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For a deeply-buried non-circular tunnel, abnormal stress and displacement arise in the region
far away from the excavation boundary when the Cauchy integral method is applied. It is
found that the calculation error is induced by a polynomial in the analytical function. An
improved method is proposed by expanding the polynomial as a power series. The improved
method is suitable for calculating the stress and displacement in the whole surrounding rock.
The results obtained by the improved method are in good agreement with the numerical
results of ANSYS, which proves the effectiveness of the proposed method.
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1. Introduction

In the early studies on stresses and displacements around a deeply-buried tunnel with simple
shape (circular or oval), some scholars simplified it as the problem of an infinite elastic plane
with a hole, and the classical solution to the problem could be widely applied in the design
of tunnels (Greenspan, 1944; Inglis, 1913; Terzaghi and Richart, 1952). For a complex-shaped
hole, the complex variable method presented by Muskhelishvili (1963) is especially suitable for
solving the problem. By using conformal mapping, the area outside the hole in the physical
plane (z-plane) can be mapped to the area outside or inside the unit circle in the image plane
(ζ-plane), and the problem is reduced to the problem of solving complex potential functions ϕ(ζ)
and ψ(ζ). The complex potential functions can be obtained by the Cauchy integral of stress or
displacement boundary conditions, then substitution of them into the expressions of stress and
displacement yields the stress components and displacement components.

Since the Cauchy integral method can efficiently solve boundary value problems of elasticity,
many scholars adopted the method to solve stresses and displacements around the tunnel. For an
infinite plate subjected to uniform tensile stress containing a rectangular hole with fillet, Motok
(1997) obtained complex potential functions and analyzed the influence of curvature radius of
the fillet on the stress concentration factor. For an infinite plate with a rectangular hole subjected
to uniaxial stress at infinity, Lei et al. (2001) introduced a new correction factor to improve the
accuracy of the mapping function and obtained the distribution of stress and displacement at
the edge of the hole. Exadaktylos and Stavropoulou (2002) calculated stresses and displacements
at the edge of a deeply-buried semi-circular tunnel under arbitrary in-situ stress. For an infinite
plate subjected to arbitrary biaxial loadings at infinity containing a polygonal hole, Sharma
(2012) obtained complex potential functions and stress at the edge of the hole, and discussed
the effect of the hole geometry and loading pattern on the stress concentration factor. Shi and
Gao (2014) determined parameters of the mapping function of the horseshoe-shaped tunnel
through the composite optimization technology, and obtained the stress and displacement at
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the edge of the hole under arbitrary in-situ stress. For a square tunnel under arbitrary in-situ
stress, Zhao and Yang (2015) obtained the stress at the edge of the hole under different lateral
pressure coefficients. For an infinite plate with a hypotrochoidal hole subjected to uniaxial (or
biaxial) stress at infinity, Sharma (2016) calculated the stress and stress intensity factor at the
edge of the hole, and analyzed the effect of the hole geometry and loading conditions on the
stress.

As mentioned before, for differently shaped tunnels (holes) without support subjected to dif-
ferent loads, the complex potential functions can be solved through the Cauchy integral method,
and the accurate stress and displacement at the edge of the hole can be calculated using the
complex potential functions. However, the stress and displacement outside the hole are not in-
volved. It can be seen from the research of this paper: when the complex potential functions
obtained by the traditional Cauchy integral method are applied to the calculation of stress and
displacement around the complex-shaped hole, solutions with enough accuracy at the edge of
the hole can be obtained. However, as the distance from the calculated position to the hole
edge becomes larger, the accuracy of the calculation of stresses and displacements becomes in-
creasingly poor. When the distance exceeds a certain value, there are violent fluctuations of the
stress curve and displacement curve, that is, the stress and displacement at the area outside
the hole obtained by the traditional Cauchy integral method are abnormal (as shown in Fig. 6).
If these calculation results are applied to an engineering design, it is bound to bring wrong
conclusions. For example, the displacement outside the hole is often used in displacement back
analysis. Compared with the general numerical method, the Cauchy integral method is used to
calculate the displacement of the surrounding rock, which can avoid solving the large sparse
matrix and greatly improve the calculation efficiency of displacement back analysis (Jiao et al.,
2009). However, if the displacement outside the hole calculated by the Cauchy integral method
is abnormal, the in-situ stress and mechanical parameters of the surrounding rock calculated by
the displacement back analysis will be inconsistent with the actual situation. Therefore, safety
of the tunnel engineering construction cannot be correctly judged (Fakhimi et al., 2004; Kodama
et al., 2013).

In this paper, the causes of abnormal calculation at the area outside the hole are analyzed,
and the traditional Cauchy integral method is improved. A correct and reliable calculation
method is given, which can solve the problem of abnormal calculation.

2. The process and analysis of the traditional Cauchy integral method

2.1. Basic assumptions

In this paper, a deeply-buried tunnel with a symmetry axis (x-axis) is studied, as shown in
Fig. 1. Under the in-situ stress σ∞x = P and σ

∞

y = Q, the surrounding rock is assumed to be in
an elastic state and the strain along the axis of the tunnel is equal to 0, then the mechanical
analysis of surrounding rock is simplified to the plane strain problem.

2.2. Mapping function

To solve the problem given in Fig. 1, the area outside the tunnel in the z-plane is mapped
to the outer area of the unit circle in the ζ-plane by a conformal mapping function (Fig. 2), and
the solving equations expressed by the variable z are transformed into the equations expressed
by the variable ζ. The mapping function is (Muskhelishvili, 1963)

z = ω(ζ) = R

(

ζ +
n
∑

k=0

Ckζ
−k

)

(2.1)
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Fig. 1. Deeply-buried tunnel under the in-situ stress

Fig. 2. The area outside the tunnel in the z-plane is mapped to the outer area of the unit circle in
the ζ-plane

where R is a positive real number reflecting the size of the tunnel. Ck are constants reflecting the
cross-section shape of the tunnel, when the x-axis is the symmetry axis of the tunnel, Ck are real
numbers. ζ = ρeiθ, ρ and θ are the polar diameter and polar angle of the ζ-plane, respectively.
n is the number of terms of the coefficients in the mapping function. The size of n depends on
the complexity of the tunnel shape. The more complex the tunnel shape, the greater the value
of n.

The graphs in the z-plane can be mapped to circles with ρ = 1, 2, 4, 6, 8 in the ζ-plane, as
shown in Fig. 2. ρ = 1 corresponds to the edge of the tunnel, and ρ > 1 corresponds to a family
of coordinate lines in the z-plane. These coordinate lines are not circular, but with an increase
of ρ, the corresponding coordinate lines tend to be circles, which can be seen clearly from Eq.
(2.1) and Fig. 2.

2.3. Expressions of the stress and displacement expressed by analytical functions

According to the complex variable method presented by Muskhelishvili (1963), combinations
of stress and displacement are expressed by the analytical functions
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σρ + σθ = 4Re
[ϕ′(ζ)

ω′(ζ)

]

σρ − σθ + 2iτρθ =
2ζ2

ρ2
1

ω′(ζ)

{

ω(ζ)
ϕ′′(ζ)ω′(ζ)− ϕ′(ζ)ω′′(ζ)

[ω′(ζ)]2
+ ψ′(ζ)

}

2G(u + iv) = κϕ0(ζ)−
ω(ζ)

ω′(ζ)
ϕ′0(ζ)− ψ0(ζ)

(2.2)

where σρ, σθ and τρθ are the normal, tangential and shear stress in the orthogonal curvilin-
ear coordinate (in z-plane), respectively. u and v are displacements in the x and y directions
(in z-plane), respectively, i.e., vertical and horizontal displacement, they represent the displace-
ments resulting from the excavation of the tunnel. G is the shear modulus of the material,
G = E/(2 + 2µ), where E and µ are the elastic modulus and Poisson’s ratio of the material, re-
spectively. For the plane strain problem, κ = 3−4µ. For an unsupported tunnel, the expressions
of the analytical functions ϕ(ζ) and ψ(ζ) are (Muskhelishvili, 1963)

ϕ(ζ) = Bω(ζ) + ϕ0(ζ) ψ(ζ) = (B′ + iC ′)ω(ζ) + ψ0(ζ) (2.3)

where B, B′, C ′ are constants, B = (P +Q)/4, B′ = (Q − P )/2, C ′ = 0; ϕ0(ζ) and ψ0(ζ) are
single-valued analytical functions in the exterior of the unit circle, and their general expressions
are written as the following series (Muskhelishvili, 1963)

ϕ0(ζ) =
∞
∑

j=1

ajζ
−j ψ0(ζ) =

∞
∑

j=1

bjζ
−j (2.4)

where aj, bj are complex constants to be solved.

It can be seen from the following derivation process: ϕ0(ζ) obtained by the Cauchy integral
method is a finite series, and the maximum value of j is equal to n (n is the number of terms of
the coefficients in the mapping function, i.e., Eq. (2.1)), but ψ0(ζ) is a rational fraction about ζ
(Muskhelishvili, 1963). If ψ0(ζ) is expanded as a power series, it must be an infinite series.

2.4. Analytical functions and solutions of stress and displacement components

ϕ(ζ) and ψ(ζ) can be obtained by the stress boundary condition as

ϕ(σ) +
ω(σ)

ω′(σ)
ϕ′(σ) + ψ(σ) = f(σ) (2.5)

where σ is the point at the unit circle in the ζ-plane, σ = eiθ; when there is no external load at
the edge of the tunnel, f(σ) = 0.

At the edge of the tunnel, ζ = σ, substituting Eqs. (2.3), into Eq. (2.5) yields

ϕ0(σ) +
ω(σ)

ω′(σ)
ϕ′0(σ) + ψ0(σ) = −2Bω(σ)− (B

′ − iC ′)ω(σ) = f0(σ) (2.6)

Substituting B = (P +Q)/4, B′ = (Q− P )/2, C ′ = 0 into Eq. (2.6) yields

f0(σ) = −
P +Q

2
ω(σ) +

P −Q

2
ω(σ) = −

P

2
(1 + λ)ω(σ) +

P

2
(1− λ)ω(σ) (2.7)

where λ is the lateral pressure coefficient, λ = Q/P .
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The equations for solving ϕ0(ζ) and ψ0(ζ) are obtained by applying Eq. (2.6) and its conju-
gate to the Cauchy integral operator, respectively

ϕ0(ζ) =
1

2πi

∫

r

ω(σ)

ω′(σ)

ϕ′0(σ)

σ − ζ
dσ −

1

2πi

∫

r

f0(σ)

σ − ζ
dσ

ψ0(ζ) =
1

2πi

∫

r

ω(σ)

ω′(σ)

ϕ′0(σ)

σ − ζ
dσ −

1

2πi

∫

r

f0(σ)

σ − ζ
dσ

(2.8)

where ω(ζ)/ω′(1/ζ) can be expressed by the Laurent series as (Muskhelishvili, 1963)

ω(ζ)

ω′(1/ζ)
=

Cn + Cn−1ζ + · · ·+ C0ζ
n + ζn+1

ζn(1− C1ζ2 − 2C2ζ3 − · · · − nCnζn+1)

= Lnζ
−n + Ln−1ζ

−n+1 + · · ·+ L1ζ
−1 +

∞
∑

k=0

L′kζ
k

(2.9)

Lk (k = 1, . . . , n) and L
′

k (k = 1, . . . ,∞) are obtained by comparing the coefficients of the same
powers of ζ in both sides of Eq. (2.9). The traditional Cauchy integral solution only needs Lk,
but not L′k. For different n, the expression of Lk is

n = 1 L1 = C1

n = 2 L1 = C1 L2 = C2

n ­ 3























Ln = Cn

Ln−1 = Cn−1

Ln−j+1 =
j−2
∑

k=1
(j − 1− k)Cj−1−kLn−k+1 + Cn−j+1 j = 3, . . . , n

(2.10)

When n ¬ 2, ϕ0(ζ) and ψ0(ζ) are easily obtained

ϕ0(ζ) =
PR

2
(1− λ)ζ−1 −

PR

2
(1 + λ)(C1ζ

−1 + · · · +Cnζ
−n)

ψ0(ζ) = −ω
(1

ζ

)ϕ′0(ζ)

ω′(ζ)
−
PR

2
(1 + λ)ζ−1 +

PR

2
(1− λ)(C1ζ

−1 + · · · +Cnζ
−n)

(2.11)

When n ­ 3, it can be obtained from Eqs. (2.4)1 and (2.9) that

ω(σ)

ω′(σ)
ϕ′0(σ) = S1σ

−1 + S2σ
−2 + · · ·+ Sn−2σ

−n+2 +
∞
∑

k=0

S′kσ
k (2.12)

When ζ = σ, substituting Eqs. (2.4)1 and (2,9) into Eq. (2.12), then by comparing the coefficients
of the same powers of σ, we have

Sk = −
n−k−1
∑

j=1

jajLk+1+j 1 ¬ k ¬ n− 2 (2.13)

It is obtained by taking the conjugation of Eq. (2.12) that

ω(σ)

ω′(σ)
ϕ′0(σ) = S1σ + S2σ

2 + · · · + Sn−2σ
n−2 +

∞
∑

k=0

S′kσ
−k (2.14)
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The following results are obtained by using the Cauchy integral formula that

1

2πi

∫

r

ω(σ)

ω′(σ)

ϕ′0(σ)

σ − ζ
dσ = −S1ζ

−1 − S2ζ
−2 − · · · − Sn−2ζ

−n+2

1

2πi

∫

r

ω(σ)

ω′(σ)

ϕ′0(σ)

σ − ζ
dσ = −

∞
∑

k=0

S′kζ
−k = −ω

(1

ζ

)ϕ′0(ζ)

ω′(ζ)
+
n−2
∑

k=1

Skζ
k

(2.15)

Substituting Eqs. (2.4)1, (2.13) and (2.15)1 into Eq. (2.8)1, then by comparing the coefficients
of the same powers of ζ, we have

aj = 0 j > n

− an = 2ΓRCn

− an−1 = 2ΓRCn−1

− an−2 + Lna1 = 2ΓRCn−2
...

− a2 + (n− 3)Lnan−3 + (n− 4)Ln−1an−4 + · · · + 2L5a2 + L4a1 = 2ΓRC2

− a1 + (n− 2)Lnan−2 + (n− 3)Ln−1an−3 + · · · + 2L4a2 + L3a1 = 2ΓRC1 + Γ
′R

(2.16)

where Γ = P (1+λ)/4, Γ ′ = P (λ− 1)/2. For the problem in this paper, aj are the real numbers
(Lu and Zhang, 2007). It can be proved by Eq. (2.16). The values of aj (j = 1, . . . , n) are obtained
by solving this system of linear equations, i.e., Eq. (2.16). The obtained ϕ0(ζ) is a finite series
∑n
j=1 ajζ

−j, Sk (k = 1, . . . , n − 2) are obtained by substituting the obtained aj (j = 1, . . . , n)
into Eq. (2.13).

Substituting Eq. (2.15)2 into Eq. (2.8)2 yields the expression of ψ0(ζ)

ψ0(ζ) = −ω
(1

ζ

)ϕ′0(ζ)

ω′(ζ)
+
n−2
∑

k=1

Skζ
k −

PR

2
(1 + λ)ζ−1 +

PR

2
(1− λ)

n
∑

j=1

Cjζ
−j (2.17)

The first term on the right hand side of Eq. (2.17) is a rational fraction of ζ. If it is expanded
as a power series which must be infinite.

ϕ(ζ) and ψ(ζ) can be obtained by substituting ϕ0(ζ) and ψ0(ζ) into Eq. (2.3)1, then sub-
stituting ϕ(ζ) and ψ(ζ) into Eqs. (2.2)1,2 yields the stress of any point in the surrounding
rock. Substituting ϕ0(ζ) and ψ0(ζ) into Eq. (2.2)3 yields the displacement of any point in the
surrounding rock caused by tunnel excavation.

2.5. Comparison of the analytical and numerical solutions

For complex-shaped tunnels, the vertical-wall semicircle tunnel (Fig. 1) is taken as an ex-
ample to illustrate the limitations of the traditional Cauchy integral method. The conformal
mapping function in Fig. 1 is as follows

z = 1.6051(ζ − 0.1040 + 0.0850ζ−1 + 0.0766ζ−2 − 0.0970ζ−3 + 0.0385ζ−4

+ 0.0046ζ−5 − 0.0091ζ−6 + 0.0068ζ−7 − 0.0053ζ−8 + 0.0011ζ−9 + 0.0020ζ−10

− 0.0036ζ−11 + 0.0013ζ−12 − 0.0001ζ−13 + 0.0001ζ−14)

(2.18)

The in-situ stress and parameters of the surrounding rock are: P = 10.0MPa, Q = 5.0MPa
and E = 20GPa. The comparison of analytical and numerical solutions of stress and displace-
ment at ρ = 1, ρ = 6 and ρ = 8 are given in Figs. 4-6, respectively. Due to symmetry of the
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structure and load, only the results on the left side of the axis of symmetry in Fig. 1 are com-
pared, θ = 0◦ corresponds to the point on the x-axis above the arch and θ = 180◦ corresponds
to the point on the x-axis below the hole. The normal stress and tangential stress are positive in
compression and negative in tension. The direction of displacement is opposite to the positive
and negative directions specified by the coordinate axes.

In this paper, ANSYS is adopted to perform numerical analysis of the tunnel. The calculation
model is shown in Fig. 3: the radius of the semi-circular part of the tunnel is about 1.30m, and
the vertical length of the vertical-wall part of the tunnel is about 1.90m. To simulate the infinite
domain, the outer boundary of the model is a square with size 1000m×1000m. The unit of
PLANE42 is used to divide the model. When ANSYS is used to calculate the stress, a uniform
load of 10.0MPa is applied to the upper and lower boundaries of the model, and a uniform load
of 5.0MPa is applied to the left and right boundaries of the model. Due to symmetry of the
load and structure, the displacement along the y-direction on the x-axis is equal to 0. Therefore,
the constraints of y-direction are applied to the lines on the x-axis, and the constraints of
x-direction are applied to the key points in the lower-left corner and the lower-right corner of
the outer boundary of the model (Fig. 3a). When ANSYS is used to calculate the displacement,
to simulate the tunnel excavation process, the reverse release load is applied on the unit node of
the excavation boundary (Duncan and Dunlop, 1968). It is considered that the displacement on
the outer boundary of the model caused by excavation is 0. Hence, the constraints of y-direction
are imposed on the upper and lower boundaries of the model, and the constraints of x-direction
are imposed on the left and right boundaries of the model (Fig. 3b).

Fig. 3. Constraints applied in: (a) stress calculation, (b) displacement calculation

Since the normal stress and shear stress at the edges of the tunnel are both equal to 0, only
the comparison of the tangential stress is given in Fig. 4. It can be seen from Figs. 4-6 that:

The analytical solutions of the tangential stress and displacement at the edges of the tunnel
are basically the same as the numerical solutions. The analytical solutions of the stress and dis-
placement at ρ = 6 begin to fluctuate, which are slightly different from the numerical solutions.
However, the analytical solutions of stress and displacement at ρ = 8 fluctuated violently, which
is greatly different from the numerical solution and not in line with the actual situation. It can
be seen that the traditional method can solve the accurate stress and displacement at the edge
of the tunnel, but the farther from the edge of the tunnel, the worse the calculation accuracy,
until the abnormal calculation appears. This is the result of the calculation error. In this paper,
all analytical solutions are calculated by Fortran.
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Fig. 4. The contrast between analytical solution obtained by the traditional Cauchy integral method
and numerical solution when ρ = 1: (a) comparison of tangential stress, (b) comparison of displacement

Fig. 5. The contrast between analytical solution obtained by the traditional Cauchy integral method
and numerical solution when ρ = 6: (a) comparison of stress, (b) comparison of displacement

Fig. 6. The contrast between analytical solution obtained by the traditional Cauchy integral method
and numerical solution when ρ = 8: (a) comparison of stress, (b) comparison of displacement
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3. Improved Cauchy integral method

3.1. Causes of the abnormal calculation obtained by the traditional Cauchy integral

method

Theoretically, since ψ0(ζ) is an analytical function in the exterior region of the unit circle,
ψ0(ζ) can only be a series of negative power terms about ζ (Eqs. (2.4)2, (2.15)2). But it can be
seen from Eq. (2.17) that

∑n−2
k=1 Skζ

k appears in the obtained ψ0(ζ). When n ­ 3, it is a positive
power series of ζ and an analytical function in the interior of the unit circle, not an analytical
function in the exterior of the unit circle. This can be clearly explained from the derivation
process in Section 2.4.
It can be seen from the analysis of −ω(1/ζ)ϕ′0(ζ)/ω

′(ζ) in ψ0(ζ) that a part of the series
of positive power terms about ζ can be separated from it. Theoretically, it should just cancel
out with

∑n−2
k=1 Skζ

k, but in fact, due to the rounding error (Sauer, 2012), the positive power
terms of −ω(1/ζ)ϕ′0(ζ)/ω

′(ζ) will not exactly cancel out with
∑n−2
k=1 Skζ

k when the computer
is processing. The existence of the positive power term of ζ in ψ0(ζ) is the main cause of the
calculation error. The positive power of ζ is high when the number of terms of the mapping
function coefficient is large (i.e., n is large), and the value of |ζ|(ρ) is large at the place far away
from the tunnel edge and, therefore, there are some positive high powers of large values in the
actual calculation, which leads to a large calculation error and abnormal calculation.

3.2. The effects of the number of mapping function items on the calculation results

According to the analysis in Section 3.1, there is no positive power term of ζ in ψ0(ζ) when
n ¬ 2, thus the calculations of stress and displacement are not abnormal. Then, n (in Eq. (2.18))
is taken as 3, 6 and 12, respectively. The corresponding tunnel shape and the corresponding
shape (dotted line) when ρ = 8 are shown in Fig. 7. The in-situ stress and parameters of the
surrounding rock are the same as in Section 2.5.

Fig. 7. The corresponding shape when ρ = 8 and the corresponding tunnel shape for different n:
(a) n = 3, (b) n = 6, (c) n = 12

Figure 8 shows the comparison of analytical and numerical solutions of tangential stress
corresponding to different n when ρ = 8. It can be seen from Fig. 8 that:
When ρ = 8, the analytical solutions of the tangential stress corresponding to n ¬ 6 are

basically the same as the numerical solutions, but the analytical solutions corresponding to
n = 12 fluctuate greatly and differ greatly from the numerical solution, which is not in line with
the actual situation. It is concluded that at a position far away from the tunnel edge, when n
increases to a certain value, the analytical solutions begin to fluctuate. The fluctuations of the
analytical solutions are larger and the calculation accuracy became worse with an increase of n.
This is consistent with analysis of the calculation error in Section 3.1.
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Fig. 8. Tangential stress contrast between the analytical solution obtained by the traditional Cauchy
integral method and the numerical solution for different n when ρ = 8: (a) n = 3, (b) n = 6, (c) n = 12

3.3. Improvement of the Cauchy integral method

ϕ0(ζ) obtained by the traditional Cauchy integral method is still used, but to ensure the
reliability of calculation results, it is necessary to deal with ψ0(ζ).

To make ψ0(ζ) exclude the positive power term of ζ, in this paper, Eq. (2.17) obtained by the
traditional Cauchy integral solution method is not used to the calculate stress and displacement.
Instead, Eq. (2.12) is used to solve S′k in Eq. (2.15)2, then ψ0(ζ) does exclude the positive power
term of ζ. To determine S′k, the expression of L

′

k in (2.9) must also be solved. It is obtained
from Eq. (2.8)1 that

L′0 = C0 +
n−1
∑

j=1

jCjLj+1 L′1 = 1 +
n
∑

j=1

jCjLj

L′k =
k−1
∑

j=1

jCjL
′

k−j−1 +
n−k+1
∑

j=1

(k − 1 + j)Ck−1+jLj k = 2, . . . , n

L′k =
n
∑

j=1

jCjL
′

k−j−1 k = n+ 1, . . . ,∞

(3.1)

Substituting the boundary values of Eq. (2.9) and the obtained ψ0(ζ) into Eq. (2.12), and
comparing the coefficients of the same powers of σ, we have

S′0 = −
n−1
∑

j=1

jajLj+1 S′1 = −
n
∑

j=1

jajLj

S′k = −
n−k+1
∑

j=1

(k − 1 + j)ak−1+jLj −
k−1
∑

j=1

jajL
′

k−1+j k = 2, . . . , n

S′k = −
n
∑

j=1

jajL
′

k−1+j k = n+ 1, . . . ,∞

(3.2)

Theoretically, the value range of k in S′k is 0 ∼ ∞, however, k must be taken as a finite
value in the actual calculation. Since −

∑

∞

k=0 S
′

kζ
−k is convergent, the satisfactory results can

be obtained when the number of terms of S′k is high.

It can be obtained from Eqs. (2.8)2 and (2.15)2 that

ψ0(ζ) = −
m
∑

k=0

S′kζ
−k −

PR

2
(1 + λ)ζ−1 +

PR

2
(1− λ)

n
∑

j=1

Cjζ
−j (3.3)



Improvement of the Cauchy integral method for the stresses and... 163

Substituting Eq. (2.1) and the obtained ϕ0(ζ) into Eq. (2.3)1 yields

ϕ(ζ) =
PR

4
(1 + λ)

(

ζ +
n
∑

k=0

Ckζ
−k

)

+
n
∑

j=1

ajζ
−j (3.4)

Substituting Eqs. (2.1) and (3.3) into Eq. (2.3)2 yields

ψ(ζ) = −
m
∑

k=0

S′kζ
−k −

PR

2
(1 + λ)ζ−1 +

PR

2
(λ− 1)(ζ + C0) (3.5)

Finally, substituting the obtained ϕ(ζ) and ψ(ζ) into Eqs. (2.2)1,2, the stress components σρ,
σθ and τρθ are determined. Similarly, substituting the obtained ϕ0(ζ) and ψ0(ζ) into Eq. (2.2)3,
the displacement components u and v are found.

3.4. The effects of the number of negative power terms in ψ0(ζ) on the calculation results

To study the effect of the number m of negative power terms in ψ0(ζ) on the calculation
results of the improved method, a vertical-wall semicircle tunnel is taken as an example. The
in-situ stress and parameters of the surrounding rock are the same as those in Section 2.5.

Figure 9 shows tangential stress contrast between analytical and numerical solutions for
different m when ρ = 1. It can be seen from Fig. 9 that with an increase of m, the fluctuation
of analytical solutions became smaller and calculation accuracy is higher, For the vertical-wall
semicircle tunnel, when m is equal to 200, satisfactory results are obtained.

Fig. 9. Tangential stress contrast between the analytical solution obtained by the improved Cauchy
integral method and the numerical solution for different m when ρ = 1: (a) tangential stress,

0◦ ¬ θ ¬ 180◦; (b) tangential stress, 120◦ ¬ θ ¬ 150◦

3.5. Validation of results

The improved Cauchy integral method given in Section 3.3 is actually an analytical method,
but its accuracy depends on the number m of negative power terms in ψ0(ζ). In the following,
to verify the correctness of the improved Cauchy integral method, the improved Cauchy integral
method is used to calculate the same example given in Section 2.5 (according to Section 3.3,
m = 200). The comparison of the improved analytical solution and numerical solutions of stress
and displacement at ρ = 1, ρ = 6 and ρ = 8 are given in Figs. 10-12, respectively. It can be seen
from Figs. 10-12 that:



164 Y. Zhou et al.

The improved analytical solutions of stress and displacement at ρ = 1, ρ = 6 and ρ = 8
are basically the same as the numerical solutions, which verifies the correctness of the improved
method in this paper.
Through the improved method, the distribution of stress and displacement outside the tunnel

can be obtained with high accuracy, and the problem of abnormal calculation will not appear.

Fig. 10. The contrast between analytical solution obtained by improved Cauchy integral method and
numerical solution when ρ = 1: (a) comparison of tangential stress, (b) comparison of displacement

Fig. 11. The contrast between the analytical solution obtained by the improved Cauchy integral method
and the numerical solution when ρ = 6: (a) comparison of stress, (b) comparison of displacement

4. Conclusion

For a simple-shaped tunnel with the number of mapping function items n less than 3, such as
a circle, an ellipse, etc., accurate stress and displacement solutions can be obtained at the edge
of the tunnel and the area outside the tunnel by the traditional Cauchy integral method. For
a complex-shaped tunnel with n ­ 3, accurate solutions can still be obtained at the edge of
the tunnel. However, due to the rounding error caused by the computer operation, there are
positive power terms of ζ in ψ0(ζ). The positive power of ζ is higher with the increasing n,
and the value of |ζ|(ρ) is larger as the distance from the calculated position to the tunnel
edge is increased. Therefore, there are some positive high powers of large values in the actual
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Fig. 12. The contrast between the analytical solution obtained by the improved Cauchy integral method
and the numerical solution when ρ = 8: (a) comparison of stress, (b) comparison of displacement

calculation, which leads to a large calculation error and abnormal calculation. The calculated
stress and displacement produce a very unstable oscillation, i.e., the stress and displacement
calculated by the complex potential function obtained by the traditional Cauchy integral method
are abnormal.
In this paper, ψ0(ζ) is improved so that the expression of ψ0(ζ) only contained negative power

terms of ζ and a constant term.When the number of negative power terms ism, the expressions of
negative power terms and constant terms are obtained by the undetermined coefficient method.
It is found from the calculation example that the calculation accuracy of stress and displacement
is higher with the increasing of m. For the vertical-wall semicircle tunnel, whenm is equal to 200,
satisfactory results are obtained. The improved ψ0(ζ) is applied to the calculation of stress and
displacement in the surrounding rock, which eliminates abnormal calculation of the stress and
displacement outside the tunnel. The analytical method of the stress and displacement around
the deeply-buried tunnel is established, which is suitable for the edge of the tunnel and the area
outside the tunnel.
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