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In this paper, the stability and bifurcation of an airfoil model with a high-order nonlinear
spring are investigated both analytically and numerically. Two possible types of bifurcation
at the equilibrium point are studied. It is proved that the zero characteristic root can only
be a single zero. With the help of the center manifold theory and the normal form theory,
the expressions of critical bifurcation curves leading to initial bifurcation and secondary
bifurcation are obtained. Numerical simulations confirm the theoretical results.
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1. Introduction

The stability properties and bifurcation research of aircraft, railroad wheelsets and other non-
linear systems have important practical significance (Carroll and Mehra, 1982; Knudsen et al.,
1994; Schy and Hannah, 1977; Thompson, 1983). Especially, the Hopf bifurcation (Malhotra
and Namachchivaya, 1997; Namachchivaya and Van Roessel, 1986; 1990) has been paid consid-
erable attention. A dynamical model of an airfoil system with cubic nonlinearity was proposed
for the pitching stiffness (Zhao and Yang, 1990; Lee, 1986). Golubev and Tharayil discovered
limit cycles and chaotic oscillations through high-precision viscosity analysis (Golubev et al.,
2009; Tharayil and Alleyne, 2004). Hence, controlling such unwanted and persistent oscillations
has attracted interest among researchers. The first study of non-linear aeroelastic problems of
an aircraft wing were perhaps the works of Woolston et al. (1957) and Shen (1959). Recently,
using a precise integration method, the nonlinear effect on the airfoil system was also simu-
lated by many scholars (Gordon et al., 2008). In (Hao and Wu, 2020), the stochastic-aeroelastic
nonlinear response of a three-degree-of-freedom structural nonlinear airfoil with a control flap
was presented. Taking into account potential effects of the longitudinal and vertical turbulent
flow, Hao et al. (2021) discussed stochastic airfoil flutter in an unsteady flow by the stochastic
P-bifurcation method. With analytical and numerical methods, Zhou et al. (2013) studied chaotic
motion of a two-dimensional airfoil system with cubic nonlinearity in supersonic flows. It was
shown that the system was always in chaotic motion when the nonlinear stiffness coefficient
crossed its critical value. Through the Gegenbauer polynomial approximation, Wu et al. (2007)
investigated the effects of parameter uncertainty on flutter characteristics of a two-dimensional
airfoil in an incompressible flow. The results showed the presence of intricate behavior of the
system.
In this paper, the stability and bifurcation of an airfoil model with a high-order nonlinear

spring are investigated with analytical and numerical methods. Possible bifurcation solutions and
their stability conditions are obtained analytically. Numerical simulations confirm the analytical
results.
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2. Bifurcation analysis

Consider an airfoil model with a higher-order nonlinear spring with cubic pitching stiffness and
viscous damping as shown in Fig. 1. The equation of motion for this model is (Rajagopal et al.,
2019)

ḧ+
1

4
α̈+
1

10
ḣ+
1

5
h+
1

10
βα+ f(h) = 0

1

4
ḧ+
1

2
α̈+
1

10
α+ kα− dβα+ f(α) = 0

(2.1)

where f(α) is the pitching stiffness and f(h) is the plunging stiffness, respectively, the state
variable h represents the plunging displacement, and α represents the pitching angle.

Fig. 1. Two-degree-of-freedom airfoil model

Substituting x = α, y = α̇, z = h, w = ż into Eq. (2.1), the dynamic equations of the new
four-dimensional autonomous system are as follows

dx

dt
= y

dy

dt
=
1

1.75
[(4dβ + 0.1β − 2)x+ 0.1w + 0.2z + f(z)− 4f(x)− 0.4y]

dz

dt
= w

dw

dt
= − 1
1.75
[(0.2dβ + dβ − 0.5)x+ 0.2w + 0.4z + 2f(z)− f(x)− 0.1y]

(2.2)

where f(z) = 5z2 + 10z3 + 40z5, f(x) = 5x2 + 20x3 + 40x5, d and β are system parameters. In
addition β = (V/bωα)

2, V is the airspeed and ωα is the eigenfrequency.
The Jacobian matrix of system (2.2) at (0, 0, 0, 0) is

A =











0 1 0 0
4
7

(

4dβ − 4k + 110β
)

− 835
4
35

2
35

4
7

(

k − 15β − dβ
)

2
35 − 835 −

4
35











(2.3)

The characteristic equation of the matrix A is

λ4 +R1λ
3 +R2λ

2 +R3λ+R4 = 0 (2.4)

where

R1 =
12

35
R2 =

44

175
− 16
7
dβ +

16

7
k − 2
35
β

R3 =
8

175
+
8

35
k − 8
35
dβ R4 =

16

35
k − 16
35
dβ

(2.5)
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According to the Routh-Hurwitz criterion (Hu, 2000), the equilibrium point O(0, 0, 0, 0) is
stable if the following conditions are satisfied

R1 > 0 R1R2 −R3 > 0 R3(R1R2 −R3)−R21R4 > 0 R4 > 0 (2.6)

The above conditions indicate that all eigenvalues of the Jacobian matrix A have negative
real parts. When the above conditions are not satisfied, the initial equilibrium solution may
become unstable and bifurcation will occur. First, we prove that zero can only be a simple
eigenvalue of the matrix A.

Theorem 1. If zero is an eigenvalue of the matrix A, then it can only be simple.

Proof 1. If the matrix A has double zero eigenvalues, then f(λ) can be written in the following
form

f(λ) = λ4 +R1λ
3 +R2λ

2 +R3λ+R4 ≡ λ2f1(λ)
≡ λ2f1(λ2 +R1λ+R2) ≡ λ4f1(λ) +R1λ3 + r2λ2

(2.7)

Obviously, R3 = R4 = 0, and in the above characteristic polynomial, when R4 = (16/35)k−
(16/35)dβ = 0, we have R3 = (8/175) + (8/35)k − (8/35)dβ = (8/175) 6= 0, so zero can
only be a single root of the characteristic polynomial.

3. A pair of purely imaginary eigenvalues and a pair of complex eigenvalues with

negative real parts

Consider an autonomous system described by

ẋ = Jx+ f(x) x ∈ Rn f : Rn → Rn (3.1)

where we assumed the non-linear function f be analytical and f(0) = 0. Further, system (3.1)
is assumed to have a pair of purely imaginary eigenvalues ±iwc at the equilibrium 0. Without
loss of generality, it is assumed that wc = 1 (otherwise one can use transformation t

′ = wct to
change frequency wc = 1). The Jacobian matrix of system (3.1) at 0 is

J =







0 1 0
−1 0 0
0 0 A






A ∈ R(n−2)×(n−2) (3.2)

where it is assumed that all eigenvalues of A have negative real parts. Next, we introduce new
independent variables

Tk = ε
kt, k = 0, 1, 2, . . . (3.3)

So the derivatives with respect to t now become expansions in terms of the partial derivatives
with respect to Tk, given by

d

dt
=
dT0
dt

∂

∂T0
+
dT1
dt

∂

∂T1
+
dT2
dt

∂

∂T2
+ · · · = D0 + εD1 + ε2D2 + · · · (3.4)

where Dk = ∂/∂Tk is the differentiation operator.
Next, it is supposed that the solution to Eq. (3.1) is represented by a power expansion in

the neighborhood of X = 0

xi(t; ε) = εxi1(T0, T1, . . .) + ε
2xi2(T0, T1, . . .) + · · · i = 1, 2, . . . , n (3.5)
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Substituting Eq. (3.5) into Eq. (3.1) with the aid of Eq. (3.4), and balancing the like powers
of ε results in the ordered perturbation equations, we get

ε1 : D0x11 = x21 D0x21 = −x11 D0xp1 = −αpxp1
p = 3, 4, . . . ,m1 + 2

D0xq1 = −αpxq1 + wqx(q+1)1 q = m2 + 3,m2 + 5, . . . , n− 1
(3.6)

and

ε2 : D0x12 = x22 −D1x11 + f12(x11, x21, . . . , xn1)
D0x22 = −x12 −D1x21 + f22(x11, x21, . . . , xn1)

(3.7)

etc., where αp > 0αp > 0, wq > 0 and m1 + 2m2 + 2 = n.
According to Eq. (3.6), we obtain

D20x11 + x11 = 0 (3.8)

It can be written in a general form

x11 = r(T1, T2, . . .) cos[T0 + φ(T1, T2, . . .)] = r cos(T0 + φ) ≡ r cos θ (3.9)

where φ, r represent the phase of motion and amplitude. θ = wcT0 + φ = T0 + φ implies that

D0r = 0 D0φ = 0 (3.10)

The asymptotic ε1 order solutions of the second group are given by

xi1 = 0 i = 3, 4, . . . , n (3.11)

Next, the procedure described above can be applied again to solve the ε2 order perturbation
Eq. (3.7). We obtain

D20x12 + x12 = −D1D0x11 −D1x21 +D0f12 + f22 (3.12)

by substituting the solutions x11, x21 into Eq. (3.7) expressed in terms of trigonometric functions
cos[k(T0 + φ)], sin[k(T0 + φ)], k = 0, 1, 2. In order to eliminate possible secular terms in x12,
it is required that cos[k(T0 + φ)] = 0, sin[k(T0 + φ)] = 0. And explicit expressions for D1r,
D1φ can also be obtained. So we can know that x22 = D0x12 +D1x11 − f12(x11, x21, . . . , xn1).
This procedure can be carried out to any high order perturbation equations. Finally, the normal
forms which are given in polar co-ordinates can be written as

dr

dt
=
∂r

∂T0

∂T0
∂t
+
∂r

∂T1

∂T1
∂t
+
∂r

∂T2

∂T2
∂t
+ · · · = D0r + εD1r + ε2D2r + · · ·

dθ

dt
= wc +

∂φ

∂T0

∂T0
∂t
+
∂φ

∂T1

∂T1
∂t
+
∂φ

∂T2

∂T2
∂t
+ · · · = 1 +D0φ+ εD1φ+ ε2D2φ+ · · ·

(3.13)

Now, we consider an example. Equation (2.4) has a pair of purely imaginary characteristic
roots and a pair of complex characteristic roots with real part at the initial equilibrium point if
and only if the following conditions are satisfied

R3
R1

(R3
R1
−R2

)

+R4 = 0
R3
R1
> 0 R1 > 0 R4 > 0 (3.14)

Substituting β = 18/19, d = 1/35, k = 1/7 into Eq. (2.5), we have R1 = 12/35,
R2 = 1536/3325, R3 = 48/665, R4 = 176/3325.



Stability and bifurcation analysis for an airfoil model... 189

The eigenvalues of characteristic equation (2.4) in this case are

λ1,2 = ±
2
√
19

19
I λ3,4 = −

6

36
± 4
√
17

35
I (3.15)

Taking k as the disturbance parameter, substituting k = k0 + δ, and using the following
transformation











x
y
z
w











=













−198 −
1
8

√
19 4085

1144
285
1144

√
17

1
4 −

√
19
4 −5752 −

19
52

√
17

0 −
√
19
2 −1522 −

5
11

√
17

1 0 1 0























x1
x2
x3
x4











(3.16)

system (2.2) can be rewritten as follows

x1 = −
1615

4564
δx1 +

( 2

19

√
19− 85

4564

√
19δ
)

x2 +
347225

652652
δx3 +

24225

652652

√
17δx4 +Na1

x2 =
(

− 2
19

√
19 +

1425

4564

√
19δ
)

x1 −
1425

4564
δx2 +

306375

652652

√
19δx3 +

21375

652652

√
323δx4 +Na2

x3 = −
4579

4564
x1 −

241

4564

√
19δx2 +

(

− 6
35
+
984485

652652
δ
)

x3

+
( 4

35

√
17 +

68685

652652

√
17δ
)

x4 +Na3

x4 =
36651

77588

√
17δx1 +

1929

77588

√
323δx2 +

(

− 4
15

√
17− 7879965

11095084

√
17δ2
)

x3

+
(

− 6
35
+
549765

652652
δ2
)

x4 +Na4

(3.17)

where the nonlinear terms Naj (j = 1, 2, 3, 4) are ommited.
At the critical value δc = 0, the standard form of the Jacobian matrix for the initial equilib-

rium solution of the equation is

J =











0 2
19

√
19 0 0

− 219
√
19 0 0 0

0 0 − 635
4
35

√
17

0 0 − 435
√
17 − 635











. (3.18)

Using the time scale transformation τ ′ = τ/wc = τ/(2
√
19/19), the method of multiple scales

and computer algebra (Yu, 1998), the canonical form of Eq. (3.17) in the polar coordinates can
be obtained as follows

dr

dτ ′
= aδr + br3

dθ

dτ ′
= 1 + cr2 + dδ (3.19)

where a = 0.608127, b = −0.429761, c = 0.016749, d = 0.026493, ab < 0. Taking dr/dτ ′ = 0, the
initial solution r1 = 0 and Hopf bifurcation solution r

2
2 = 1.415035δ are obtained. The stability

of the equilibrium solution depends on

d

dr

( dr

dτ ′

)

= aδ + 3r2b (3.20)

Substituting the initial solution r1 = 0 into Eq. (3.20), it can be obtained that d/dr(dr/dτ
′) =

0.608127δ, so the initial solution is stable when δ < 0 and unstable when δ > 0. In the same way,
substituting the Hopf bifurcation solution into Eq. (3.20), we get d/dr(dr/dτ ′) = −1.216258δ,
so the initial solution is stable when δ > 0 and unstable when δ < 0.
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Different values of the parameters can be taken to verify the results of previous analysis.
Numerical simulation can be performed on system (2.2). When δ = −0.1, (x1, x2, x3, x4) =
(0.02, 0.02, 0,−0.1), the numerical solution converges to the origin as shown in Fig. 2. At
this time, the initial equilibrium solution is stable. If we select δ = 0.1, (x1, x2, x3, x4) =
(−0.1, 0.05, 0.03,−0.03), a limit cycle is obtained from the starting point as shown in Fig. 3.
Obviously, the numerical results are consistent with the analytical results.

Fig. 2. The phase diagram projection that converges to the initial equilibrium solution and the time
history diagram of x1(t)

Fig. 3. The phase diagram projection that converges to the Hopf bifurcation solution and the time
history diagram of x1(t)

4. The case of a single zero and a pair of purely imaginary eigenvalues

Consider system (3.1), but where the Jacobian J is

J =











0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 A











A ∈ R(n−3)×(n−3) (4.1)

where it is assumed that all eigenvalues of A have negative real parts.
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The general form of solution to Eq. (3.1) can be written as

x12 = x
h
12 + x

p
12 (4.2)

where xh12 is the solution to equation D
2
0x12+x12 = 0, whereas x

p
12 represent a particular solution

to Eq. (3.12). And the solution of xh12 can be written as

xh12 = r[A211z cos(T0) +B211z sin(T0)] (4.3)

In addition,we have

xh32 = C220r
2 + C202z

2 (4.4)

where four arbitrary coefficients A211, B211, C220, C202 can be used in the third-order pertur-
bation equations. Thus, it is easy to find general formulas for the homogeneous solution for an
even number n

xh1n = (Ann−11r
n−1z +Ann−33r

n−2z3 + · · ·+An1n−1rzn−1) cos(T0) + (Bnn−11rn−1z
+Bnn−33r

n−2z3 +Bn1n−1rz
n−1) sin(T0)

xh3n = Cnn0r
n + Cnn−22r

n−2z2 + · · · +Cn0nzn
(4.5)

For an even n, we get

ṙ = r(b101y + b120r
2 + b140r

4)

θ̇ = 1 + b201y + b220r
2 +

m3
∑

i=2

b20 2iy
2i

ẏ = b302y
2 + b303y

3 +
m3
∑

i=1

b3 2i 0y
2i +

m1
∑

i=1

b3 2i 1r
2iy

(4.6)

therefore, from the pattern of SNF described by Eq. (4.6), we may find that the procedure is sim-
ilar to that for the Hopf bifurcation while solving the coefficients from the ordered perturbation
equations.

Now, we consider an example. Equation (2.4) has a single zero characteristic root and a
pair of purely imaginary characteristic roots at the initial equilibrium point if and only if the
following conditions are satisfied

R1 > 0 R2 > 0 R3 > 0 R4 = 0 R1R2 −R3 = 0 (4.7)

Substituting β = 31/15, d = 1/25, k = 31/375 into Eq. (2.5), we have R1 = 12/35,
R2 = 26/525, R3 = 8/175, R4 = 0.

The eigenvalues of characteristic Eq. (2.4) in this case are: λ1 = 0, λ2 = −12/35,
λ3,4 = ±(

√
30/15)I, where I =

√
−1.

Taking β, k as the disturbance parameter, letting β = 31/15+δ1, k = 31/375+δ2, and using
the following transformation











x
y
z
w











=











7
2 −3031 −

15
26

5
26

√
30

−56 0 − 513 −
1
26

√
30

−3512 1 0 −12
√
30

1 0 1 0





















x1
x2
x3
x4











(4.8)
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system (2.2) can be transformed into the following new system

x1 =
(

−12
35
− 874
2305
δ1 +
3470

461
δ2
)

x1 +
( 10488

100037
δ1 −
208200

100037
δ2
)

x2

+
( 2622

41951
δ1 −
52050

41951
δ2
)

x3 +
(874
√
30

41951
δ1 +
17350

√
30

41951
δ2
)

x4 +Nb1

x2 =
(

−217
150
δ1 +
217

6
δ2
)

x1 +
(2

5
δ1 − 10δ2

)

x2 +
( 31

130
δ1 −
155

26
δ2
)

x3

+
(31
√
30

390
δ1 +
155
√
30

78
δ2
)

x4 +Nb2

x3 =
(

− 1162
11525

δ1 −
2548

461
δ2
)

x1 +
( 1992

71455
δ1 −
21840

14291
δ2
)

x2 +
( 498

29965
δ1 −
420

461
δ2
)

x3

+
(

√
30

15
+
166
√
30

29965
δ1 −
140
√
30

461

)

x4 +Nb3

x4 =
(

− 1309
57625

δ1 +
2184
√
30

2305
δ2
)

x1 +
(2244

√
30

357275
δ1 −
3744
√
30

14291
δ2
)

x2

+
(

−
√
30

15
+
561
√
30

149825
δ1 −

72

461
δ2
)

x3 +
( 1122

29965
δ1 +
720

461
δ2
)

x4 +Nb4

(4.9)

where the nonlinear terms Nbi (i = 1, 2, 3, 4) are ommited.
At the critical value δ1c = δ2c = 0, the standard form of the Jacobian matrix for the initial

equilibrium solution of the equation is

J =











−1235 0 0 0
0 0 0 0

0 0 0 1
15

√
30

0 0 − 115
√
30 0











(4.10)

The local dynamic behavior of the system in the domain of the degenerate equilibrium point
can be described by x1, x2, x3. According to the reference (Yu and Huseyin, 1988), using the
approximate identity nonlinear transformation zi = yi + gi(yi) and polar coordinate transfor-
mation x1 = y, x2 = r cos θ, x3 = sin θ, x4 = x4, the canonical type of system (4.9) in the polar
coordinates can be obtained as

y =
(

−74
√
30

235
δ1 +
40
√
30

461
δ2
)

y − 360
3227

√
30y3 +

(75
√
30

461
+
124

25

)

yr2

r = −17
√
30

50
δ1r +

2

41951
(31
√
30− 262)r3 +

(253

15
− 4
√
30

5

)

y2r

θ =

√
30

15
+
14
√
30

9
r2 +
360
√
30− 41
3277

y2

(4.11)

The bifurcation solution of the system is as follows:

➢ The initial equilibrium solution (E.S.)

y = r = 0 (4.12)

Its Jacobian matrix is

J =

[

− 74235δ1 +
40
461δ2 0

0 −17750
√
30δ1

]

(4.13)

The stability condition is

δ1 > 0 − 74
235
δ1 +

40

461
δ2 < 0 (4.14)
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Therefore, the stable boundary of E.S. is obtained.
The critical curves are

L1 : δ1 = 0
(

− 74
235
δ1 +

40

461
δ2 < 0

)

L2 : −
74

235
δ1 +

40

461
δ2 = 0 (δ1 > 0)

(4.15)

➢ The static bifurcation solution (S.B.) is

y2 =
3277
√
30

10800

(

− 74
235
δ1 +

40

461
δ2
)

r = 0 (4.16)

The initial equilibrium solution is unstable along L2. A static bifurcation solution occurs.
Estimating the Jacobian matrix at the static bifurcation solution yields

J =





−2
(

74
235δ1 +

40
461δ2

)

0

0 −17
√
30
50 δ1 +

253−12
√
30

15 y2



 (4.17)

The stability condition for obtaining the static bifurcation solution is

74

235
δ1 +

40

461
δ2 > 0 − 17

√
30

50
δ1 +
253 − 12

√
30

15
y2 < 0 (4.18)

Therefore, a static bifurcation boundary of S.B. is obtained.
The critial curves are

L2 : −
74

235
δ1 +

40

461
δ2 = 0 (δ1 > 0)

L3 : −
17
√
30

50
δ1 +
253− 12

√
30

15
y2 = 0

(

− 74
235
δ1 +

40

461
δ2 > 0

)

(4.19)

➢ The initial Hopf bifurcation solution (H.B.(I)) is

y = 0 r2 =
713167

√
30δ1

100(31
√
30 − 2622)

(4.20)

Obviously, when δ1 < 0, it has initial Hopf bifurcation solution.
The Jacobian matrix evaluated at initial Hopf bifurcation solution is

J =





− 74235δ1 +
40
461δ2 +

(

75
461

√
30 + 12425

)

r2 0

0 −17
√
30
50 δ1 +

6(31
√
30−2622)
41951 r2



 (4.21)

It can be obtained that the stability condition of the Hopf bifurcation solution

− 74
235
δ1 +

40

461
δ2 +

( 75

461

√
30 +

124

25

)

r2 > 0 δ1 < 0 (4.22)

Therefore, a Hopf bifurcation solution H.B. is obtained.
The critical curve is

L4 : −
74

235
δ1 +

40

461
δ2 +

( 75

461

√
30 +

124

25

)

r2 = 0 (δ1 < 0) (4.23)

So when δ1 > 0, Hopf bifurcation solution is unstable.
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➢ The Hopf bifurcation solution of the second kind (H.B.(II)) is

y2 =

√
30[(742

√
30 + 24361)δ1 − (251

√
30 + 87642)δ2 ]

273(461
√
30 + 217642)

r2 =

√
30[(860 + 271

√
30)δ1 − (741 + 204

√
30)δ2]

273(503
√
30 + 419624)

(4.24)

Its Jacobian matrix is

J =

[

a11 a12
a21 a22

]

(4.25)

where

a11 = −
74
√
30

235
δ1 +
40
√
30

461
δ2 −
1008

3227

√
30y2 +

(75
√
30

461
+
124

25

)

r2

a12 = 2
(75
√
30

461
+
124

25

)

yr

a21 = 2
(253

15
− 4
√
30

5

)

yr

a22 = −
17
√
30

50
δ1 +

6

41951
(31
√
30− 262)r +

(253

15
− 4
√
30

5

)

y2

The stability condition can be obtained from the trace and determinant of the above matrix
as follows

Tr = a11 + a22 < 0 det = a11a22 − a12a21 > 0 (4.26)

So when

(742
√
30 + 24361)δ1 − (251

√
30 + 87642)δ2 > 0√

30[(860 + 271
√
30)δ1 + (741 + 204

√
30)δ2] > 0

(4.27)

the second type of the Hopf bifurcation solution exists.
The critical curve is

L5 :
(35420

24689
− 6804
102678

√
30
)

δ1 +
( 3241

102678

√
30− 245

42631

)

δ2 = 0

(

−17
√
30

50
δ1 +
253− 12

√
30

15
y2 < 0

)

(4.28)

From the above analysis, it can be obtained that initial equilibrium solution (4.12) bifurcates
along the critical curve L2 of static bifurcation solution (4.16). When the parameters pass
through the critical curve L3, static bifurcation solution (4.16) loses stability and becomes a
Hopf bifurcation solution of the second kind along the L3.
The critical curve is shown in Fig. 4.
The values of parameters (δ1, δ2) can be selected from different areas of Fig. 1 to verify

the results of the previous analysis. Firstly, the parameters (δ1, δ2) = (0.1, 0.2) are selected
in the stable region of the initial equilibrium solution, then the trajectory starting from the
initial value (x1, x2, x3, x4) = (−0.02, 0.0175,−0.1, 0.1) will eventually converge to the origin.
The phase diagram projection that converges to the initial equilibrium solution and the time
history diagram of x1(t) are shown in Fig. 5.
Secondly, the parameters (δ1, δ2) = (0.03, 0.01) are selected in the region where the static

equilibrium solution is stable, then the trajectory starting from the initial value (x1, x2, x3, x4) =
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Fig. 4. The transition curve of tuning parameters in the case of a single zero and a pair of purely
imaginary eigenvalues

Fig. 5. The phase diagram projection that converges to the initial equilibrium solution and the time
history diagram of x1(t)

(0.02, 0.02, 0, 0.03) will converge to the static equilibrium solution. The phase diagram projection
that converges to the static bifurcation solution and the time history diagram of x1(t) are shown
in Fig. 6.

Finally, the parameters (δ1, δ2) = (−0.01, 0.041) are selected in the region where the sec-
ond type of the Hopf bifurcation solution is stable. The trajectory when the original value is
(x1, x2, x3, x4) = (0.1, 0.1,−0.04, 0.04) finally converges to a stable limit cycle. The phase dia-
gram projection that converges to the Hopf bifurcation solution and the time history diagram
of x1(t) are shown in Fig. 7.

5. Conclusions

In this paper, two possible types of bifurcation at the equilibrium point of the system are
discussed in detail. When the stable conditions of stationary solutions for the initial equilibrium
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Fig. 6. The phase diagram projection that converges to the static bifurcation solution and the time
history diagram of x1(t)

Fig. 7. The phase diagram projection that converges to the Hopf bifurcation solution and the time
history diagram of x1(t)

solution are not satisfied for the airfoil model with a high-order spring, bifurcations including
Hopf bifurcation, 2D tori may occur. Stable regions and critical bifurcation curves for some
equilibrium solutions are presented. Flutter in an aeroelastic structure such as an aircraft wing
may cause structural unstability. The results provide some inspiration and guidance for the
analysis and dynamics design of this class of systems. For example, while designing the structure
of an airfoil, we should reasonably choose parameters to avoid the occurrence of persistent
oscillations, etc.
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