qmet [Wm

−3] are the internal heat sources associated with perfusion, metabolism
and laser irradiation. In the current work, the metabolic heat source Qmet is assumed to be a
constant value.

The perfusion heat source function Qperf is described by the formula (Paruch, 2017, 2020)

Qperf (x1, x2, t) = cbρbw[Tb − Tt(x1, x2, t)] (2.5)

where cb [Jkg
−1K−1] is the specific heat of blood, ρb [kgm

−3] is the density and Tb corresponds
to the arterial blood temperature.

Equations (2.4) are supplemented by convection boundary conditions on the boundaries Γ0
and Γtv, while on the remaining boundaries no-flux conditions are assumed.
The blood velocity field is calculated using the Navier-Stokes equation which consists of

a momentum equation and a mass equation with adequate boundary conditions for the inlet,
outlet and wall of the blood vessel (Gonzalez-Suarez and Berjano, 2016; Müller et al., 2013)

(x1, x2) ∈ Ωv : ρvu · ∇u = −∇p(x1, x2) + µ∇
2u+ F

∇ · u = 0
(2.6)

where p [Pa] denotes pressure, µ [Pa s] is the dynamic viscosity, F [Nm−3] denotes volume forces
(not considered in this analysis).

It should be pointed out that blood is generally a non-Newtonian fluid, but in the case
of assumption that length and time scales are sufficiently large in comparison to length and
time scales at the level of an individual erythrocyte it could be treated as a Newtonian fluid
modelled by making use of the Navier-Stokes equation (Bessonov et al., 2016; Gonzalez-Suarez
and Berjano, 2016; Haghighi et al., 2015).

The internal heat source associated with laser energy deposition Qlas has the form (Korczak
and Jasiński, 2019; Majchrzak et al., 2019)

Qlas(x1, x2, t) = µaφ(x1, x2) φ(x1, x2) = φc(x1, x2) + φd(x1, x2) (2.7)
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where φ, φc, φd [Wm
−2] denote the total light fluence rate, the collimated and diffuse parts of

the fluence rate, respectively, while µa [m
−1] is the absorption coefficient.

The collimated fluence rate is given as the Beer-Lambert law in the form (Majchrzak et al.,
2019)

φc(x1, x2) = φ0 exp
(

−
2x21
r2

)

exp(−µ′tx2) (2.8)

while in order to determine the diffuse fluence rate, the steady-state optical diffusion equation
must be solved (Dombrovsky, 2012; Majchrzak et al., 2019)

(x1, x2) ∈ Ωt ∪Ωv : ∇

[ 1

3µ′t
∇φd(x1, x2)

]

− µaφd(x1, x2) + µ
′

sφc(x1, x2) = 0 (2.9)

where φ0 [Wm
−2] is the surface irradiance of laser, r is radius of the laser beam, µ′t [m

−1] is the
attenuation coefficient and µ′s [m

−1] is the effective scattering coefficient.
All the details of the thermal damage problem which are not mentioned in this paper can

be found in (Jasiński, 2020).
The oxygen distribution problem is described by two separate equations for radial and axial

directions (Fig. 1 right). In the radial direction, for the tissue subdomain, the following equation
is assumed (McGuire and Secomb, 2001; Jasiński 2020)

Rc < r < Rt : Kt
1

r

d

dr

[

r
dPt(r)

dr

]

=Mt(Pt) Mt(Pt) =
M0Pt(r)

P0 + Pt(r)

r = Rc : 2πRcKt
dPt(r)

dr
= −k[Pb − Pt(r)]

r = Rt :
dPt(r)

dr
= 0

(2.10)

where Pt [mmHg] is the partial pressure of oxygen in the tissue, Kt
[(cm2s−1)(cm3O2cm

−3(mmHg)−1)] is the Krogh diffusion coefficient while Mt(Pt) represents the
oxygen consumption rate. In the current work, it is assumed in the form of Michaelis-Menten
kinetics, where M0 [cm

3
O2cm

−3s−1] is the oxygen demand and P0 [mmHg] is the half-maximum
oxygen consumption. In the boundary conditions: k [(cm2s−1)(cm3O2cm

−3(mmHg)−1)] is the
mass transfer coefficient, Pb [mmHg] is the partial pressure of oxygen in the blood (i.e. in the
capillary subdomain), while the right-hand side of the condition for r = Rc represents the
intravascular resistance to oxygen diffusion at the blood-tissue interface (McGuire and Secomb,
2001).
With the blood flow along the capillary, oxygen is released from haemoglobin and diffused

to tissue, so the partial oxygen pressure in the blood decreases. It can be expressed in the form
of an equation for the axial direction

Qbκb
d[SHb(Pb)]

dz
= −k

(

Pb − Pt
∣

∣

r=Rc

)

SHb(Pb) =
Pnb

Pnb + P
n
50

(2.11)

where z is the axial coordinate, κb [cm
3
O2cm

−3
blood ] is the oxygen carrying capacity of blood, SHb is

the oxyhaemoglobin saturation, and the relationship between SHb and Pb is given by the Hill
equation where P50 [mmHg] is the half-maximum haemoglobin saturation and n is the Hill
coefficient (McGuire and Secomb, 2001; Whiteley, 2002; Zhu et al., 2015).

3. Methods of solution

In this paper, two models presented in Fig. 1 are considered. They are related to thermal damage
to soft tissue in the vicinity of a blood vessel (Fig. 1 left) and a model related to oxygen distribu-
tion (Fig. 1 right). The transient temperature field in the thermal damage problem is described
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by equation (2.4), while the thermal damage is determined from the Arrhenius integral (2.3).
Note that both formulas defined for the tissue subdomain Ωt and the blood vessel subdomain Ωv
contain source components related to Qlas laser effects. Their value was determined based on
formulas (2.7)-(2.9). Among them, steady-state optical diffusion equation (2.9) is particularly
important. Since the model assumes constant optical parameters for Ωt and Ωv domains, the
process of solving (2.9) could be performed separately, and then the obtained values of the diffuse
fleuence rate φd were imported as a data file into the thermal damage model.

In the model, it was also assumed that the velocity field u calculated on the basis of Navier-
-Stockes equation (2.6) is constant during the entire process of heating and cooling of the tissue-
-blood vessel system. Therefore, this analysis was separated into a separate task, realized in
Comsol Multiphysics for a stationary fluid flow, and its results were also imported into the
thermal damage model via a data file.

In the thermal damage model, the temperature (Eq. (2.4)), the degree of thermal damage
(Eq. (2.3)) and the damage-dependent perfusion coefficient value (Eq. (2.2)) were determined.
For the latter, for a selected point from the tissue subdomain Ωt (Fig. 1 left) and for selected
time steps, the value of blood velocity in the capillary ub was determined according to formula
(2.1). This parameter was necessary for the steady-state analysis of the oxygen distribution
described by equations (2.10)-(2.11) and for the model shown in Fig. 1 right.

The main part of the problem considered was the determination of temperature (2.4) and
degree of thermal damage (2.3) in the tissue and blood vessel system discussed, as shown in
Fig. 1 left.

To solve the 2D bioheat transfer problem, the 1st scheme of the boundary element method
(tissue subdomain Ωt) was used, whereas the advection-diffusion equation (blood vessel subdo-
main Ωv) was solved using the finite difference method. Weak coupling was used, which means
that during calculations between these two subdomains temperature values at the boundary Γtv
were transmitted.

For the transient heat diffusion problem, for a time grid with a constant step ∆t, the
boundary integral equation corresponding to transition tf−1 → tf is of the form (Brebia and
Dominguez, 1992)

B(ξ)T (x1, x2, t
f ) +
1

c

tf
∫

tf−1

∫

Γ

T ∗(ξ, x1, x2, t
f , t)q(x1, x2, t) dΓ dt

=
1

c

tf
∫

tf−1

∫

Γ

q∗(ξ, x1, x2, t
f , t)T (x1, x2, t) dΓ dt

+

∫∫

Ω

T ∗(ξ, x1, x2, t
f , tf−1)T (x1, x2, t

f−1) dΩ

+
1

c

tf
∫

tf−1

∫∫

Ω

Qv(x1, x2, t)T
∗(ξ, x1, x2, t

f , t) dΩ dt

(3.1)

In equation (3.1), T ∗ and q∗ are the fundamental solution and the heat flux resulting from the
fundamental solution (Brebia and Dominguez, 1992) while B(ξ) is a coefficient from the interval
(0, 1). In this paper, constant boundary elements have been used. Details concerning numerical
realization of the BEM can be found, among others, in (Jasiński, 2018, 2020).

As was already mentioned for solving the advection-diffusion equation, the finite difference
method has been used. A uniform grid based on five-point stencils was introduced (Majchrzak
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et al., 2019). The differential quotients approximating the derivatives which have been used are
in the form

[

∇T (x1, x2, t)
]

i,j
=
[∂T (x1, x2, t)

∂x1
+
∂T (x1, x2, t)

∂x2

]

i,j
=
Ti+1,j − Ti−1,j

2h
+
Ti,j+1 − Ti,j−1

2h

[

∇
2T (x1, x2, t)

]

i,j
=
[∂2T (x1, x2, t)

∂x21
+
∂2T (x1, x2, t)

∂x22

]

i,j

=
Ti+1,j − 2Ti,j + Ti−1,j

h2
+
Ti,j+1 − 2Ti,j + Ti,j−1

h2

(3.2)

Optical diffusion equation (2.9) was solved using the finite difference method. The forms of the
difference quotients were similar to those used to solve the advection-diffusion equation.
Most oxygen distribution problems involve non-linear tasks. Nonlinearities may result mainly

from the assumed oxygen consumption model and/or from consideration of equations for the
partial pressure of oxygen and the saturation of hemoglobin in the capillary subdomain. Due
to these facts, in the current work, the task associated with the oxygen distribution was also
solved with the use of the finite difference method for the steady-state problem in cylindrical
coordinates with a grid based on a three-point stencil (radial direction). It was assumed that
(hr is the grid spacing in the radial direction)

1

r

d

dr

(

r
dPt
dr

)

i
=
1

rihr

[(

r
dPt
dr

)

i+ 1
2

−

(

r
dPt
dr

)

i− 1
2

]

=
1

rihr

[(

ri +
1

2
hr
)Pt,i+1 − Pt,i

hr
−

(

ri −
1

2
hr
)Pt,i − Pt,i−1

hr

]

(3.3)

The capillary length was divided into nz elements (m = 0, 1, . . . , nz). After determination of
the partial pressure in tissue Pt in the radial direction, for a given point m, saturation SHb is
calculated in the point m+ 1 on the basis (Eq. (2.11))

SHb,m+1 = −
khz
Qbκb
(Pb,m − Pt,m) + SHb,m (3.4)

4. Results of computations

The research aimed at analysing a thermal damage process in the 2D tissue and blood vessel do-
mains during laser irradiation (Fig. 1 left). Dimensions of both subdomains were assumed equal
to each other: 2 cm×0.2 cm. The boundary and interior of the tissue subdomain were divided
into 248 constant elements, whereas in the blood vessel subdomain 105 nods were distinguished.
In the oxygen distribution model, 100 nodes were distinguished in both the axial and radial
directions.
Different values of optical parameters for both subdomains were considered. In the tissue

subdomain Ωt, two values of the effective scattering coefficient related to the native µ
′

s nat and
denatured µ′s den tissue were taken into account. In the blood vessel subdomain Ωv, different val-
ues of the absorption coefficient µa, scattering coefficient µs and an anisotropy factor g were used
for oxygenated blood (saturation SO2 > 90%) and deoxygenated blood (saturation SO2 = 0)
(Bosschaart et al., 2014) – Table 1. All possible combinations of these parameters were consid-
ered, which means that four simulations were performed (variant 1: native tissue-oxygenated
blood, variant 2: native tissue-deoxygenated blood, variant 3: denaturated tissue-oxygenated
blood, variant 4: denaturated tissue-deoxygenated blood). It should be pointed out that opti-
cal parameters correspond to near-IR irradiation on soft tissue (e.g. Nd:YAG laser of 1064 nm,
used for prostate coagulation). The remaining parameters used in simulations are presented in
Tables 2 and 3.
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Table 1. Optical parameters of tissue and blood (Bosschaart et al., 2014; Glen et al., 1996)

Parameter Tissue Blood
native denaturated oxygenated deoxygenated

Absorption coefficient µa [m
−1] 40 40 450 200

Scattering coefficient µs [m
−1] – – 47690 41520

Anisotropy factor g [m−1] – – 0.9724 0.9732

Effective scattering coefficient µ′s [m
−1] 1000 4000 – –

Table 2. Parameters used in the simulations∗ (Glenn et al., 1996; Gonzalez-Suarez and Berjano,
2016; Jasiński, 2020; Paruch, 2020)

Parameter Value Parameter Value Parameter Value

λt [Wm
−1K−1] 0.609 Tb [

◦C] 37 φ0 [W cm
−2] 1e+5

λv [Wm
−1K−1] 0.52 At [s

−1] 3.1e+98 d [mm] 2

ct [Jkg
−1K−1] 4180 Av [s

−1] 7.6e+66 texp [s] 30

cv [Jkg
−1K−1] 3300 Et [Jmole

−1] 6.27e+5 α0 [Wm
−2K−1] 10

ρt [kgm
−3] 1000 Ev [Jmole

−1] 4.48e+5 αtv [Wm
−2K−1] 500

ρv [kgm
−3] 1030 R [Jmole−1K−1] 8.314 Tamb [

◦C] 20

Qmet t [Wm
−3] 250 µ [Pa s] 0.0021 Tp [

◦C] 37

Qmet v [Wm
−3] 250 uin [cm s

−1] 1

w0 [s
−1] 0.00125 pout [mmHg] 125

∗ Parameters not explained previously in the text: uin – inlet blood velocity,
pout – outlet blood pressure, d – laser beam diameter, texp – laser impulse duration,
α0 – convection coefficient at Γ0, αtv – convection coefficient at Γtv,
Tamb – ambient temperature, Tp – initial temperature of tissue and blood

Table 3. Parameters for the oxygen distribution model (McGuire and Secomb, 2001; Zhu et al.,
2015)

Parameter Value Parameter Value

Rc [cm] 0.00025 k [(cm2s−1)(cm3O2cm
−3(mmHg)−1)] 6.25e-9

Rt [cm] 0.006 Pb [mmHg] 100

Lt [cm] 0.04 P50 [mmHg] 26

Kt [(cm
2s−1)(cm3O2cm

−3(mmHg)−1)] 9.4e-10 n [–] 2.7

M0 [cm
3
O2cm

−3s−1] 0.00667 κb [cm
3
O2cm

−3
blood ] 0.2

P0 [mmHg] 1

Figure 2 presents the distribution of the diffuse fluence rate φd resulting from steady-state
optical diffusion equation (2.9) for all variants of computations. In the cases under consideration,
an increase in φd occurred in line with an increase in µ

′

s in the tissue subdomain (i.e. for
denaturated tissue) and in line with a decrease in µa and µs for blood (i.e. for deoxygenated
blood). It is also worth noticing that for 2 and 4 variants of calculations (deoxygenated blood)
the maximum φd values, which are achieved in the blood vessel subdomain, are clearly visible.
For the oxygenated blood (variant 1 and 3 of the calculations), they are hardly visible or not
noticeable at all.

Figures 3 and 4 show the temperature distribution for selected time steps. Comparison of
these figures reveals that the energy delivered to the tissue-vessel domain under consideration
is better discharged in the case of oxygenated blood (Fig. 3). This is, of course, influenced by
higher temperature values achieved in variants 3 and 4 (Fig. 4). It is consistent with the results
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Fig. 2. Distribution of the diffuse fluence rate φd for all variants of computations

Fig. 3. Distribution of temperature for different time steps for variants 1 and 3 (oxygenated blood)

Fig. 4. Distribution of temperature for different time steps for variants 2 and 4 (deoxygenated blood)
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obtained for the optical diffusion equation. It should also be noted that once the laser pulse
stops (texp = 30 s), the temperatures in the blood vessel subdomain return to normothermia
quite quickly.

Fig. 5. Distribution of thermal damage for all variants of computations (60 s)

Fig. 6. The history of Arrhenius integral and perfusion coefficient at point N1
(x1 = 0.01025, x2 = 0.00025)

Fig. 7. The history of Arrhenius integral and perfusion coefficient at point N2
(x1 = 0.01025, x2 = 0.00175)

Figures 5-7 are associated with thermal damage. In Fig. 5, the thermal damage distributions
calculated on the basis of the Arrhenius injury integral with the TTIW algorithm for time 60 s
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are presented. The white zone in this figure refers to the injury integral below the so-called
recovery threshold (Arr rec = 0.05), the values 0.05 < Arr < 1 correspond to a partial damage
area, and the remaining two darkest zones are associated with the two criteria of tissue necrosis:
Arr(x1, x2) > 1 and Arr(x1, x2) > 4.6.

It should be explained that the recovery threshold is the parameter of the TTIW algorithm
(thermal tissue injury withdrawal algorithm). If the degree of thermal damage is below this
threshold, the value of damage could be reduced after the thermal impulse is stopped (Jasiński,
2018).

According to the results obtained for the temperature distribution, the largest damage area
was obtained for variant 4 (denaturated tissue and deoxyganeted blood). In Figs. 6 and 7, the
history of the thermal damage and damage-dependent perfusion coefficient (Eq. (2.2)) for all
variants of computations in two points are presented. Both points are located close to the main
optical axis in the tissue subdomain, point N1 closer to the external surface of tissue, whereas N2
closer to the tissue-blood vessel interface.

Fig. 8. Distribution of the partial pressure in the radial and axial directions at point N2
(variant 3: denaturated tissue, oxygenated blood)

The last part of the analysis concerns the oxygen distribution, the results of which are
presented in Fig. 8. As already mentioned, the value of blood velocity in the capillary ub was
determined on the basis of the damage-dependent perfusion coefficient w determined at point N2
for variant 3 (Fig. 7). The value of this coefficient increases for 22 seconds, then starts to decrease,
and in 34 seconds the value stabilizes at approximately 0.00062 s−1 (Arr = 0.5014). In the
radial direction, the distributions at z = Lt/2 are presented. Due to the very small difference
between the distributions for 0 s and 10 s, the former was omitted (Fig. 7). The distribution
for 20 seconds is above that for 10 seconds. For 30 and 40 seconds they are below that curve,
what is in accordance with the results obtained for the perfusion coefficient. The figure for the
axial direction shows that for 10 seconds, that is, ub calculated for the value close to the initial
perfusion coefficient w0 (and thus close to the normothermia state), the partial pressure is Pb > 0
in the entire capillary length. However, for time steps 30 and 40 seconds, the partial pressure
drops to zero at the end of the capillary, which means that the area of the tissue adjacent to it
became hypoxic. Therefore, it can be concluded that thermal damage causes a decrease in the
oxygen supply to the tissue.

It should be noted that in this analysis a constant value of Pb was assumed on the capillary
inlet for each time step while elevated temperature could cause damage also at higher levels
of vasculature, i.e. in arterioles and venules. As a consequence, it may cause a change in the
partial pressure of oxygen at the capillary inlet. In the current work, constant values of P50 (the
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half-maximal haemoglobin saturation) and n (Hill coefficient) were also assumed, although it is
known that a change in temperature can affect their values (so-called Bohr effect).

5. Final remarks

In summary, the main findings of the paper are as follows:

• Differences in the diffuse fluence rate distribution for different combinations of optical
parameters of (native and denatured) tissue and (oxygenated and deoxygenated) blood are
clearly visible. The highest values of the diffuse fluence rate were obtained for denatured
tissue and deoxygenated blood (variant 4). These values affect the internal heat source
function related to laser deposition Qlas, and thus the temperature reached in the domain
under consideration as well as the area of tissue damage.

• The largest damaged area was obtained for denatured tissue and deoxygenated blood
(variant 4) and was limited to the tissue subdomain only. It means that in the case of blood
vessel presence, a damage process takes place differently than in the case of homogeneous
tissue (cf. Jasiński, 2018).

• For oxygenated blood (variant 1 and 3), an increase in temperature in the blood vessel
subdomain is very small, which indicates a better heat discharge from the area of elevated
temperature.

• Thermal damage to the tissue affects the distribution of oxygen in the tissue. If the value of
the Arrhenius integral exceeds the necrosis threshold, the partial pressure in the capillary
drops to zero at half of its length, which means hypoxia in the area of adjacent tissue.

The presented model obviously has some limitations. They are primarily related to the assump-
tion of some parameters as constants. For example, it is known that the parameters of the
oxyhemoglobin dissociation curve (P50, n) change with increasing temperature, leading to its
shift to the right (Jasiński, 2020b). The effect of laser irradiation on blood velocity in a large
blood vessel was also not considered. In the model related to the oxygen distribution, a constant
partial pressure Pb at the capillary inlet was assumed, although it is obvious that thermal injury
damages the vasculature at higher levels, thus reducing the partial pressure of oxygen at lower
levels of the vasculature.

Analysis of heat exchange phenomena in tissue containing blood vessels is usually quite
complex, resulting from a number of issues that must be taken into account. A variety of methods
and approaches are discussed in the literature. In particular, formulation of an appropriate
mathematical model and issues related to numerical implementation are the areas of scientific
and practical interest.
The performed simulations show that the oxygen content of the blood influences the rate

of discharge of laser pulse energy from its area of operation. Such issues are also analysed. A
more accurate understanding of the phenomena that occur in tissue during thermal exposure
certainly requires taking into account chemical reactions taking place inside, where models of
the oxygen distribution can certainly help.
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